Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Efficient transduction and engraftment of G-CSF-mobilized peripheral blood CD34+ cells in nonhuman primates using GALV-pseudotyped gammaretroviral vectors.

Molecular therapy : the journal of the American Society of Gene Therapy | 2006

The optimal stem cell source for stem cell gene therapy has yet to be determined. Most large-animal studies have utilized peripheral blood or marrow-derived cells collected after administration of granulocyte colony-stimulating factor (G-SCF) and stem cell factor (SCF); however, SCF is unavailable for clinical use in the United States and the European Union. A recent study in a competitive repopulation assay in the rhesus macaque showed very inefficient marking of G-CSF-mobilized (G/only) peripheral blood (G-PBSC) CD34(+) cells relative to G-CSF and SCF-mobilized cells using vectors with an amphotropic pseudotype. Because G-PBSC would be the preferred target cell population for most clinical stem cell gene therapy applications, we asked whether we could achieve efficient transduction and engraftment of G-PBSC using Phoenix-GALV-pseudotyped vectors. We transplanted three baboons with G/only mobilized CD34(+) cells transduced with GALV-pseudotyped retroviral vectors. We observed high-level, persistent engraftment of gene-modified G-PBSC in all animals with gene marking levels in granulocytes up to 60%. We analyzed amphotropic (PIT2) and GALV (PIT1) receptor expression in G/only cells and found preferential expression of PIT1 after G/only, which may explain the inferior results with amphotropic pseudotypes. These findings demonstrate that high stem cell gene transfer levels can be achieved using G-CSF-mobilized PBSC with Phoenix-GALV-pseudotyped vectors.

Pubmed ID: 16631413 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: DK47754
  • Agency: NIDDK NIH HHS, United States
    Id: DK56465
  • Agency: NHLBI NIH HHS, United States
    Id: HL53750
  • Agency: NHLBI NIH HHS, United States
    Id: HL54881
  • Agency: NCRR NIH HHS, United States
    Id: RR00166

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Primer Express (tool)

RRID:SCR_014326

Software that allows users to manually or automatically design custom primers and probes for gene quantitation and allelic discrimination (SNP) real-time PCR applications. It supports assays based on TaqMan and SYBR Green I dye chemistries.

View all literature mentions