Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Glutamate Transporter, Glial antibody


Antibody ID


Target Antigen

Glutamate Transporter, Glial (GLT-1) human, mouse, rat

Proper Citation

(Millipore Cat# AB1783, RRID:AB_90949)


polyclonal antibody


seller recommendations: Immunohistochemistry; Western Blotting, Immunohistochemistry

Host Organism

guinea pig



Ndrg2 deficiency ameliorates neurodegeneration in experimental autoimmune encephalomyelitis.

  • Le TM
  • J. Neurochem.
  • 2018 Jan 10

Literature context:


N-myc downstream-regulated gene 2 (NDRG2) is a differentiation- and stress-associated molecule that is predominantly expressed in astrocytes in the central nervous system. In this study, we examined the expression and role of NDRG2 in experimental autoimmune encephalomyelitis (EAE), which is an animal model of multiple sclerosis. Western blot and immunohistochemical analysis revealed that the expression of NDRG2 was observed in astrocytes of spinal cord, and was enhanced after EAE induction. A comparative analysis of wild-type and Ndrg2-/- mice revealed that deletion of Ndrg2 ameliorated the clinical symptoms of EAE. Although Ndrg2 deficiency only slightly affected the inflammatory response, based on the results of flow cytometry, qRT-PCR, and immunohistochemistry, it significantly reduced demyelination in the chronic phase, and, more importantly, neurodegeneration both in the acute and chronic phases. Further studies revealed that the expression of astrocytic glutamate transporters, including glutamate aspartate transporter (GLAST) and glutamate transporter 1, was more maintained in the Ndrg2-/- mice compared with wild-type mice after EAE induction. Consistent with these results, studies using cultured astrocytes revealed that Ndrg2 gene silencing increased the expression of GLAST, while NDRG2 over-expression decreased it without altering the expression of glial fibrillary acidic protein. The effect of NDRG2 on GLAST expression was associated with the activation of Akt, but not with the activation of nuclear factor-kappa B. These findings suggest that NDRG2 plays a key role in the pathology of EAE by modulating glutamate metabolism. Cover Image for this Issue: doi: 10.1111/jnc.14173.

Funding information:
  • NCRR NIH HHS - C06 RR015455(United States)

Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence.

  • Chai H
  • Neuron
  • 2017 Aug 2

Literature context:


Astrocytes are ubiquitous in the brain and are widely held to be largely identical. However, this view has not been fully tested, and the possibility that astrocytes are neural circuit specialized remains largely unexplored. Here, we used multiple integrated approaches, including RNA sequencing (RNA-seq), mass spectrometry, electrophysiology, immunohistochemistry, serial block-face-scanning electron microscopy, morphological reconstructions, pharmacogenetics, and diffusible dye, calcium, and glutamate imaging, to directly compare adult striatal and hippocampal astrocytes under identical conditions. We found significant differences in electrophysiological properties, Ca2+ signaling, morphology, and astrocyte-synapse proximity between striatal and hippocampal astrocytes. Unbiased evaluation of actively translated RNA and proteomic data confirmed significant astrocyte diversity between hippocampal and striatal circuits. We thus report core astrocyte properties, reveal evidence for specialized astrocytes within neural circuits, and provide new, integrated database resources and approaches to explore astrocyte diversity and function throughout the adult brain. VIDEO ABSTRACT.

Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

  • Diniz LP
  • J. Neurosci.
  • 2017 Jun 12

Literature context:


Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD.SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by AβOs, via production of transforming growth factor-β1 (TGF-β1). We found that AβOs trigger morphological and functional alterations in astrocytes, and impair their neuroprotective potential. Notably, TGF-β1 reduced hippocampal dendritic spine loss and memory impairment in mice that received intracerebroventricular infusions of AβOs. Our results describe a new mechanism underlying the toxicity of AβOs and indicate novel therapeutic targets for Alzheimer's disease, mainly focused on TGF-β1 and astrocytes.

Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures.

  • Miller AP
  • PLoS ONE
  • 2017 Mar 6

Literature context:


Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h following injury and suggest increased calpain activity and membrane disruption as potential underlying mechanisms.

Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development.

  • DeSilva TM
  • J. Comp. Neurol.
  • 2012 Dec 1

Literature context:


The major regulators of synaptic glutamate in the cerebral cortex are the excitatory amino acid transporters 1-3 (EAAT1-3). In this study, we determined the cellular and temporal expression of EAAT1-3 in the developing human cerebral cortex. We applied single- and double-label immunocytochemistry to normative frontal or parietal (associative) cortex samples from 14 cases ranging in age from 23 gestational weeks to 2.5 postnatal years. The most striking finding was the transient expression of EAAT2 in layer V pyramidal neuronal cell bodies up until 8 postnatal months prior to its expression in protoplasmic astrocytes at 41 postconceptional weeks onward. EAAT2 was also expressed in neurons in layer I (presumed Cajal-Retzius cells), and white matter (interstitial) neurons. This expression in neurons in the developing human cortex contrasts with findings by others of transient expression exclusively in axon tracts in the developing sheep and rodent brain. With western blotting, we found that EAAT2 was expressed as a single band until 2 postnatal months, after which it was expressed as two bands. The expression of EAAT2 in pyramidal neurons during human brain development may contribute to cortical vulnerability to excitotoxicity during the critical period for perinatal hypoxic-ischemic encephalopathy. In addition, by studying the expression of EAAT1 and EAAT2 glutamate transporters, it was possible to document the development of protoplasmic astrocytes.

Funding information:
  • NCI NIH HHS - U01 CA176058(United States)

Fenestration of the calyx of Held occurs sequentially along the tonotopic axis, is influenced by afferent activity, and facilitates glutamate clearance.

  • Ford MC
  • J. Comp. Neurol.
  • 2009 May 1

Literature context:


The calyx of Held is a type of giant glutamatergic presynaptic terminal in the mammalian auditory brainstem that transmits afferent information from the cochlear nucleus to the medial nucleus of the trapezoid body (MNTB). It participates in sound localization, a process that requires very high temporal precision. Consistent with its functional role, the calyx shows a number of specializations for temporal fidelity, one of them being the giant terminal itself with its many release sites. During the first 3 weeks of postnatal development, the calyx transforms from a spoon-shaped, closed morphology to a highly fenestrated open structure. Calyces in Mongolian gerbils (Meriones unguiculatus) were labeled via injection of fluorescent tracers and their morphology was reconstructed at various timepoints during early postnatal development. We show that the fenestration process does not occur simultaneously in all calyces. Calyces transmitting high-frequency sound information fenestrate significantly earlier than those transmitting low-frequency information, such that a temporary developmental gradient along the tonotopic axis is established around the time of hearing onset. Animals that were deprived of afferent activity before hearing onset, either via cochlear removal or administration of ototoxic drugs, do not show this developmental gradient. Glial processes containing glutamate transporters occupy the newly created windows in the calyx and thus could augment the fast clearance of neurotransmitter. The physiological consequences of this faster clearance include a faster decay time course of synaptic currents as well as a lower amount of residual current accumulating during the processing of repeated activity such as stimulus trains.

Funding information:
  • NICHD NIH HHS - U01 HD39372(United States)

Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats.

  • Chung EK
  • J. Comp. Neurol.
  • 2008 Dec 1

Literature context:


Overactivity of glutamatergic neurotransmission in the basal ganglia is known to be closely related to the onset and pathogenesis of Parkinson's disease. Glutamate homeostasis around glutamatergic synapses is tightly regulated by two groups of glutamate transporters: glial glutamate transporters GLT1 (EAAT2) and GLAST (EAAT1), and neuronal glutamate transporter EAAC1. In order to investigate the changes of glutamate transporters after the onset of Parkinson's disease, unilateral 6-hydroxydopamine-lesioned rat, an animal model of Parkinson's disease, was employed. By immunofluorescence and Western blot analyses, GLT1 and GLAST proteins were significantly reduced in the striatum with lesion. No change in GLT1 and GLAST protein was found in the substantia nigra. The reduction of GLT1 protein in the striatum was more prominent than that of GLAST protein (approximately 40% vs. 20%). In addition, EAAC1 protein was found to be increased in the substantia nigra pars reticulata of the lesioned rats but not in the striatum. The present results indicate that reductions of GLT1 and GLAST may impair glutamate homeostasis around glutamatergic synapses in the striatum and contribute to over-spills of glutamate in the system. An increase in the EAAC1 level in the substantia nigra pars reticulata may increase GABA synthesis and enhance GABAergic neurotransmission. These results indicate that there are differential and distinct modulations of glutamate transporters after dopamine denervation in the 6-hydroxydopamine-lesioned rat.