Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genome-wide association identifies ATOH7 as a major gene determining human optic disc size.

Human molecular genetics | 2010

Optic nerve assessment is important for many blinding diseases, with cup-to-disc ratio (CDR) assessments commonly used in both diagnosis and progression monitoring of glaucoma patients. Optic disc, cup, rim area and CDR measurements all show substantial variation between human populations and high heritability estimates within populations. To identify loci underlying these quantitative traits, we performed a genome-wide association study in two Australian twin cohorts and identified rs3858145, P=6.2x10(-10), near the ATOH7 gene as associated with the mean disc area. ATOH7 is known from studies in model organisms to play a key role in retinal ganglion cell formation. The association with rs3858145 was replicated in a cohort of UK twins, with a meta-analysis of the combined data yielding P=3.4x10(-10). Imputation further increased the evidence for association for several SNPs in and around ATOH7 (P=1.3x10(-10) to 4.3x10(-11), top SNP rs1900004). The meta-analysis also provided suggestive evidence for association for the cup area at rs690037, P=1.5x10(-7), in the gene RFTN1. Direct sequencing of ATOH7 in 12 patients with optic nerve hypoplasia, one of the leading causes of blindness in children, revealed two novel non-synonymous mutations (Arg65Gly, Ala47Thr) which were not found in 90 unrelated controls (combined Fisher's exact P=0.0136). Furthermore, the Arg65Gly variant was found to have very low frequency (0.00066) in an additional set of 672 controls.

Pubmed ID: 20395239 RIS Download

Associated grants

  • Agency: Wellcome Trust, United Kingdom
  • Agency: NEI NIH HHS, United States
    Id: 1R01EY013612
  • Agency: NEI NIH HHS, United States
    Id: 1R01EY018246
  • Agency: NEI NIH HHS, United States
    Id: R01 EY013612
  • Agency: Medical Research Council, United Kingdom
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: G20234
  • Agency: NEI NIH HHS, United States
    Id: R01 EY013612-10

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MACH 1.0 (tool)

RRID:SCR_001759

A Markov Chain based software tool for haplotyping, genotype imputation and disease association analysis that can resolve long haplotypes or infer missing genotypes in samples of unrelated individuals.

View all literature mentions

Ensembl (tool)

RRID:SCR_002344

Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.

View all literature mentions

International HapMap Project (tool)

RRID:SCR_002846

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A multi-country collaboration among scientists and funding agencies to develop a public resource where genetic similarities and differences in human beings are identified and catalogued. Using this information, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. All of the information generated by the Project will be released into the public domain. Their goal is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. HapMap project related data, software, and documentation include: bulk data on genotypes, frequencies, LD data, phasing data, allocated SNPs, recombination rates and hotspots, SNP assays, Perlegen amplicons, raw data, inferred genotypes, and mitochondrial and chrY haplogroups; Generic Genome Browser software; protocols and information on assay design, genotyping and other protocols used in the project; and documentation of samples/individuals and the XML format used in the project.

View all literature mentions

Eigensoft (tool)

RRID:SCR_004965

EIGENSOFT package combines functionality from our population genetics methods (Patterson et al. 2006) and our EIGENSTRAT stratification method (Price et al. 2006). The EIGENSTRAT method uses principal components analysis to explicitly model ancestry differences between cases and controls along continuous axes of variation; the resulting correction is specific to a candidate marker''s variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. The EIGENSOFT package has a built-in plotting script and supports multiple file formats and quantitative phenotypes. Source code, documentation and executables for using EIGENSOFT 3.0 on a Linux platform can be downloaded. New features of EIGENSOFT 3.0 include supporting either 32-bit or 64-bit Linux machines, a utility to merge different data sets, a utility to identify related samples (accounting for population structure), and supporting multiple file formats for EIGENSTRAT stratification correction.

View all literature mentions

UCSC Genome Browser (tool)

RRID:SCR_005780

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

Sequencher (tool)

RRID:SCR_001528

Software for Next-Generation DNA sequencing, Sanger DNA analysis, and RNA sequencing. It contains sequence analysis tools which include reference-guided alignments, de novo assembly, variant calling, and SNP analyses. It has integrated the Cufflinks suite for in-depth transcript analysis and differential gene expression of RNA-Seq data.

View all literature mentions