Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites.

Virus research | 2007

The coronavirus nucleocapsid (N) is a multifunctional phosphoprotein that encapsidates the genomic RNA into a helical nucleocapsid within the mature virion. The protein also plays roles in viral RNA transcription and/or replication and possibly viral mRNA translation. Phosphorylation is one of the most common post-translation modifications that plays important regulatory roles in modulating protein functions. It has been speculated for sometime that phosphorylation could play an important role in regulation of coronavirus N protein functions. As a first step toward positioning to address this we have identified the amino acids that are phosphorylated on the mouse hepatitis coronavirus (MHV) A59 N protein. High performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was used to identify phosphorylated sites on the N protein from both infected cells and purified extracellular virions. A total of six phosphorylated sites (S162, S170, T177, S389, S424 and T428) were identified on the protein from infected cells. The same six sites were also phosphorylated on the extracellular mature virion N protein. This is the first identification of phosphorylated sites for a group II coronavirus N protein.

Pubmed ID: 17367888 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK047936
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI053704-04
  • Agency: NIAID NIH HHS, United States
    Id: AI53704
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI053704
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK47936

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Protein Prospector (tool)

RRID:SCR_014558

A package of over twenty mass spectrometry-based tools primarily geared toward proteomic data analysis and database mining. It can be run from the command line, but is primarily used through a web browser, and there is a public website that allows anyone to use the software without local installation. Tandem mass spectrometry analysis tools are used for database searching and identification of peptides, including post-translationally modified peptides and cross-linked peptides. Support for isotope and label-free quantification from this type of data is provided. MS-Viewer software allows sharing and displaying of annotated spectra from many different tandem mass spectrometry data analysis packages. Other tools include software for analyzing peptide mass fingerprinting data (MS-Fit); prediction of theoretical fragmentation of peptides (MS-Product); theoretical chemical or enzymatic digestion of proteins (MS-Digest); and theoretical modeling of the isotope distribution of any chemical, including peptides (MS-Isotope). Searches using amino acid sequence can be used to identify homologous peptides in a database (MS-Pattern); the use of the combination of amino acid sequence and masses can be used for homologous peptide and protein identification using MS-Homology. Tandem mass spectrometry peak list files can be filtered for the presence of certain peaks or neutral losses using MS-Filter. Given a list of proteins, MS-Bridge can report all potential cross-linked peptide combinations of a specified mass. Given a precursor peptide mass and information about known amino acid presence, absence, or modifications, MS-Comp can report all amino acid combinations that could lead to the observed mass.

View all literature mentions