X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

goat anti-mouse IgG-HRP antibody

RRID:AB_631737

Antibody ID

AB_631737

Target Antigen

goat anti-mouse IgG-HRP mouse

Proper Citation

(Santa Cruz Biotechnology Cat# sc-2031, RRID:AB_631737)

Clonality

polyclonal antibody

Comments

Discontinued: 2016; validation status unknown check with seller; recommendations:

Host Organism

goat

Vendor

Santa Cruz Biotechnology

Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System.

  • Weng YL
  • Neuron
  • 2018 Jan 17

Literature context:


Abstract:

N6-methyladenosine (m6A) affects multiple aspects of mRNA metabolism and regulates developmental transitions by promoting mRNA decay. Little is known about the role of m6A in the adult mammalian nervous system. Here we report that sciatic nerve lesion elevates levels of m6A-tagged transcripts encoding many regeneration-associated genes and protein translation machinery components in the adult mouse dorsal root ganglion (DRG). Single-base resolution m6A-CLIP mapping further reveals a dynamic m6A landscape in the adult DRG upon injury. Loss of either m6A methyltransferase complex component Mettl14 or m6A-binding protein Ythdf1 globally attenuates injury-induced protein translation in adult DRGs and reduces functional axon regeneration in the peripheral nervous system in vivo. Furthermore, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult central nervous system is attenuated upon Mettl14 knockdown. Our study reveals a critical epitranscriptomic mechanism in promoting injury-induced protein synthesis and axon regeneration in the adult mammalian nervous system.

Funding information:
  • NCI NIH HHS - U01 CA84243(United States)
  • NHGRI NIH HHS - RM1 HG008935()
  • NINDS NIH HHS - P01 NS097206()
  • NINDS NIH HHS - R35 NS097370()

Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis.

  • Ingold I
  • Cell
  • 2018 Jan 25

Literature context:


Abstract:

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.

Funding information:
  • NIGMS NIH HHS - R01 GM058888(United States)

Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets.

  • Dhawan P
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (<50% of the levels observed in KO/TG1, KO/TG2, and wild-type mice). In the KO/TG mice, hVDR was not expressed in the duodenum, jejunum, kidney, or other tissues. Growth arrest, elevated parathyroid hormone level, and hypocalcemia of the VDR KO mice were prevented in mice from KO/TG lines 1 and 2. Microcomputed tomography analysis revealed that the expression of hVDR in the distal intestine of KO/TG1 and KO/TG2 mice rescued the bone defects associated with systemic VDR deficiency, including growth plate abnormalities and altered trabecular and cortical parameters. KO/TG3 mice showed rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency.

Funding information:
  • NIGMS NIH HHS - SC2 GM095428(United States)

Cell-Cycle Position of Single MYC-Driven Cancer Cells Dictates Their Susceptibility to a Chemotherapeutic Drug.

  • Ryl T
  • Cell Syst
  • 2017 Sep 27

Literature context:


Abstract:

While many tumors initially respond to chemotherapy, regrowth of surviving cells compromises treatment efficacy in the long term. The cell-biological basis of this regrowth is not understood. Here, we characterize the response of individual, patient-derived neuroblastoma cells driven by the prominent oncogene MYC to the first-line chemotherapy, doxorubicin. Combining live-cell imaging, cell-cycle-resolved transcriptomics, and mathematical modeling, we demonstrate that a cell's treatment response is dictated by its expression level of MYC and its cell-cycle position prior to treatment. All low-MYC cells enter therapy-induced senescence. High-MYC cells, by contrast, disable their cell-cycle checkpoints, forcing renewed proliferation despite treatment-induced DNA damage. After treatment, the viability of high-MYC cells depends on their cell-cycle position during treatment: newborn cells promptly halt in G1 phase, repair DNA damage, and form re-growing clones; all other cells show protracted DNA repair and ultimately die. These findings demonstrate that fast-proliferating tumor cells may resist cytotoxic treatment non-genetically, by arresting within a favorable window of the cell cycle.

Funding information:
  • Medical Research Council - 087377(United Kingdom)

Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus faecium.

  • Caballero S
  • Cell Host Microbe
  • 2017 May 10

Literature context:


Abstract:

Antibiotic-mediated microbiota destruction and the consequent loss of colonization resistance can result in intestinal domination with vancomycin-resistant Enterococcus (VRE), leading to bloodstream infection in hospitalized patients. Clearance of VRE remains a challenging goal that, if achieved, would reduce systemic VRE infections and patient-to-patient transmission. Although obligate anaerobic commensal bacteria have been associated with colonization resistance to VRE, the specific bacterial species involved remain undefined. Herein, we demonstrate that a precisely defined consortium of commensal bacteria containing the Clostridium cluster XIVa species Blautia producta and Clostridium bolteae restores colonization resistance against VRE and clears VRE from the intestines of mice. While C. bolteae did not directly mediate VRE clearance, it enabled intestinal colonization with B. producta, which directly inhibited VRE growth. These findings suggest that therapeutic or prophylactic administration of defined bacterial consortia to individuals with compromised microbiota composition may reduce inter-patient transmission and intra-patient dissemination of highly antibiotic-resistant pathogens.

Funding information:
  • NCI NIH HHS - P30 CA008748()
  • NIAID NIH HHS - R01 AI042135()
  • NIAID NIH HHS - R01 AI095706()
  • NIAID NIH HHS - R37 AI039031()
  • NIAID NIH HHS - U01 AI124275()

An Intrinsic Epigenetic Barrier for Functional Axon Regeneration.

  • Weng YL
  • Neuron
  • 2017 Apr 19

Literature context:


Abstract:

Mature neurons in the adult peripheral nervous system can effectively switch from a dormant state with little axonal growth to robust axon regeneration upon injury. The mechanisms by which injury unlocks mature neurons' intrinsic axonal growth competence are not well understood. Here, we show that peripheral sciatic nerve lesion in adult mice leads to elevated levels of Tet3 and 5-hydroxylmethylcytosine in dorsal root ganglion (DRG) neurons. Functionally, Tet3 is required for robust axon regeneration of DRG neurons and behavioral recovery. Mechanistically, peripheral nerve injury induces DNA demethylation and upregulation of multiple regeneration-associated genes in a Tet3- and thymine DNA glycosylase-dependent fashion in DRG neurons. In addition, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult CNS is attenuated upon Tet1 knockdown. Together, our study suggests an epigenetic barrier that can be removed by active DNA demethylation to permit axon regeneration in the adult mammalian nervous system.

Funding information:
  • NIGMS NIH HHS - T32 GM007814()

A Syndromic Intellectual Disability Disorder Caused by Variants in TELO2, a Gene Encoding a Component of the TTT Complex.

  • You J
  • Am. J. Hum. Genet.
  • 2016 May 5

Literature context:


Abstract:

The proteins encoded by TELO2, TTI1, and TTI2 interact to form the TTT complex, a co-chaperone for maturation of the phosphatidylinositol 3-kinase-related protein kinases (PIKKs). Here we report six affected individuals from four families with intellectual disability (ID) and neurological and other congenital abnormalities associated with compound heterozygous variants in TELO2. Although their fibroblasts showed reduced steady-state levels of TELO2 and the other components of the TTT complex, PIKK functions were normal in cellular assays. Our results suggest that these TELO2 missense variants result in loss of function, perturb TTT complex stability, and cause an autosomal-recessive syndromic form of ID.