Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw.

Journal of neurochemistry | 2010

Aggregation of amyloid-beta (Abeta) in the forebrain of Alzheimer's disease (AD) subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that Abeta, or another amyloid precursor protein (APP) dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate (CS)-bearing proteoglycan, were altered in brains of Abeta-depositing transgenic mice (APPsw - APP gene bearing the Swedish mutation) as a model of AD. The molecular size of CS chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing Abeta deposits compared to non-transgenic mice, likely because of changes in the CS chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that Abeta or APP exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. As proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in Abeta-bearing mice and potentially end-stage human AD, may contribute to deficient neural plasticity.

Pubmed ID: 20180882 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: R01 AG022101-04
  • Agency: NIA NIH HHS, United States
    Id: AG015490
  • Agency: NIA NIH HHS, United States
    Id: R01 AG022101
  • Agency: NIA NIH HHS, United States
    Id: R01 AG018478
  • Agency: NIA NIH HHS, United States
    Id: AG018478
  • Agency: NIA NIH HHS, United States
    Id: AG022101
  • Agency: NIA NIH HHS, United States
    Id: R01 AG015490

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Openlab (tool)

RRID:SCR_012158

A software package for performing 2D microscope image processing and integrating and controlling a diverse array of instrumentation in a laboratory environment. The software suite has four basic areas of operation acquisition, image presentation, and storage, analysis, and automation.

View all literature mentions