Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Dependence of amygdala activation on echo time: results from olfactory fMRI experiments.

NeuroImage | 2006

Echo time dependence of the BOLD sensitivity is an important topic in fMRI whenever brain regions are considered where the EPI data quality suffers from susceptibility gradients. Here, an fMRI study is presented showing that a reduced echo time EPI sequence significantly enhances the statistical inference in subcortical (limbic) brain regions, with special focus on the amygdala. As a consequence, to facilitate whole-brain fMRI with optimal echo times, a sequence with slice-dependent echo time is demonstrated with a focus on structures suffering from susceptibility changes. The applicability of this method is shown in a second fMRI study aimed at both, cortical, and limbic brain regions. The results are in good agreement with theoretical descriptions of the BOLD sensitivity under the influence of susceptibility gradients.

Pubmed ID: 16305825 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SPM (tool)

RRID:SCR_007037

Software package for analysis of brain imaging data sequences. Sequences can be a series of images from different cohorts, or time-series from same subject. Current release is designed for analysis of fMRI, PET, SPECT, EEG and MEG.

View all literature mentions