Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss.

Molecular systems biology | 2007

Many genes can be deleted with little phenotypic consequences. By what mechanism and to what extent the presence of duplicate genes in the genome contributes to this robustness against deletions has been the subject of considerable interest. Here, we exploit the availability of high-density genetic interaction maps to provide direct support for the role of backup compensation, where functionally overlapping duplicates cover for the loss of their paralog. However, we find that the overall contribution of duplicates to robustness against null mutations is low ( approximately 25%). The ability to directly identify buffering paralogs allowed us to further study their properties, and how they differ from non-buffering duplicates. Using environmental sensitivity profiles as well as quantitative genetic interaction spectra as high-resolution phenotypes, we establish that even duplicate pairs with compensation capacity exhibit rich and typically non-overlapping deletion phenotypes, and are thus unable to comprehensively cover against loss of their paralog. Our findings reconcile the fact that duplicates can compensate for each other's loss under a limited number of conditions with the evolutionary instability of genes whose loss is not associated with a phenotypic penalty.

Pubmed ID: 17389874 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Ontology (tool)

RRID:SCR_002811

Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.

View all literature mentions

YDPM - Yeast Deletion Project (tool)

RRID:SCR_007977

This database contains different yeast strains searchable by ORF and gene name, and serves to support the Yeast Deletion and the Mitochondrial Proteomics Project. The database is hyperlinked with other public databases. The project aims to increase the understanding of mitochondrial function and biogenesis in the context of the cell. In the Deletion Project, strains from the deletion collection were monitored under 9 different media conditions selected for the study of mitochondrial function. 5791 heterozygous diploid and 4706 homozygous diploid deletion strains were monitored in parallel using molecular barcodes on fermentable (YPD, YPDGE) and non-fermentable substrates (YPG, YPE, YPL). The YDPM database contains both the raw data and growth rates calculated for each strain in each media condition. Strains can be searched by ORF or Gene name to access growth measurements and data plots for each strain. Category: Genomics Databases (non-vertebrate) Subcategory: Fungal genome databases Category: Organelle databases Subcategory: Mitochondrial genes and proteins

View all literature mentions

FASTA (tool)

RRID:SCR_011819

Software package for DNA and protein sequence alignment to find regions of local or global similarity between Protein or DNA sequences, either by searching Protein or DNA databases, or by identifying local duplications within a sequence.

View all literature mentions