X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PKC gamma (C-19) antibody

RRID:AB_632234

Antibody ID

AB_632234

Target Antigen

PKC gamma (C-19) mouse, rat, human, mouse, rat, human

Proper Citation

(Santa Cruz Biotechnology Cat# sc-211, RRID:AB_632234)

Clonality

polyclonal antibody

Comments

Discontinued: 2016; validation status unknown check with seller; recommendations: ELISA; Immunoprecipitation; Western Blot; Immunofluorescence; WB, IP, IF, ELISA

Host Organism

rabbit

Vendor

Santa Cruz Biotechnology

Siglec-H is a microglia-specific marker that discriminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes.

  • Konishi H
  • Glia
  • 2018 Jun 5

Literature context:


Abstract:

Several types of myeloid cell are resident in the CNS. In the steady state, microglia are present in the CNS parenchyma, whereas macrophages reside in boundary regions of the CNS, such as perivascular spaces, the meninges and choroid plexus. In addition, monocytes infiltrate into the CNS parenchyma from circulation upon blood-brain barrier breakdown after CNS injury and inflammation. Although several markers, such as CD11b and ionized calcium-binding adapter molecule 1 (Iba1), are frequently used as microglial markers, they are also expressed by other types of myeloid cell and microglia-specific markers were not defined until recently. Previous transcriptome analyses of isolated microglia identified a transmembrane lectin, sialic acid-binding immunoglobulin-like lectin H (Siglec-H), as a molecular signature for microglia; however, this was not confirmed by histological studies in the nervous system and the reliability of Siglec-H as a microglial marker remained unclear. Here, we demonstrate that Siglec-H is an authentic marker for microglia in mice by immunohistochemistry using a Siglec-H-specific antibody. Siglec-H was expressed by parenchymal microglia from developmental stages to adulthood, and the expression was maintained in activated microglia under injury or inflammatory condition. However, Siglec-H expression was absent from CNS-associated macrophages and CNS-infiltrating monocytes, except for a minor subset of cells. We also show that the Siglech gene locus is a feasible site for specific targeting of microglia in the nervous system. In conclusion, Siglec-H is a reliable marker for microglia that will allow histological identification of microglia and microglia-specific gene manipulation in the nervous system.

Corticospinal Circuits from the Sensory and Motor Cortices Differentially Regulate Skilled Movements through Distinct Spinal Interneurons.

  • Ueno M
  • Cell Rep
  • 2018 May 1

Literature context:


Abstract:

Little is known about the organizational and functional connectivity of the corticospinal (CS) circuits that are essential for voluntary movement. Here, we map the connectivity between CS neurons in the forelimb motor and sensory cortices and various spinal interneurons, demonstrating that distinct CS-interneuron circuits control specific aspects of skilled movements. CS fibers originating in the mouse motor cortex directly synapse onto premotor interneurons, including those expressing Chx10. Lesions of the motor cortex or silencing of spinal Chx10+ interneurons produces deficits in skilled reaching. In contrast, CS neurons in the sensory cortex do not synapse directly onto premotor interneurons, and they preferentially connect to Vglut3+ spinal interneurons. Lesions to the sensory cortex or inhibition of Vglut3+ interneurons cause deficits in food pellet release movements in goal-oriented tasks. These findings reveal that CS neurons in the motor and sensory cortices differentially control skilled movements through distinct CS-spinal interneuron circuits.

Funding information:
  • NIA NIH HHS - R01 AG023806(United States)

Analysis of the distribution of spinal NOP receptors in a chronic pain model using NOP-eGFP knock-in mice.

  • Ozawa A
  • Br. J. Pharmacol.
  • 2018 Mar 28

Literature context:


Abstract:

BACKGROUND AND PURPOSE: The nociceptin/orphanin FQ opioid peptide (NOP) receptor system plays a significant role in the regulation of pain. This system functions differently in the spinal cord and brain. The mechanism by which the NOP receptor agonists regulate pain transmission in these regions is not clearly understood. Here, we investigate the peripheral and spinal NOP receptor distribution and antinociceptive effects of intrathecal nociceptin/orphanin FQ (N/OFQ) in chronic neuropathic pain. EXPERIMENTAL APPROACH: We used immunohistochemistry to determine changes in NOP receptor distribution triggered by spinal nerve ligation (SNL) using NOP-eGFP knock-in mice. Antinociceptive effects of intrathecal N/OFQ on SNL-mediated allodynia and heat/cold hyperalgesia were assessed in wild-type mice. KEY RESULTS: NOP-eGFP immunoreactivity was decreased by SNL in the spinal laminae I and II outer, regions that mediate noxious heat stimuli. In contrast, immunoreactivity of NOP-eGFP was unchanged in the ventral border of lamina II inner, which is an important region for the development of allodynia. NOP-eGFP expression was also decreased in a large number of primary afferents in the L4 dorsal root ganglion (DRG) of SNL mice. However, SNL mice showed increased sensitivity, compared to sham animals to the effects of i.t administered N/OFQ with respect to mechanical as well as thermal stimuli. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that the spinal NOP receptor system attenuates injury-induced hyperalgesia by direct inhibition of the projection neurons in the spinal cord that send nociceptive signals to the brain and not by inhibiting presynaptic terminals of DRG neurons in the superficial lamina.

Funding information:
  • NIDA NIH HHS - R01 DA023281()
  • Wellcome Trust - 089457/Z/09/Z(United Kingdom)

RORβ Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait.

  • Koch SC
  • Neuron
  • 2017 Dec 20

Literature context:


Abstract:

Animals depend on sensory feedback from mechanosensory afferents for the dynamic control of movement. This sensory feedback needs to be selectively modulated in a task- and context-dependent manner. Here, we show that inhibitory interneurons (INs) expressing the RORβ orphan nuclear receptor gate sensory feedback to the spinal motor system during walking and are required for the production of a fluid locomotor rhythm. Genetic manipulations that abrogate inhibitory RORβ IN function result in an ataxic gait characterized by exaggerated flexion movements and marked alterations to the step cycle. Inactivation of RORβ in inhibitory neurons leads to reduced presynaptic inhibition and changes to sensory-evoked reflexes, arguing that the RORβ inhibitory INs function to suppress the sensory transmission pathways that activate flexor motor reflexes and interfere with the ongoing locomotor program. VIDEO ABSTRACT.

Funding information:
  • Canadian Institutes of Health Research - AG021495(Canada)
  • NINDS NIH HHS - R01 NS080586()
  • NINDS NIH HHS - R01 NS086372()
  • NINDS NIH HHS - R01 NS090919()

Extracellular Lactate Dehydrogenase A Release From Damaged Neurons Drives Central Nervous System Angiogenesis.

  • Lin H
  • EBioMedicine
  • 2017 Dec 19

Literature context:


Abstract:

Angiogenesis, a prominent feature of pathology, is known to be guided by factors secreted by living cells around a lesion. Although many cells are disrupted in a response to injury, the relevance of degenerating cells in pathological angiogenesis is unclear. Here, we show that the release of lactate dehydrogenase A (LDHA) from degenerating neurons drives central nervous system (CNS) angiogenesis. Silencing neuronal LDHA expression suppressed angiogenesis around experimental autoimmune encephalomyelitis (EAE)- and controlled cortical impact-induced lesions. Extracellular LDHA-mediated angiogenesis was dependent on surface vimentin expression and vascular endothelial growth factor receptor (VEGFR) phosphorylation in vascular endothelial cells. Silencing vimentin expression in vascular endothelial cells prevented angiogenesis around EAE lesions and improved survival in a mouse model of glioblastoma. These results elucidate novel mechanisms that may mediate pathologic angiogenesis and identify a potential molecular target for the treatment of CNS diseases involving angiogenesis.

Funding information:
  • Intramural NIH HHS - ZIA AR041159-05(United States)

Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills.

  • Wang X
  • Cell
  • 2017 Oct 5

Literature context:


Abstract:

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.

Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters.

  • Haenraets K
  • J. Neurochem.
  • 2017 Sep 12

Literature context:


Abstract:

Recombinant adeno-associated virus (rAAV) vector-mediated gene transfer into genetically defined neuron subtypes has become a powerful tool to study the neuroanatomy of neuronal circuits in the brain and to unravel their functions. More recently, this methodology has also become popular for the analysis of spinal cord circuits. To date, a variety of naturally occurring AAV serotypes and genetically modified capsid variants are available but transduction efficiency in spinal neurons, target selectivity, and the ability for retrograde tracing are only incompletely characterized. Here, we have compared the transduction efficiency of seven commonly used AAV serotypes after intraspinal injection. We specifically analyzed local transduction of different types of dorsal horn neurons, and retrograde transduction of dorsal root ganglia (DRG) neurons and of neurons in the rostral ventromedial medulla (RVM) and the somatosensory cortex (S1). Our results show that most of the tested rAAV vectors have similar transduction efficiency in spinal neurons. All serotypes analyzed were also able to transduce DRG neurons and descending RVM and S1 neurons via their spinal axon terminals. When comparing the commonly used rAAV serotypes to the recently developed serotype 2 capsid variant rAAV2retro, a > 20-fold increase in transduction efficiency of descending supraspinal neurons was observed. Conversely, transgene expression in retrogradely transduced neurons was strongly reduced when the human synapsin 1 (hSyn1) promoter was used instead of the strong ubiquitous hybrid cytomegalovirus enhancer/chicken β-actin promoter (CAG) or cytomegalovirus (CMV) promoter fragments. We conclude that the use of AAV2retro greatly increases transduction of neurons connected to the spinal cord via their axon terminals, while the hSyn1 promoter can be used to minimize transgene expression in retrogradely connected neurons of the DRG or brainstem. Cover Image for this issue: doi. 10.1111/jnc.13813.

A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions.

  • Liu Y
  • Neuron
  • 2017 Aug 16

Literature context:


Abstract:

A major hurdle for functional recovery after both spinal cord injury and cortical stroke is the limited regrowth of the axons in the corticospinal tract (CST) that originate in the motor cortex and innervate the spinal cord. Despite recent advances in engaging the intrinsic mechanisms that control CST regrowth, it remains to be tested whether such methods can promote functional recovery in translatable settings. Here we show that post-lesional AAV-assisted co-expression of two soluble proteins, namely insulin-like growth factor 1 (IGF1) and osteopontin (OPN), in cortical neurons leads to robust CST regrowth and the recovery of CST-dependent behavioral performance after both T10 lateral spinal hemisection and a unilateral cortical stroke. In these mice, a compound able to increase axon conduction, 4-aminopyridine-3-methanol, promotes further improvement in CST-dependent behavioral tasks. Thus, our results demonstrate a potentially translatable strategy for restoring cortical dependent function after injury in the adult.

Skilled Movements Require Non-apoptotic Bax/Bak Pathway-Mediated Corticospinal Circuit Reorganization.

  • Gu Z
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements.

Funding information:
  • NINDS NIH HHS - R01 NS079569()
  • NINDS NIH HHS - R01 NS093002()

The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn.

  • Abraira VE
  • Cell
  • 2017 Jan 12

Literature context:


Abstract:

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.

Funding information:
  • NCRR NIH HHS - S10 RR028832()
  • NIDA NIH HHS - P30 DA035756()
  • NIDA NIH HHS - R01 DA034022()
  • NIDA NIH HHS - R21 DA023643()
  • NIDCR NIH HHS - R01 DE022750()
  • NINDS NIH HHS - F32 NS077836()
  • NINDS NIH HHS - P01 NS079419()
  • NINDS NIH HHS - P30 NS072030()
  • NINDS NIH HHS - R35 NS097344()
  • NINDS NIH HHS - T32 NS007292()

Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4-positive nociceptors and pain-modulating spinal interneurons.

  • Cheng CF
  • J. Comp. Neurol.
  • 2016 Mar 1

Literature context:


Abstract:

Subthreshold A-type K(+) currents (ISA s) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISA s. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits and two types of auxiliary subunits: K(+) channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA -expressing pain-related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA -expressing nociceptors and pain-modulating spinal interneurons.

Funding information:
  • NINDS NIH HHS - P30NS048154(United States)
  • PHS HHS - T32 016434-33(United States)

Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury.

  • Miyake S
  • Cell Death Dis
  • 2015 Feb 12

Literature context:


Abstract:

Prolyl 4-hydroxylases (PHDs; PHD1, PHD2, and PHD3) are a component of cellular oxygen sensors that regulate the adaptive response depending on the oxygen concentration stabilized by hypoxia/stress-regulated genes transcription. In normoxic condition, PHD2 is required to stabilize hypoxia inducible factors. Silencing of PHD2 leads to the activation of intracellular signaling including RhoA and Rho-associated protein kinase (ROCK), which are key regulators of neurite growth. In this study, we determined that genetic or pharmacological inhibition of PHD2 in cultured cortical neurons prevents neurite elongation through a ROCK-dependent mechanism. We then explored the role of PHDs in axonal reorganization following a traumatic brain injury in adult mice. Unilateral destruction of motor cortex resulted in behavioral deficits due to disruption of the corticospinal tract (CST), a part of the descending motor pathway. In the spinal cord, sprouting of fibers from the intact side of the CST into the denervated side is thought to contribute to the recovery process following an injury. Intracortical infusion of PHD inhibitors into the intact side of the motor cortex abrogated spontaneous formation of CST collaterals and functional recovery after damage to the sensorimotor cortex. These findings suggest PHDs have an important role in the formation of compensatory axonal networks following an injury and may represent a new molecular target for the central nervous system disorders.

The role of Pak-interacting exchange factor-β phosphorylation at serines 340 and 583 by PKCγ in dopamine release.

  • Shirafuji T
  • J. Neurosci.
  • 2014 Jul 9

Literature context:


Abstract:

Protein kinase C (PKC) has been implicated in the control of neurotransmitter release. The AS/AGU rat, which has a nonsense mutation in PKCγ, shows symptoms of parkinsonian syndrome, including dopamine release impairments in the striatum. Here, we found that the AS/AGU rat is PKCγ-knock-out (KO) and that PKCγ-KO mice showed parkinsonian syndrome. However, the PKCγ substrates responsible for the regulated exocytosis of dopamine in vivo have not yet been elucidated. To identify the PKCγ substrates involved in dopamine release, we used PKCγ-KO mice and a phosphoproteome analysis. We found 10 candidate phosphoproteins that had decreased phosphorylation levels in the striatum of PKCγ-KO mice. We focused on Pak-interacting exchange factor-β (βPIX), a Cdc42/Rac1 guanine nucleotide exchange factor, and found that PKCγ directly phosphorylates βPIX at Ser583 and indirectly at Ser340 in cells. Furthermore, we found that PKC phosphorylated βPIX in vivo. Classical PKC inhibitors and βPIX knock-down (KD) significantly suppressed Ca(2+)-evoked dopamine release in PC12 cells. Wild-type βPIX, and not the βPIX mutants Ser340 Ala or Ser583 Ala, fully rescued the decreased dopamine release by βPIX KD. Double KD of Cdc42 and Rac1 decreased dopamine release from PC12 cells. These findings indicate that the phosphorylation of βPIX at Ser340 and Ser583 has pivotal roles in Ca(2+)-evoked dopamine release in the striatum. Therefore, we propose that PKCγ positively modulates dopamine release through β2PIX phosphorylation. The PKCγ-βPIX-Cdc42/Rac1 phosphorylation axis may provide a new therapeutic target for the treatment of parkinsonian syndrome.

Funding information:
  • NEI NIH HHS - R01 EY026024(United States)

Morphological and functional characterization of cholinergic interneurons in the dorsal horn of the mouse spinal cord.

  • Mesnage B
  • J. Comp. Neurol.
  • 2011 Nov 1

Literature context:


Abstract:

Endogenous acetylcholine is an important modulator of sensory processing, especially at the spinal level, where nociceptive (pain-related) stimuli enter the central nervous system and are integrated before being relayed to the brain. To decipher the organization of the local cholinergic circuitry in the spinal dorsal horn, we used transgenic mice expressing enchanced green fluorescent protein specifically in cholinergic neurons (ChAT::EGFP) and characterized the morphology, neurochemistry, and firing properties of the sparse population of cholinergic interneurons in this area. Three-dimensional reconstruction of lamina III ChAT::EGFP neurons based either on their intrinsic fluorescence or on intracellular labeling in live tissue demonstrated that these neurons have long and thin processes that grow preferentially in the dorsal direction. Their dendrites and axon are highly elongated in the rostrocaudal direction, beyond the limits of a single spinal segment. These unique morphological features suggest that dorsal horn cholinergic interneurons are the main contributors to the plexus of cholinergic processes located in lamina IIi, just dorsal to their cell bodies. In addition, immunostainings demonstrated that dorsal horn cholinergic interneurons in the mouse are γ-aminobutyric acidergic and express nitric oxide synthase, as in rats. Finally, electrophysiological recordings from these neurons in spinal cord slices demonstrate that two-thirds of them have a repetitive spiking pattern with frequent rebound spikes following hyperpolarization. Altogether our results indicate that, although they are rare, the morphological and functional features of cholinergic neurons enable them to collect segmental information in superficial layers of the dorsal horn and to modulate it over several segments.

Funding information:
  • NEI NIH HHS - 5R24EY01474-04(United States)

Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse.

  • Besalduch N
  • J. Comp. Neurol.
  • 2010 Jan 10

Literature context:


Abstract:

Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in synaptic activity by nerve stimulation couple PKC to transmitter release in the rat neuromuscular junction and increase the level of alpha, betaI, and betaII isoforms in the membrane when muscle contraction follows the stimulation. The phosphorylation activity of these classical PKCs also increases. It seems that the muscle has to contract in order to maintain or increase classical PKCs in the membrane. We use immunohistochemistry to show that PKCalpha and PKCbetaI were located in the nerve terminals, whereas PKCalpha and PKCbetaII were located in the postsynaptic and the Schwann cells. Stimulation and contraction do not change these cellular distributions, but our results show that the localization of classical PKC isoforms in the membrane is affected by synaptic activity.

Funding information:
  • NIAMS NIH HHS - R37 AR038648-21(United States)

Enkephalins, dynorphins, and beta-endorphin in the rat dorsal horn: an immunofluorescence colocalization study.

  • Marvizón JC
  • J. Comp. Neurol.
  • 2009 Nov 1

Literature context:


Abstract:

To characterize neuronal pathways that release opioid peptides in the rat dorsal horn, multiple-label immunohistochemistry, confocal microscopy, and computerized co-localization measures were used to characterize opioid-containing terminals and cells. An antibody that selectively recognized beta-endorphin labeled fibers and neurons in the ventral horn as well as fibers in the lateral funiculus and lamina X, but practically no fibers in the dorsal horn. An anti-enkephalin antibody, which recognized Leu-, Met-, and Phe-Arg-Met-enkephalin, labeled the dorsolateral funiculus and numerous puncta in laminae I-III and V of the dorsal horn. An antibody against Phe-Arg-Met-enkephalin, which did not recognize Leu- and Met-enkephalin, labeled the same puncta. Antibodies against dynorphin and prodynorphin labeled puncta and fibers in laminae I, II, and V, as well as some fibers in the rest of the dorsal horn. Dynorphin and prodynorphin immunoreactivities colocalized in some puncta and fibers, but the prodynorphin antibody additionally labeled cell bodies. There was no co-localization of dynorphin (or prodynorphin) with enkephalin (or Phe-Arg-Met-enkephalin). Enkephalin immunoreactivity did not colocalize with the C-fiber markers calcitonin gene-related peptide (CGRP), substance P, and isolectin B4. In contrast, there was some colocalization of dynorphin and prodynorphin with CGRP and substance P, but not with isolectin B4. Both enkephalin and dynorphin partly colocalized with vesicular glutamate transporter 2, a marker of glutamatergic terminals. The prodynorphin-positive neurons in the dorsal horn were distinct from neurons expressing mu-opioid receptors, neurokinin 1 receptors, and protein kinase C-gamma. These results show that enkephalins and dynorphins are present in different populations of dorsal horn neurons. In addition, dynorphin is present in some C-fibers.