2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Interactions between electron and proton currents in excised patches from human eosinophils.

The Journal of general physiology | 2003

The NADPH-oxidase is a plasma membrane enzyme complex that enables phagocytes to generate superoxide in order to kill invading pathogens, a critical step in the host defense against infections. The oxidase transfers electrons from cytosolic NADPH to extracellular oxygen, a process that requires concomitant H+ extrusion through depolarization-activated H+ channels. Whether H+ fluxes are mediated by the oxidase itself is controversial, but there is a general agreement that the oxidase and H+ channel are intimately connected. Oxidase activation evokes profound changes in whole-cell H+ current (IH), causing an approximately -40-mV shift in the activation threshold that leads to the appearance of inward IH. To further explore the relationship between the oxidase and proton channel, we performed voltage-clamp experiments on inside-out patches from both resting and phorbol-12-myristate-13-acetate (PMA)-activated human eosinophils. Proton currents from resting cells displayed slow voltage-dependent activation, long-term stability, and were blocked by micromolar internal [Zn2+]. IH from PMA-treated cells activated faster and at lower voltages, enabling sustained H+ influx, but ran down within minutes, regaining the current properties of nonactivated cells. Bath application of NADPH to patches excised from PMA-treated cells evoked electron currents (Ie), which also ran down within minutes and were blocked by diphenylene iodonium (DPI). Run-down of both IH and Ie was delayed, and sometimes prevented, by cytosolic ATP and GTP-gamma-S. A good correlation was observed between the amplitude of Ie and both inward and outward IH when a stable driving force for e- was imposed. Combined application of NADPH and DPI reduced the inward IH amplitude, even in the absence of concomitant oxidase activity. The strict correlation between Ie and IH amplitudes and the sensitivity of IH to oxidase-specific agents suggest that the proton channel is either part of the oxidase complex or linked by a membrane-limited mediator.

Pubmed ID: 14638931 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Genovo (tool)

RRID:SCR_011911

Software for a novel de novo sequence assembler that discovers likely sequence reconstructions under the model.

View all literature mentions

pClamp (tool)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions

STATISTICA_dup (tool)

RRID:SCR_015627

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 1,2023. Analytics platform with various sub platforms, each with specific performance capabilities for tasks such as data analysis, data management, data visualization, and data mining procedures.

View all literature mentions