X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Monoclonal Anti-gamma-Tubulin antibody produced in mouse

RRID:AB_532292

Antibody ID

AB_532292

Target Antigen

gamma-Tubulin antibody produced in mouse chicken/bird, hamster, mouse, xenopus/amphibian, canine, bovine, human, rat, xenopus, canine, chicken, hamster, human, rat, bovine, mouse

Proper Citation

(Sigma-Aldrich Cat# T5326, RRID:AB_532292)

Clonality

monoclonal antibody

Comments

Vendor recommendations: IgG1 immunocytochemistry: 1-2 mug/mL; ELISA; Immunoprecipitation; Immunocytochemistry; Other; Western Blot

Host Organism

mouse

Vendor

Sigma-Aldrich

γ-TuRC Heterogeneity Revealed by Analysis of Mozart1.

  • Tovey CA
  • Curr. Biol.
  • 2018 Jun 22

Literature context:


Abstract:

Microtubules are essential for various cell processes [1] and are nucleated by multi-protein γ-tubulin ring complexes (γ-TuRCs) at various microtubule organizing centers (MTOCs), including centrosomes [2-6]. Recruitment of γ-TuRCs to different MTOCs at different times influences microtubule array formation, but how this is regulated remains an open question. It also remains unclear whether all γ-TuRCs within the same organism have the same composition and how any potential heterogeneity might influence γ-TuRC recruitment. MOZART1 (Mzt1) was recently identified as a γ-TuRC component [7, 8] and is conserved in nearly all eukaryotes [6, 9]. Mzt1 has so far been studied in cultured human cells, yeast, and plants; its absence leads to failures in γ-TuRC recruitment and cell division, resulting in cell death [7, 9-15]. Mzt1 is small (∼8.5 kDa), binds directly to core γ-TuRC components [9, 10, 14, 15], and appears to mediate the interaction between γ-TuRCs and proteins that tether γ-TuRCs to MTOCs [9, 15]. Here, we use Drosophila to investigate the function of Mzt1 in a multicellular animal for the first time. Surprisingly, we find that Drosophila Mzt1 is expressed only in the testes and is present in γ-TuRCs recruited to basal bodies, but not to mitochondria, in developing sperm cells. mzt1 mutants are viable but have defects in basal body positioning and γ-TuRC recruitment to centriole adjuncts; sperm formation is affected and mutants display a rapid age-dependent decline in sperm motility and male fertility. Our results reveal that tissue-specific and MTOC-specific γ-TuRC heterogeneity exist in Drosophila and highlight the complexity of γ-TuRC recruitment in a multicellular animal.

Funding information:
  • Howard Hughes Medical Institute - R37 MH060233(United States)

Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

  • Tang Z
  • Dev. Cell
  • 2018 Feb 5

Literature context:


Abstract:

Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.

The Primate-Specific Gene TMEM14B Marks Outer Radial Glia Cells and Promotes Cortical Expansion and Folding.

  • Liu J
  • Cell Stem Cell
  • 2017 Nov 2

Literature context:


Abstract:

Human brain evolution is associated with expansion and folding of the neocortex. Increased diversity in neural progenitor (NP) populations (such as basally located radial glia [RG], which reside in an enlarged outer subventricular zone [OSVZ]) likely contributes to this evolutionary expansion, although their characteristics and relative contributions are only partially understood. Through single-cell transcriptional profiling of sorted human NP subpopulations, we identified the primate-specific TMEM14B gene as a marker of basal RG. Expression of TMEM14B in embryonic NPs induces cortical thickening and gyrification in postnatal mice. This is accompanied by SVZ expansion, the appearance of outer RG-like cells, and the proliferation of multiple NP subsets, with proportional increases in all cortical layers and normal lamination. TMEM14B drives NP proliferation by increasing the phosphorylation and nuclear translocation of IQGAP1, which in turn promotes G1/S cell cycle transitions. These data show that a single primate-specific gene can drive neurodevelopmental changes that contribute to brain evolution.

Simultaneous use of erythropoietin and LFM-A13 as a new therapeutic approach for colorectal cancer.

  • Tankiewicz-Kwedlo A
  • Br. J. Pharmacol.
  • 2017 Nov 22

Literature context:


Abstract:

BACKGROUND AND PURPOSE: Bruton's tyrosine kinase (Btk) is a non-receptor tyrosine kinase involved in the activation of signalling pathways responsible for cell maturation and viability. Btk has previously been reported to be overexpressed in colon cancers. This kind of cancer is often accompanied by anaemia, which is treated with an erythropoietin supplement. The goal of the present study was to assess the effects of combination therapy with erythropoietin β (Epo) and LFM-A13 (Btk inhibitor) on colon cancer in in vitro and in vivo models. EXPERIMENTAL APPROACH: DLD-1 and HT-29 human colon adenocarcinoma cells were cultured with Epo and LFM-A13. Cell number and viability, and mRNA and protein levels of Epo receptors, Btk and Akt were assessed. Nude mice were inoculated with adenocarcinoma cells and treated with Epo and LFM-A13. KEY RESULTS: The combination of Epo and LFM-A13 mostly exerted a synergistic inhibitory effect on colon cancer cell growth. The therapeutic scheme used effectively killed the cancer cells and attenuated the Btk signalling pathways. Epo + LFM-A13 also prevented the normal process of microtubule assembly during mitosis by down-regulating the expression of Polo-like kinase 1. The combination of Epo and LFM-A13 significantly reduced the growth rate of tumour cells, while it showed high safety profile, inducing no nephrotoxicity, hepatotoxicity or changes in the haematological parameters. CONCLUSION AND IMPLICATIONS: Epo significantly enhances the antitumour activity of LFM-A13, indicating that a combination of Epo and LFM-A13 has potential as an effective therapeutic approach for patients with colorectal cancer.

Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination.

  • Kasioulis I
  • Elife
  • 2017 Oct 23

Literature context:


Abstract:

Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This process, also known as delamination, involves adherens-junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membranes are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin-microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity, and we identify drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.

GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK.

  • Pae J
  • Dev. Cell
  • 2017 Jul 24

Literature context:


Abstract:

The separation of germline from somatic lineages is fundamental to reproduction and species preservation. Here, we show that Drosophila Germ cell-less (GCL) is a critical component in this process by acting as a switch that turns off a somatic lineage pathway. GCL, a conserved BTB (Broad-complex, Tramtrack, and Bric-a-brac) protein, is a substrate-specific adaptor for Cullin3-RING ubiquitin ligase complex (CRL3GCL). We show that CRL3GCL promotes PGC fate by mediating degradation of Torso, a receptor tyrosine kinase (RTK) and major determinant of somatic cell fate. This mode of RTK degradation does not depend upon receptor activation but is prompted by release of GCL from the nuclear envelope during mitosis. The cell-cycle-dependent change in GCL localization provides spatiotemporal specificity for RTK degradation and sequesters CRL3GCL to prevent it from participating in excessive activities. This precisely orchestrated mechanism of CRL3GCL function and regulation defines cell fate at the single-cell level.

Funding information:
  • NCI NIH HHS - R01 CA076584()
  • NCI NIH HHS - R37 CA076584()
  • NCI NIH HHS - T32 CA160002()
  • NICHD NIH HHS - R01 HD041900()
  • NICHD NIH HHS - R37 HD041900()
  • NIGMS NIH HHS - R01 GM057587()
  • NIH HHS - P40 OD018537()

Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish.

  • Van De Weghe JC
  • Am. J. Hum. Genet.
  • 2017 Jul 6

Literature context:


Abstract:

Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.

Funding information:
  • NHGRI NIH HHS - U54 HG006493()
  • NICHD NIH HHS - U54 HD083091()
  • NINDS NIH HHS - R01 NS050375()
  • NINDS NIH HHS - R01 NS064077()

A Splice Variant of Centrosomin Converts Mitochondria to Microtubule-Organizing Centers.

  • Chen JV
  • Curr. Biol.
  • 2017 Jul 10

Literature context:


Abstract:

Non-centrosomal microtubule organizing centers (MTOCs) direct microtubule (MT) organization to exert diverse cell-type-specific functions. In Drosophila spermatids, the giant mitochondria provide structural platforms for MT reorganization to support elongation of the extremely long sperm. However, the molecular basis for this mitochondrial MTOC and other non-centrosomal MTOCs has not been discerned. Here we report that Drosophila centrosomin (cnn) expresses two major protein variants: the centrosomal form (CnnC) and a non-centrosomal form in testes (CnnT). CnnC is established as essential for functional centrosomes, the major MTOCs in animal cells. We show that CnnT is expressed exclusively in testes by alternative splicing and localizes to giant mitochondria in spermatids. In cell culture, CnnT targets to the mitochondrial surface, recruits the MT nucleator γ-tubulin ring complex (γ-TuRC), and is sufficient to convert mitochondria to MTOCs independent of core pericentriolar proteins that regulate MT assembly at centrosomes. We mapped two separate domains in CnnT: one that is necessary and sufficient to target it to mitochondria and another that is necessary and sufficient to recruit γ-TuRCs and nucleate MTs. In elongating spermatids, CnnT forms speckles on the giant mitochondria that are required to recruit γ-TuRCs to organize MTs and support spermiogenesis. This molecular characterization of the mitochondrial MTOC defines a minimal molecular requirement for MTOC generation and implicates the potent role of Cnn (or its related) proteins in the direct regulation of MT assembly and organization of non-centrosomal MTOCs.

Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression.

  • Rocha N
  • Elife
  • 2017 Apr 19

Literature context:


Abstract:

MFN2 encodes mitofusin 2, a membrane-bound mediator of mitochondrial membrane fusion and inter-organelle communication. MFN2 mutations cause axonal neuropathy, with associated lipodystrophy only occasionally noted, however homozygosity for the p.Arg707Trp mutation was recently associated with upper body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were normal in skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form of excess adiposity with paradoxical suppression of leptin expression, and suggest potential targeted therapies.

Funding information:
  • Wellcome Trust - P30 DK072488()

Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation.

  • Lewis SR
  • Endocrinology
  • 2014 Feb 22

Literature context:


Abstract:

The dependence of prostate cancer on androgens provides a targeted means of treating advanced disease. Unfortunately, androgen deprivation therapies eventually become ineffective, leading to deadly castration-resistant prostate cancer (CRPC). One of many factors implicated in the transition to CRPC is the onset of de novo steroidogenesis. Although reactivation of steroid receptors likely plays a pivotal role in aggressive CRPC, little is understood regarding the mechanisms whereby prostate cancer cells initiate and maintain steroidogenesis. We hypothesize that steroidogenic factor 1 (SF1, NR5A1, AD4BP), a key regulator of steroidogenesis in normal endocrine tissues, is expressed in CRPC where it stimulates aberrant steroidogenesis and fuels aggressive growth. Notably, SF1 is not expressed in normal prostate tissue. Our results indicated that SF1 was absent in benign cells but present in aggressive prostate cancer cell lines. Introduction of ectopic SF1 expression in benign human prostate epithelial cells (BPH-1) stimulated increased steroidogenic enzyme expression, steroid synthesis, and cell proliferation. In contrast, data from an aggressive human prostate cancer cell line (BCaPT10) demonstrated that SF1 was required for steroid-mediated cell growth because BCaPT10 cell growth was diminished by abiraterone treatment and short hairpin RNA-mediated knockdown of SF1 (shSF1). SF1-depleted cells also exhibited defective centrosome homeostasis. Finally, whereas xenograft experiments in castrated hosts with BCaPT10 control transplants grew large, invasive tumors, BCaPT10-shSF1 knockdown transplants failed to grow. Therefore, we conclude that SF1 stimulates steroid accumulation and controls centrosome homeostasis to mediate aggressive prostate cancer cell growth within a castrate environment. These findings present a new molecular mechanism and therapeutic target for deadly CRPC.

Funding information:
  • NIH HHS - P40 OD010939(United States)