Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Isolation of cardiac cells from E8.5 yolk sac by ALCAM (CD166) expression.

Mechanisms of development | 2007

It is known that the adhesion molecule ALCAM (CD166) mediates metastasis of malignant cells and organogenesis in embryos. We show here that embryonic day 8.5 (E8.5) murine yolk sac cells express ALCAM protein and that ALCAM expression can be used to define endothelial and cardiac precursors from hematopoietic precursors in E8.5 yolk sacs. ALCAM high+ cells exclusively give rise to endothelial and cardiac cells in matrigel assays but generate no hematopoietic colonies in methylcellulose assays. ALCAM low+ and ALCAM- populations predominantly give rise to hematopoietic cells in methylcellulose, but do not generate any cell clusters in matrigel. The ALCAM high+ population contains both Flk-1+ and Flk-1- cells. The former population exclusively contains endothelial cells whereas the latter give rise to cardiac cells when cultured on OP9 stromal cells. We also show that cardiac lineage marker genes such as Nkx-2.5, and the endothelial marker VE-cadherin are expressed in the ALCAM high+ fraction, whereas the hematopoietic marker GATA1 and Runx1 are expressed in the ALCAM low+/- fraction. However, we did not detect expression of the cardiac structural protein cTn-T in cells from yolk sac cells until these had had been differentiated on OP9 for 5 days. Altogether, these results indicate that cells retaining a potential to differentiate to the cardiac lineage are present in E8.5 yolk sacs and can be isolated as ALCAM high+, Flk-1- cells. Our report provides novel insights into the origin and differentiation process of cardiac cells in the formation of the circulatory system.

Pubmed ID: 17964124 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RIKEN BioResource Center (tool)

RRID:SCR_003250

RIKEN BRC contributes to advancement of life science research by collecting, preserving and distributing biological resources such as experimental animals, experimental plants, cultured cell lines, genetic materials (DNA), and associated bioinformatics. The RIKEN BRC develops novel bioresources to promote scientific research and new technologies to increase the value of bioresources, and also to implement effective procedures for the preservation, quality control and usage of bioresources. The RIKEN BRC is working closely with institutions in Japan and abroad.

View all literature mentions