Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Transplanted neuroblasts differentiate appropriately into projection neurons with correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron degeneration.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2000

Reconstruction of complex neocortical and other CNS circuitry may be possible via transplantation of appropriate neural precursors, guided by cellular and molecular controls. Although cellular repopulation and complex circuitry repair may make possible new avenues of treatment for degenerative, developmental, or acquired CNS diseases, functional integration may depend critically on specificity of neuronal synaptic integration and appropriate neurotransmitter/receptor phenotype. The current study investigated neurotransmitter and receptor phenotypes of newly incorporated neurons after transplantation in regions of targeted neuronal degeneration of cortical callosal projection neurons (CPNs). Donor neuroblasts were compared to the population of normal endogenous CPNs in their expression of appropriate neurotransmitters (glutamate, aspartate, and GABA) and receptors (kainate-R, AMPA-R, NMDA-R. and GABA-R), and the time course over which this phenotype developed after transplantation. Transplanted immature neuroblasts from embryonic day 17 (E17) primary somatosensory (S1) cortex migrated to cortical layers undergoing degeneration, differentiated to a mature CPN phenotype, and received synaptic input from other neurons. In addition, 23.1 +/- 13.6% of the donor-derived neurons extended appropriate long-distance callosal projections to the contralateral S1 cortex. The percentage of donor-derived neurons expressing appropriate neurotransmitters and receptors showed a steady increase with time, reaching numbers equivalent to adult endogenous CPNs by 4-16 weeks after transplantation. These results suggest that previously demonstrated changes in gene expression induced by synchronous apoptotic degeneration of adult CPNs create a cellular and molecular environment that is both permissive and instructive for the specific and appropriate maturation of transplanted neuroblasts. These experiments demonstrate, for the first time, that newly repopulating neurons can undergo directed differentiation with high fidelity of their neurotransmitter and receptor phenotype, toward reconstruction of complex CNS circuitry.

Pubmed ID: 11007899 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

  • Agency: NICHD NIH HHS, United States
    Id: HD18655
  • Agency: NICHD NIH HHS, United States
    Id: HD28478

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Glutamate Antibody (antibody)

RRID:AB_572244

This monoclonal targets Glutamate

View all literature mentions