Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1.

PLoS pathogens | 2010

Antibody protection against flaviviruses is associated with the development of neutralizing antibodies against the viral envelope (E) protein. Prior studies with West Nile virus (WNV) identified therapeutic mouse and human monoclonal antibodies (MAbs) that recognized epitopes on domain III (DIII) of the E protein. To identify an analogous panel of neutralizing antibodies against DENV type-1 (DENV-1), we immunized mice with a genotype 2 strain of DENV-1 virus and generated 79 new MAbs, 16 of which strongly inhibited infection by the homologous virus and localized to DIII. Surprisingly, only two MAbs, DENV1-E105 and DENV1-E106, retained strong binding and neutralizing activity against all five DENV-1 genotypes. In an immunocompromised mouse model of infection, DENV1-E105 and DENV1-E106 exhibited therapeutic activity even when administered as a single dose four days after inoculation with a heterologous genotype 4 strain of DENV-1. Using epitope mapping and X-ray crystallographic analyses, we localized the neutralizing determinants for the strongly inhibitory MAbs to distinct regions on DIII. Interestingly, sequence variation in DIII alone failed to explain disparities in neutralizing potential of MAbs among different genotypes. Overall, our experiments define a complex structural epitope on DIII of DENV-1 that can be recognized by protective antibodies with therapeutic potential.

Pubmed ID: 20369024 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: U01-AI061373
  • Agency: NIAID NIH HHS, United States
    Id: R01-AI077955
  • Agency: NIAID NIH HHS, United States
    Id: U01 AI077955
  • Agency: NIAID NIH HHS, United States
    Id: HHSN272200700058C
  • Agency: NIAID NIH HHS, United States
    Id: U01 AI061373
  • Agency: NIAID NIH HHS, United States
    Id: U54 AI057160

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cold Spring Harbor Laboratory (tool)

RRID:SCR_008326

Non profit, private research and education institution that performs molecular and genetic research used to generate methods for better diagnostics and treatments for cancer and neurological diseases. Research of cancer causing genes and their respective signaling pathways, mutations and structural variations of the human genome that could cause neurodevelopmental and neurodegenerative illnesses such as autism, schizophrenia, and Alzheimer's and Parkinson's diseases and also research in plant genetics and quantitative biology.

View all literature mentions

Refmac (tool)

RRID:SCR_014225

A molecular refinement program with two main modes: REVIEW, which checks and updates the input model to establish that the geometric restraints can be properly set up, and REFINE mode, which is the standard mode and documented in keywords. In REVIEW users can: check model coordinates and write an extended output set of coordinates, find disulphide bonds and other covalent links, cis-peptides, output the sequence and REMARK records. In REFINEMENT mode users can carry out rigid body, tls, restrained or unrestrained refinement against Xray data, or idealisation of a macromolecular structure. Also in REFINEMENT mode, Refmac produces an MTZ output file containing weighted coefficients for SigmaA weighted mFo-DFcalc and 2mFo-DFcalc maps. The program is supported by CCP4.

View all literature mentions

C6/36 (tool)

RRID:CVCL_Z230

Cell line C6/36 is a Spontaneously immortalized cell line with a species of origin Aedes albopictus (Asian tiger mosquito)

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions