X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Pacific Blue™ anti-mouse/human CD11b antibody

RRID:AB_755986

Antibody ID

AB_755986

Target Antigen

CD11b mouse, human, cross-reactivity: cynomolgus, rhesus, baboon, chimpanzee, rabbit (lapine)

Proper Citation

(BioLegend Cat# 101224, RRID:AB_755986)

Clonality

monoclonal antibody

Comments

Applications: FC

Clone ID

Clone M1/70

Host Organism

rat

CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine.

  • Hirata Y
  • Cell Stem Cell
  • 2018 Mar 1

Literature context:


Abstract:

A crucial player in immune regulation, FoxP3+ regulatory T cells (Tregs) are drawing attention for their heterogeneity and noncanonical functions. Here, we describe a Treg subpopulation that controls hematopoietic stem cell (HSC) quiescence and engraftment. These Tregs highly expressed an HSC marker, CD150, and localized within the HSC niche in the bone marrow (BM). Specific reduction of BM Tregs achieved by conditional deletion of CXCR4 in Tregs increased HSC numbers in the BM. Adenosine generated via the CD39 cell surface ectoenzyme on niche Tregs protected HSCs from oxidative stress and maintained HSC quiescence. In transplantation settings, niche Tregs prevented allogeneic (allo-) HSC rejection through adenosine and facilitated allo-HSC engraftment. Furthermore, transfer of niche Tregs promoted allo-HSC engraftment to a much greater extent than transfer of other Tregs. These results identify a unique niche-associated Treg subset and adenosine as regulators of HSC quiescence, abundance, and engraftment, further highlighting their therapeutic utility.

Funding information:
  • NIDDK NIH HHS - R01 DK051665(United States)

A Lipoylated Metabolic Protein Released by Staphylococcus aureus Suppresses Macrophage Activation.

  • Grayczyk JP
  • Cell Host Microbe
  • 2017 Nov 8

Literature context:


Abstract:

The virulence factors of pathogenic microbes often have single functions that permit immune suppression. However, a proportion possess multiple activities and are considered moonlighting proteins. By examining secreted virulence factors of Staphylococcus aureus, we determine that the bacterial lipoic acid synthetase LipA suppresses macrophage activation. LipA is known to modify the E2 subunit of the metabolic enzyme complex pyruvate dehydrogenase (E2-PDH) with a fatty acid derivative, lipoic acid, yielding the metabolic protein lipoyl-E2-PDH. We demonstrate that lipoyl-E2-PDH is also released by S. aureus and moonlights as a macrophage immunosuppressant by reducing Toll-like receptor 1/2 (TLR1/2) activation by bacterial lipopeptides. A LipA-deficient strain induces heightened pro-inflammatory cytokine production, which is diminished in the absence of TLR2. During murine systemic infection, LipA suppresses pro-inflammatory macrophage activation, rendering these cells inefficient at controlling infection. These observations suggest that bacterial metabolism and immune evasion are linked by virtue of this moonlighting protein.

Funding information:
  • NHLBI NIH HHS - U01 HL069757(United States)
  • NIAID NIH HHS - R01 AI120994()
  • NIAID NIH HHS - T32 AI007508()

Granulocyte-Monocyte Progenitors and Monocyte-Dendritic Cell Progenitors Independently Produce Functionally Distinct Monocytes.

  • Yáñez A
  • Immunity
  • 2017 Nov 21

Literature context:


Abstract:

Granulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs) produce monocytes during homeostasis and in response to increased demand during infection. Both progenitor populations are thought to derive from common myeloid progenitors (CMPs), and a hierarchical relationship (CMP-GMP-MDP-monocyte) is presumed to underlie monocyte differentiation. Here, however, we demonstrate that mouse MDPs arose from CMPs independently of GMPs, and that GMPs and MDPs produced monocytes via similar but distinct monocyte-committed progenitors. GMPs and MDPs yielded classical (Ly6Chi) monocytes with gene expression signatures that were defined by their origins and impacted their function. GMPs produced a subset of "neutrophil-like" monocytes, whereas MDPs gave rise to a subset of monocytes that yielded monocyte-derived dendritic cells. GMPs and MDPs were also independently mobilized to produce specific combinations of myeloid cell types following the injection of microbial components. Thus, the balance of GMP and MDP differentiation shapes the myeloid cell repertoire during homeostasis and following infection.

Funding information:
  • NINDS NIH HHS - K08 NS074194(United States)

CRIg, a tissue-resident macrophage specific immune checkpoint molecule, promotes immunological tolerance in NOD mice, via a dual role in effector and regulatory T cells.

  • Yuan X
  • Elife
  • 2017 Nov 24

Literature context:


Abstract:

How tissue-resident macrophages (TRM) impact adaptive immune responses remains poorly understood. We report novel mechanisms by which TRMs regulate T cell activities at tissue sites. These mechanisms are mediated by the complement receptor of immunoglobulin family (CRIg). Using animal models for autoimmune type 1 diabetes (T1D), we found that CRIg+ TRMs formed a protective barrier surrounding pancreatic islets. Genetic ablation of CRIg exacerbated islet inflammation and local T cell activation. CRIg exhibited a dual function of attenuating early T cell activation and promoting the differentiation of Foxp3+ regulatory (Treg) cells. More importantly, CRIg stabilized the expression of Foxp3 in Treg cells, by enhancing their responsiveness to interleukin-2. The expression of CRIg in TRMs was postnatally regulated by gut microbial signals and metabolites. Thus, environmental cues instruct TRMs to express CRIg, which functions as an immune checkpoint molecule to regulate adaptive immunity and promote immune tolerance.

Funding information:
  • NIGMS NIH HHS - T32 GM07270(United States)

A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function.

  • Kälin S
  • Cell Metab.
  • 2017 Sep 5

Literature context:


Abstract:

Obesity and type 2 diabetes are associated with metabolic defects and adipose tissue inflammation. Foxp3+ regulatory T cells (Tregs) control tissue homeostasis by counteracting local inflammation. However, if and how T cells interlink environmental influences with adipocyte function remains unknown. Here, we report that enhancing sympathetic tone by cold exposure, beta3-adrenergic receptor (ADRB3) stimulation or a short-term high-calorie diet enhances Treg induction in vitro and in vivo. CD4+ T cell proteomes revealed higher expression of Foxp3 regulatory networks in response to cold or ADRB3 stimulation in vivo reflecting Treg induction. Specifically, Ragulator-interacting protein C17orf59, which limits mTORC1 activity, was upregulated in CD4+ T cells by either ADRB3 stimulation or cold exposure, suggesting contribution to Treg induction. By loss- and gain-of-function studies, including Treg depletion and transfers in vivo, we demonstrated that a T cell-specific Stat6/Pten axis links cold exposure or ADRB3 stimulation with Foxp3+ Treg induction and adipose tissue function. Our findings offer a new mechanistic model in which tissue-specific Tregs maintain adipose tissue function.

Funding information:
  • NIAID NIH HHS - R01 AI095282()

Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.

  • Jaitin DA
  • Cell
  • 2016 Dec 15

Literature context:


Abstract:

In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-pooled screens. We show that profiling the genomic perturbation and transcriptome in the same cell enables us to simultaneously elucidate the function of multiple factors and their interactions. We applied CRISP-seq to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors. These include opposing effects of Cebpb and Irf8 in regulating the monocyte/macrophage versus dendritic cell lineages and differential functions for Rela and Stat1/2 in monocyte versus dendritic cell responses to pathogens. This study establishes CRISP-seq as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits.