2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Comparative genomic analysis of the clade B serpin cluster at human chromosome 18q21: amplification within the mouse squamous cell carcinoma antigen gene locus.

Genomics | 2004

The human clade B serpins neutralize serine or cysteine proteinases and reside predominantly within the intracellular compartment. Genomic analysis shows that the 13 human clade B serpins map to either 6p25 (n = 3) or 18q21 (n = 10). Similarly, the mouse clade B serpins map to syntenic loci at 13A3.2 and 1D, respectively. The mouse clade B cluster at 13A3.2 shows a marked expansion in the number of serpin genes (n = 15). The purpose of this study was to determine whether a similar expansion occurred at 1D. Using STS-content mapping, comparative genomic DNA sequence analysis, and cDNA cloning, we found that the mouse clade B cluster at 1D showed nearly complete conservation of gene number, order, and orientation relative to those of 18q21. The only exception was the squamous cell carcinoma antigen (SCCA) locus. The human SCCA locus contains two genes, SERPINB3 (SCCA1) and SERPINB4 (SCCA2), whereas the mouse locus contains four serpins and three pseudogenes. Based on phylogenetic analysis and predicted amino acid sequences, amplification of the mouse SCCA locus occurred after rodents and primates diverged and was associated with some diversification of proteinase inhibitory activity relative to that of humans.

Pubmed ID: 15203215 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: CA86007
  • Agency: NCI NIH HHS, United States
    Id: CA87006
  • Agency: NICHD NIH HHS, United States
    Id: HD074666
  • Agency: NHLBI NIH HHS, United States
    Id: HL007718

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PHYLIP (tool)

RRID:SCR_006244

A free package of software programs for inferring phylogenies (evolutionary trees). The source code is distributed (in C), and executables are also distributed. In particular, already-compiled executables are available for Windows (95/98/NT/2000/me/xp/Vista), Mac OS X, and Linux systems. Older executables are also available for Mac OS 8 or 9 systems.

View all literature mentions

RepeatMasker (tool)

RRID:SCR_012954

Software tool that screens DNA sequences for interspersed repeats and low complexity DNA sequences. The output of the program is a detailed annotation of the repeats that are present in the query sequence as well as a modified version of the query sequence in which all the annotated repeats have been masked (default: replaced by Ns). Currently over 56% of human genomic sequence is identified and masked by the program. Sequence comparisons in RepeatMasker are performed by one of several popular search engines including nhmmer, cross_match, ABBlast/WUBlast, RMBlast and Decypher. RepeatMasker makes use of curated libraries of repeats and currently supports Dfam ( profile HMM library ) and RepBase ( consensus sequence library ).

View all literature mentions

MacVector (tool)

RRID:SCR_015700

Software application that provides sequence editing, primer design, internet database searching, protein analysis, sequence confirmation, multiple sequence alignment, phylogenetic reconstruction, coding region analysis, agarose gel simulation and a variety of other functions.

View all literature mentions