Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Predictive ability of a semi-mechanistic model for neutropenia in the development of novel anti-cancer agents: two case studies.

Investigational new drugs | 2011

In cancer chemotherapy neutropenia is a common dose-limiting toxicity. An ability to predict the neutropenic effects of cytotoxic agents based on proposed trial designs and models conditioned on previous studies would be valuable. The aim of this study was to evaluate the ability of a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for myelosuppression to predict the neutropenia observed in Phase I clinical studies, based on parameter estimates obtained from prior trials. Pharmacokinetic and neutropenia data from 5 clinical trials for diflomotecan and from 4 clinical trials for indisulam were used. Data were analyzed and simulations were performed using the population approach with NONMEM VI. Parameter sets were estimated under the following scenarios: (a) data from each trial independently, (b) pooled data from all clinical trials and (c) pooled data from trials performed before the tested trial. Model performance in each of the scenarios was evaluated by means of predictive (visual and numerical) checks. The semi-mechanistic PK/PD model for neutropenia showed adequate predictive ability for both anti-cancer agents. For diflomotecan, similar predictions were obtained for the three scenarios. For indisulam predictions were better when based on data from the specific study, however when the model parameters were conditioned on data from trials performed prior to a specific study, similar predictions of the drug related-neutropenia profiles and descriptors were obtained as when all data were used. This work provides further indication that modeling and simulation tools can be applied in the early stages of drug development to optimize future trials.

Pubmed ID: 20449627 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ExPANdS (tool)

RRID:SCR_005199

Software that characterizes coexisting subpopulations (SPs) in a tumor using copy number and allele frequencies derived from exome- or whole genome sequencing input data. The model amplifies the statistical power to detect coexisting genotypes, by fully exploiting run-specific tradeoffs between depth of coverage and breadth of coverage. ExPANdS predicts the number of clonal expansions, the size of the resulting SPs in the tumor bulk, the mutations specific to each SP and tumor purity. The main function runExPANdS provides the complete functionality needed to predict coexisting SPs from single nucleotide variations (SNVs) and associated copy numbers. The robustness of the subpopulation predictions by ExPANdS increases with the number of mutations provided. It is recommended that at least 200 mutations are used as an input to obtain stable results.

View all literature mentions