Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Deletional bias across the three domains of life.

Genome biology and evolution | 2009

Elevated levels of genetic drift are hypothesized to be a dominant factor that influences genome size evolution across all life-forms. However, increased levels of drift appear to be correlated with genome expansion in eukaryotes but with genome contraction in bacteria, suggesting that these two groups of organisms experience vastly different mutational inputs and selective constraints. To determine the contribution of small insertion and deletion events to the differences in genome organization between eukaryotes and prokaryotes, we systematically surveyed 17 taxonomic groups across the three domains of life. Based on over 5,000 indel events in noncoding regions, we found that deletional events outnumbered insertions in all groups examined. The extent of deletional bias, when measured by the total length of insertions to deletions, revealed a marked disparity between eukaryotes and prokaryotes, whereas the ratio was close to one in the three eukaryotic groups examined, deletions outweighed insertions by at least a factor of 10 in most prokaryotes. Moreover, the strength of deletional bias is associated with the proportion of coding regions in prokaryotic genomes. Considering that genetic drift is a stochastic process and does not discriminate the exact nature of mutations, the degree of bias toward deletions provides an explanation to the differential responses of eukaryotes and prokaryotes to elevated levels of drift. Furthermore, deletional bias, rather than natural selection, is the primary mechanism by which the compact gene packing within most prokaryotic genomes is maintained.

Pubmed ID: 20333185 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FlyBase (tool)

RRID:SCR_006549

Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.

View all literature mentions