X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

MCM2 (N-19) antibody

RRID:AB_648841

Antibody ID

AB_648841

Target Antigen

MCM2 human, mouse, rat

Proper Citation

(Santa Cruz Biotechnology Cat# sc-9839, RRID:AB_648841)

Clonality

polyclonal antibody

Comments

Discontinued: 2016; validation status unknown check with seller; recommendations: ELISA; Immunocytochemistry; Immunofluorescence; Immunohistochemistry; Immunoprecipitation; Western Blot; Western Blotting, Immunoprecipitation, Immunofluorescence, Immunohistochemistry(P), ELISA

Clone ID

N-19

Host Organism

goat

Vendor

Santa Cruz Biotechnology

Cat Num

sc-9839

Publications that use this research resource

Identification of NeuN immunopositive cells in the adult mouse subventricular zone.

  • Saito K
  • J. Comp. Neurol.
  • 2018 Aug 15

Literature context:


Abstract:

In the adult rodent subventricular zone (SVZ), there are neural stem cells (NSCs) and the specialized neurogenic niche is critical to maintain their stemness. To date, many cellular and noncellular factors that compose the neurogenic niche and markers to identify subpopulations of Type A cells have been confirmed. In particular, neurotransmitters regulate adult neurogenesis and mature neurons in the SVZ have been only partially analyzed. Moreover, Type A cells, descendants of NSCs, are highly heterogeneous and more molecular markers are still needed to identify them. In the present study, we systematically classified NeuN, commonly used as a marker of mature and immature post-mitotic neurons, immunopositive (+) cells within the adult mouse SVZ. These SVZ-NeuN+ cells (SVZ-Ns) were mainly classified into two types. One was mature SVZ-Ns (M-SVZ-Ns). Neurochemical properties of M-SVZ-Ns were similar to those of striatal neurons, but their birth date and morphology were different. M-SVZ-Ns were generated during embryonic and early postnatal stages with bipolar peaks and extended their processes along the wall of the lateral ventricle. The second type was small SVZ-Ns (S-SVZ-Ns) with features of Type A cells. They expressed not only markers of Type A cells, but also proliferated and migrated from the SVZ to the olfactory bulb. Furthermore, S-SVZ-Ns could be classified into two types by their spatial locations and glutamic acid decarboxylase 67 expression. Our data indicate that M-SVZ-Ns are a new component of the neurogenic niche and S-SVZ-Ns are newly identified subpopulations of Type A cells.

Funding information:
  • NIGMS NIH HHS - R01 GM102869-01(United States)

Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

  • Youssef M
  • Hippocampus
  • 2018 May 9

Literature context:


Abstract:

Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved.

Funding information:
  • Intramural NIH HHS - (United States)
  • NIMH NIH HHS - F30 MH111209()
  • NIMH NIH HHS - R01 MH091844()
  • NIMH NIH HHS - R56 MH106809()

Conditional ablation and recovery of forebrain neurogenesis in the mouse.

  • Singer BH
  • J. Comp. Neurol.
  • 2009 Jun 20

Literature context:


Abstract:

Forebrain neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Several strategies have been employed to eliminate adult neurogenesis and thereby determine whether depleting adult-born neurons disrupts specific brain functions, but some approaches do not specifically target neural progenitors. We have developed a transgenic mouse line to reversibly ablate adult neural stem cells and suppress neurogenesis. The nestin-tk mouse expresses herpes simplex virus thymidine kinase (tk) under the control of the nestin 2nd intronic enhancer, which drives expression in neural progenitors. Administration of ganciclovir (GCV) kills actively dividing cells expressing this transgene. We found that peripheral GCV administration suppressed SVZ-olfactory bulb and DG neurogenesis within 2 weeks but caused systemic toxicity. Intracerebroventricular GCV infusion for 28 days nearly completely depleted proliferating cells and immature neurons in both the SVZ and DG without systemic toxicity. Reversibility of the effects after prolonged GCV infusion was slow and partial. Neurogenesis did not recover 2 weeks after cessation of GCV administration, but showed limited recovery 6 weeks after GCV that differed between the SVZ and DG. Suppression of neurogenesis did not inhibit antidepressant responsiveness of mice in the tail suspension test. These findings indicate that SVZ and DG neural stem cells differ in their capacity for repopulation, and that adult-born neurons are not required for antidepressant responses in a common behavioral test of antidepressant efficacy. The nestin-tk mouse should be useful for studying how reversible depletion of adult neurogenesis influences neurophysiology, other behaviors, and neural progenitor dynamics.