Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Regulation of lipid metabolism and gene expression by fenofibrate in hamsters.

Biochimica et biophysica acta | 2001

Fenofibrate is a potent hypolipidemic agent that lowers plasma lipid levels and may thus decrease the incidence of atherosclerosis. Here we investigated the molecular mechanism of fenofibrate's hypolipidemic action by characterizing its in vivo effects on the expression of mRNAs and the activities of pivotal enzymes in cholesterol and triglyceride metabolism in the hamster. Treatment of hamsters with fenofibrate led to a dose-dependent reduction in serum cholesterol concentrations. Studies on the incorporation of [(14)C]acetate and [(14)C]mevalonate into cholesterol suggested that this effect occurs primarily through inhibition of cholesterol biosynthesis at steps prior to mevalonate. Fenofibrate decreased levels of hepatic enzyme activities and mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase. A potential mechanism for transcriptional regulation of these enzymes is via SREBP-2 that we found to be suppressed 2-fold by fenofibrate. Fenofibrate also lowered circulatory triglyceride levels. In keeping with the effect, we observed strong suppression of fatty acid synthase, acetyl-CoA carboxylase and apolipoprotein C-III mRNA and stimulation of lipoprotein lipase and acyl-CoA oxidase mRNA in the liver of fenofibrate-treated hamsters. These observations suggest that the effect of fenofibrate on triglyceride metabolism is likely to be a result of both decreased fatty acid synthesis and increased lipoprotein lipase and acyl-CoA oxidase gene expression in the liver. Surprisingly, alterations in lipoprotein lipase, acyl-CoA oxidase, acetyl-CoA carboxylase, and apolipoprotein C-III could not be observed in hamster hepatocytes incubated with fenofibric acid in vitro. These observations raise the possibility that changes in these genes may be secondary to the metabolic alterations occurring in animals but not in cultured cells and thus that the effect of fenofibrate on these genes may be indirect.

Pubmed ID: 11731332 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


European Molecular Biology Laboratory (tool)

RRID:SCR_004473

Intergovernmental organisation funded by public research money from its member states in Europe. Groups and laboratories perform basic research in molecular biology and molecular medicine, training for scientists, students and visitors. Provides development of services, new instruments and methods, data and technology in its member states.

View all literature mentions