Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Microglia enhance manganese chloride-induced dopaminergic neurodegeneration: role of free radical generation.

Experimental neurology | 2009

Exposure to elevated levels of manganese has been shown to cause neuronal damage in the midbrain and the development of Parkinsonian symptoms. Activation of microglia and release of neurotoxic factors in particular free radicals are known to contribute to neurodegeneration. We have recently reported that manganese chloride (MnCl(2)) stimulates microglia to produce reactive oxygen species (ROS). The aim of this study is to determine the role of microglia in the MnCl(2)-induced degeneration of dopaminergic (DA) neurons that are particularly vulnerable to oxidative insult. MnCl(2) (10-300 microM; 7 days) was markedly more effective in damaging DA neurons in the rat mesencephalic neuron-glia cultures than the neuron-enriched (microglia-depleted) cultures. In addition, the microglia-enhanced MnCl(2) toxicity was found to be preferential to DA neurons. The microglial enhancement of DA neurotoxicity was further supported by the observation that replenishment of microglia to the neuron-enriched cultures significantly increased the susceptibility of DA neurons to the MnCl(2)-induced damage. Analysis of the temporal relationship between microglial activation and DA neurodegeneration revealed that MnCl(2)-stimulated microglial activation preceded DA neurodegeneration. Mechanistically, MnCl(2) (10-300 microM) stimulated a concentration- and time-dependent robust production of ROS and moderate production of nitric oxide but no detectable release of tumor necrosis factor-alpha and interleukin-1beta. Application of free radical scavengers including superoxide dismutase/catalase, glutathione, N-acetyl cysteine and an inhibitor of nitric oxide biosynthesis significantly protected DA neurons against the MnCl(2)-induced degeneration. These results demonstrate that microglial activation and the production of reactive nitrogen and oxygen free radicals promote the MnCl(2)-induced DA neurodegeneration.

Pubmed ID: 19268665 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIEHS NIH HHS, United States
    Id: R01 ES013265
  • Agency: NIEHS NIH HHS, United States
    Id: R01 ES013265-02
  • Agency: NIEHS NIH HHS, United States
    Id: ES013265

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Charles River Laboratories (tool)

RRID:SCR_003792

Commercial organism provider selling mice, rats and other model animals. American corporation specializing in a variety of pre-clinical and clinical laboratory services for the pharmaceutical, medical device and biotechnology industries. It also supplies assorted biomedical products and research and development outsourcing services for use in the pharmaceutical industry. (Wikipedia)

View all literature mentions