X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Monoclonal Anti-Neurofilament 200 (Phos. and Non-Phos.) antibody produced in mouse

RRID:AB_477257

Antibody ID

AB_477257

Target Antigen

Neurofilament 200 (Phos. and Non-Phos.) antibody produced in mouse wide range

Proper Citation

(Sigma-Aldrich Cat# N0142, RRID:AB_477257)

Clonality

monoclonal antibody

Comments

Vendor recommendations: IgG1 immunohistochemistry (formalin-fixed, paraffin-embedded sections): suitable, microarray: suitable, immunoblotting: suitable, immunohistochemistry (frozen sections): 1:400

Vendor

Sigma-Aldrich

Cat Num

N0142

Angiotensin II triggers peripheral macrophage-to-sensory neuron redox crosstalk to elicit pain.

  • Shepherd AJ
  • J. Neurosci.
  • 2018 Jul 5

Literature context:


Abstract:

Injury, inflammation and nerve damage initiate a wide variety of cellular and molecular processes that culminate in hyperexcitation of sensory nerves, which underlies chronic inflammatory and neuropathic pain. Using behavioral readouts of pain hypersensitivity induced by Angiotensin II (Ang II) injection into mouse hindpaws, our study shows that activation of the type 2 Ang II receptor (AT2R) and the cell damage-sensing ion channel TRPA1 are required for peripheral mechanical pain sensitization induced by Ang II in male and female mice. However, we show that AT2R is not expressed in mouse and human dorsal root ganglia (DRG) sensory neurons. Instead, expression/activation of AT2R on peripheral/skin macrophages (MΦs) constitutes a critical trigger of mouse and human DRG sensory neuron excitation. Ang II-induced peripheral mechanical pain hypersensitivity can be attenuated by chemogenetic depletion of peripheral MΦs. Furthermore, AT2R activation in MΦs triggers production of reactive oxygen/nitrogen species, which trans-activate TRPA1 on mouse and human DRG sensory neurons, via cysteine-modification of the channel. Our study thus identifies a translatable immune cell-to-sensory neuron signaling crosstalk underlying peripheral nociceptor sensitization. This form of cell-to-cell signaling represents a critical peripheral mechanism for chronic pain, and thus identifies multiple druggable analgesic targets.Significance Statement: Pain is a widespread problem that is under-managed by currently available analgesics. Findings from a recent clinical trial on a type-II angiotensin II receptor (AT2R) antagonist showed effective analgesia for neuropathic pain. AT2R antagonists have been shown to reduce neuropathy-, inflammation- and bone cancer-associated pain in rodents. We report that activation of AT2R in macrophages that infiltrate the site of injury, but not in sensory neurons, triggers an intercellular redox communication with sensory neurons via activation of the cell damage/pain-sensing ion channel TRPA1. This macrophage-to-sensory neuron crosstalk results in peripheral pain sensitization. Our findings provide an evidence-based mechanism underlying the analgesic action of AT2R antagonists, which could accelerate the development of efficacious non-opioid analgesic drugs for multiple pain conditions.

Funding information:
  • NINDS NIH HHS - R01NS077521(United States)

CaBP1 regulates Cav1 L-type Ca2+ channels and their coupling to neurite growth and gene transcription in mouse spiral ganglion neurons.

  • Yang T
  • Mol. Cell. Neurosci.
  • 2018 Mar 20

Literature context:


Abstract:

CaBP1 is a Ca2+ binding protein that is widely expressed in neurons in the brain, retina, and cochlea. In heterologous expression systems, CaBP1 interacts with and regulates voltage-gated Cav Ca2+ channels but whether this is the case in neurons is unknown. Here, we investigated the cellular functions of CaBP1 in cochlear spiral ganglion neurons (SGNs), which express high levels of CaBP1. Consistent with the role of CaBP1 as a suppressor of Ca2+-dependent inactivation (CDI) of Cav1 (L-type) channels, Cav1 currents underwent greater CDI in SGNs from mice lacking CaBP1 (C-KO) than in wild-type (WT) SGNs. The coupling of Cav1 channels to downstream signaling pathways was also disrupted in C-KO SGNs. Activity-dependent repression of neurite growth was significantly blunted and unresponsive to Cav1 antagonists in C-KO SGNs in contrast to WT SGNs. Moreover, Cav1-mediated Ca2+ signals and phosphorylation of cAMP-response element binding protein were reduced in C-KO SGNs compared to WT SGNs. Our findings establish a role for CaBP1 as an essential regulator of Cav1 channels in SGNs and their coupling to downstream pathways controlling activity-dependent transcription and neurite growth.

Funding information:
  • British Heart Foundation - FS/13/2/29892(United Kingdom)

Sense-Antisense lncRNA Pair Encoded by Locus 6p22.3 Determines Neuroblastoma Susceptibility via the USP36-CHD7-SOX9 Regulatory Axis.

  • Mondal T
  • Cancer Cell
  • 2018 Mar 12

Literature context:


Abstract:

Trait-associated loci often map to genomic regions encoding long noncoding RNAs (lncRNAs), but the role of these lncRNAs in disease etiology is largely unexplored. We show that a pair of sense/antisense lncRNA (6p22lncRNAs) encoded by CASC15 and NBAT1 located at the neuroblastoma (NB) risk-associated 6p22.3 locus are tumor suppressors and show reduced expression in high-risk NBs. Loss of functional synergy between 6p22lncRNAs results in an undifferentiated state that is maintained by a gene-regulatory network, including SOX9 located on 17q, a region frequently gained in NB. 6p22lncRNAs regulate SOX9 expression by controlling CHD7 stability via modulating the cellular localization of USP36, encoded by another 17q gene. This regulatory nexus between 6p22.3 and 17q regions may lead to potential NB treatment strategies.

Funding information:
  • NINDS NIH HHS - NS047331(United States)

Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability.

  • Dawes JM
  • Neuron
  • 2018 Feb 21

Literature context:


Abstract:

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.

Funding information:
  • NINDS NIH HHS - NS18400(United States)

Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.

  • Assinck P
  • J. Neurosci.
  • 2017 Sep 6

Literature context:


Abstract:

Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.

Funding information:
  • NIDDK NIH HHS - DK072473(United States)

Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius).

  • Coimbra JP
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context:


Abstract:

The river hippopotamus (Hippopotamus amphibius), one of the closest extant relatives to cetaceans, is a large African even-toed ungulate (Artiodactyla) that grazes and has a semiaquatic lifestyle. Given its unusual phenotype, ecology, and evolutionary history, we sought to measure the topographic distribution of retinal ganglion cell density using stereology and retinal wholemounts. We estimated a total of 243,000 ganglion cells of which 3.4% (8,300) comprise alpha cells. The topographic distribution of both total and alpha cells reveal a dual topographic organization of a temporal and nasal area embedded within a well-defined horizontal streak. Using maximum density of total ganglion cells and eye size (35 mm, axial length), we estimated upper limits of spatial resolving power of 8 cycles/deg (temporal area, 1,800 cells/mm2 ), 7.7 cycles/deg (nasal area, 1,700 cells/mm2 ), and 4.2 cycles/deg (horizontal streak, 250 cells/mm2 ). Enhanced resolution of the temporal area toward the frontal visual field may facilitate grazing, while resolution of the horizontal streak and nasal area may help the discrimination of objects (predators, conspecifics) in the lateral and posterior visual fields, respectively. Given the presumed role of alpha cells to detect brisk transient stimuli, their similar distribution to the total ganglion cell population may facilitate the detection of approaching objects in equivalent portions of the visual field. Our finding of a nasal area in the river hippopotamus retina supports the notion that this specialization may enhance visual sampling in the posterior visual field to compensate for limited neck mobility as suggested for rhinoceroses and cetaceans.

Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum).

  • Coimbra JP
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context:


Abstract:

This study sought to determine whether the retinal organization of the white rhinoceros (Ceratotherium simum), a large African herbivore with lips specialized for grazing in open savannahs, relates to its foraging ecology and habitat. Using stereology and retinal wholemounts, we estimated a total of 353,000 retinal ganglion cells. Their density distribution reveals an unusual topographic organization of a temporal (2,000 cells/mm2 ) and a nasal (1,800 cells/mm2 ) area embedded within a well-defined horizontal visual streak (800 cells/mm2 ), which is remarkably similar to the retinal organization in the black rhinoceros. Alpha ganglion cells comprise 3.5% (12,300) of the total population of ganglion cells and show a similar distribution pattern with maximum densities also occurring in the temporal (44 cells/mm2 ) and nasal (40 cells/mm2 ) areas. We found higher proportions of alpha cells in the dorsal and ventral retinas. Given their role in the detection of brisk transient stimuli, these higher proportions may facilitate the detection of approaching objects from the front and behind while grazing with the head at 45 °. Using ganglion cell peak density and eye size (29 mm, axial length), we estimated upper limits of spatial resolving power of 7 cycles/deg (temporal area), 6.6 cycles/deg (nasal area), and 4.4 cycles/deg (horizontal streak). The resolution of the temporal area potentially assists with grazing, while the resolution of the streak may be used for panoramic surveillance of the horizon. The nasal area may assist with detection of approaching objects from behind, potentially representing an adaptation compensating for limited neck and head mobility. J. Comp. Neurol., 525:2484-2498, 2017. © 2017 Wiley Periodicals, Inc.

Funding information:
  • NCI NIH HHS - 1R15CA151094-01(United States)

Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects.

  • Shaqura M
  • Neuropharmacology
  • 2017 Jul 11

Literature context:


Abstract:

Glucocorticoids were long believed to primarily function through cytosolic glucocorticoid receptor (GR) activation and subsequent classical genomic pathways. Recently, however, evidence has emerged that suggests the presence of rapid non-genomic GR-dependent signaling pathways within the brain, though their existence in spinal and peripheral nociceptive neurons remains elusive. In this paper, we aim to systemically identify GR within the spinal cord and periphery, to verify their putative membrane location and to characterize possible G protein coupling and pain modulating properties. Double immunofluorescence confocal microscopy revealed that GR predominantly localized in peripheral peptidergic and non-peptidergic nociceptive C- and Aδ-neurons and existed only marginally in myelinated mechanoreceptive and proprioreceptive neurons. Within the spinal cord, GR predominantly localized in incoming presynaptic nociceptive neurons, in pre- and postsynaptic structures of the dorsal horn, as well as in microglia. GR saturation binding revealed that these receptors are linked to the cell membrane of sensory neurons and, upon activation, they trigger membrane targeted [35S]GTPγS binding, indicating G protein coupling to a putative receptor. Importantly, subcutaneous dexamethasone immediately and dose-dependently attenuated acute nociceptive behavior elicited in an animal model of formalin-induced pain hypersensitivity compared to naive rats. Overall, this study provides firm evidence for a novel neuronal mechanism of GR agonists that is rapid, non-genomic, dependent on membrane binding and G protein coupling, and acutely modulates nociceptive behavior, thus unraveling a yet unconsidered mechanism of pain relief.

Funding information:
  • NINDS NIH HHS - T32 NS061764(United States)
  • NINDS NIH HHS - U01 NS090595(United States)

A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins.

  • François A
  • Neuron
  • 2017 Feb 22

Literature context:


Abstract:

Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds. VIDEO ABSTRACT.

Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies.

  • Miller S
  • Neuroscience
  • 2016 Jul 22

Literature context:


Abstract:

Calcitonin gene-related peptide (CGRP) is a potent vasodilator and a neuromodulator implicated in the pathophysiology of migraine. It binds to the extracellular domains of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 1 that together form the CGRP receptor. Antagonist antibodies against CGRP and its binding site at the receptor are clinically effective in preventing migraine attacks. The blood-brain barrier penetration of these antagonist antibodies is limited, suggesting that a potential peripheral site of action is sufficient to prevent migraine attacks. To further understand the sites of CGRP-mediated signaling in migraine, we used immunohistochemical staining with recently developed antagonist antibodies specifically recognizing a fusion protein of the extracellular domains of RAMP1 and CLR that comprise the CGRP binding pocket at the CGRP receptor in monkey and man. We confirmed binding of the antagonist antibodies to human vascular smooth muscle cells (VSMCs) of dural meningeal arteries and neurons in the trigeminal ganglion, both of which are likely sites of action for therapeutic antibodies in migraine patients. We further used one of these antibodies for detailed mapping on cynomolgus monkey tissue and found antagonist antibody binding sites at multiple levels in the trigeminovascular system: in the dura mater VSMCs, in neurons and satellite glial cells in the trigeminal ganglion, and in neurons in the spinal trigeminal nucleus caudalis. These data reinforce and clarify our understanding of CGRP receptor localization in a pattern consistent with a role for CGRP receptors in trigeminal sensitization and migraine pathology.

Distinctive Features of the Human Marginal Zone and Cajal-Retzius Cells: Comparison of Morphological and Immunocytochemical Features at Midgestation.

  • Tkachenko LA
  • Front Neuroanat
  • 2016 Apr 6

Literature context:


Abstract:

Despite a long history of research of cortical marginal zone (MZ) organization and development, a number of issues remain unresolved. One particular issue is the problem of Cajal-Retzius cells (C-R) identification. It is currently based on morphology and Reelin expression. The aim of this research is to investigate MZ cytoarchitectonics and Reelin-producing cells morphotypes in the superior temporal, pre- and postcentral cortex at GW24-26. We used Reelin (Reln) as the marker for C-R cells and microtubule-associated protein 2 (MAP2) and neurofilament heavy chain protein (N200) as markers of neuronal maturation. The MZ of all of the investigated areas had the distinct cytoarchitectonic of alternating cell sparse (MZP, SR) and cell dense (SGL, DGL) layers. The distribution of the neuromarkers across the MZ also showed layer specificity. MAP2-positive cells were only found in the SGL. N200 and Reelin-positive neurons in the MZP. N200-positive processes were forming a plexus at the DGL level. All of the N200-positive neurons found were in the MZP and had distinctive morphological features of C-R cells. All of the N200-positive neurons in MZ were also positive for Reelin, whereas MAP2-positive cells lack Reelin. Thus, the joint use of two immunomarkers allowed us to discern the C-R cells based on their morphotype and neurochemistry and indicate that the Reelin-positive cells of MZ at 24-26 GW were morphologically C-R cells. In the current study, we identified three C-R cells morphotypes. Using a 3D reconstruction, we made sure that all of them belonged to the single morphotype of triangular C-R cells. This approach will allow future studies to separate C-R cells from other Reelin-producing neurons which appear at later corticogenesis stages. In addition, our findings support the assumption that a plexus could be formed not only with C-R cells processes but also possibly by other cell processes by the poorly researched DGL, which is only allocated as a part of the human MZ.

Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels.

  • Verleye M
  • J. Neurosci. Res.
  • 2016 Feb 16

Literature context:


Abstract:

A growing body of data has shown that recurrent epileptic seizures may be caused by an excessive release of the excitatory neurotransmitter glutamate in the brain. Glutamatergic overstimulation results in massive neuronal influxes of calcium and sodium through N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainic acid glutamate subtype receptors and also through voltage-gated calcium and sodium channels. These persistent and abnormal sodium and calcium entry points have deleterious consequences (neurotoxicity) for neuronal function. The therapeutic value of an antiepileptic drug would include not only control of seizure activity but also protection of neuronal tissue. The present study examines the in vitro neuroprotective effects of stiripentol, an antiepileptic compound with γ-aminobutyric acidergic properties, on neuronal-astroglial cultures from rat cerebral cortex exposed to oxygen-glucose deprivation (OGD) or to glutamate (40 µM for 20 min), two in vitro models of brain injury. In addition, the affinity of stiripentol for the different glutamate receptor subtypes and the interaction with the cell influx of Na(+) and of Ca(2+) enhanced by veratridine and NMDA, respectively, are assessed. Stiripentol (10-100 µM) included in the culture medium during OGD or with glutamate significantly increased the number of surviving neurons relative to controls. Stiripentol displayed no binding affinity for different subtypes of glutamate receptors (IC50  >100 µM) but significantly blocked the entry of Na(+) and Ca(2+) activated by veratridine and NMDA, respectively. These results suggest that Na(+) and Ca(2+) channels could contribute to the neuroprotective properties of sitiripentol.

Funding information:
  • NIAMS NIH HHS - R21AR060966(United States)

Primary afferent neurons containing calcitonin gene-related peptide but not substance P in forepaw skin, dorsal root ganglia, and spinal cord of mice.

  • Kestell GR
  • J. Comp. Neurol.
  • 2015 Dec 1

Literature context:


Abstract:

In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 μm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.

Funding information:
  • NCI NIH HHS - R21 CA190775(United States)
  • NEI NIH HHS - R01 EY015128(United States)

A novel and robust conditioning lesion induced by ethidium bromide.

  • Hollis ER
  • Exp. Neurol.
  • 2015 Mar 2

Literature context:


Abstract:

Molecular and cellular mechanisms underlying the peripheral conditioning lesion remain unsolved. We show here that injection of a chemical demyelinating agent, ethidium bromide, into the sciatic nerve induces a similar set of regeneration-associated genes and promotes a 2.7-fold greater extent of sensory axon regeneration in the spinal cord than sciatic nerve crush. We found that more severe peripheral demyelination correlates with more severe functional and electrophysiological deficits, but more robust central regeneration. Ethidium bromide injection does not activate macrophages at the demyelinated sciatic nerve site, as observed after nerve crush, but briefly activates macrophages in the dorsal root ganglion. This study provides a new method for investigating the underlying mechanisms of the conditioning response and suggests that loss of the peripheral myelin may be a major signal to change the intrinsic growth state of adult sensory neurons and promote regeneration.

Funding information:
  • NINDS NIH HHS - 1F31NS084706-01(United States)

Quantitative analysis of afferents expressing substance P, calcitonin gene-related peptide, isolectin B4, neurofilament 200, and Peripherin in the sensory root of the rat trigeminal ganglion.

  • Bae JY
  • J. Comp. Neurol.
  • 2015 Jan 1

Literature context:


Abstract:

Substance P (SP), calcitonin gene-related peptide (CGRP), and isolectin B4 (IB4) are widely used as markers for peripheral neurons with unmyelinated fibers, whereas neurofilament 200 (NF200), and Peripherin are used as markers for neurons with myelinated fibers, and with unmyelinated or small-caliber fibers, respectively. To study the selectivity of these markers for specific neuronal types, we analyzed their expression in neurons in the rat trigeminal ganglion by light- and electron-microscopic immunocytochemistry. Most SP-immunopositive (+), CGRP+, and IB4+ fibers were unmyelinated, but a small fraction (∼5%) were small myelinated fibers (<20 µm(2) in cross-sectional area, equivalent to <5 µm in diameter, Aδ fiber). Similarly, whereas the majority of NF200+ fibers were myelinated, a large fraction (23.9%) were unmyelinated, and whereas the majority of Peripherin+ fibers were unmyelinated and small myelinated, a significant fraction (15.5%) were large myelinated (>20 µm(2) in cross-sectional area, equivalent to >5 µm in diameter, Aβ fiber). Our findings confirm that SP, CGRP, and IB4 can be used as reliable markers for neurons with unmyelinated fibers, and question the suitability of NF200 as a marker for neurons with myelinated fibers, and of Peripherin as a marker for neurons with unmyelinated, or fine-caliber fibers.

Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations.

  • Forrest SL
  • J. Comp. Neurol.
  • 2014 Dec 1

Literature context:


Abstract:

Artemin is a member of the glial cell line-derived neurotrophic factor (GDNF) family that has been strongly implicated in development and regeneration of autonomic nerves and modulation of nociception. Whereas other members of this family (GDNF and neurturin) primarily target parasympathetic and nonpeptidergic sensory neurons, the artemin receptor (GFRα3) is expressed by sympathetic and peptidergic sensory neurons that are also the primary sites of action of nerve growth factor, a powerful modulator of bladder nerves. Many bladder sensory neurons express GFRα3 but it is not known if they represent a specific functional subclass. Therefore, our initial aim was to map the distribution of GFRα3-immunoreactive (-IR) axons in the female rat bladder, using cryostat sections and whole wall thickness preparations. We found that GFRα3-IR axons innervated the detrusor, vasculature, and urothelium, but only part of this innervation was sensory. Many noradrenergic sympathetic axons innervating the vasculature were GFRα3-IR, but the noradrenergic innervation of the detrusor was GFRα3-negative. We also identified a prominent source of nonneuronal GFRα3-IR that is likely to be glial. Further characterization of bladder nerves revealed specific structural features of chemically distinct classes of axon terminals, and a major autonomic source of axons labeled with neurofilament-200, which is commonly used to identify myelinated sensory axons within organs. Intramural neurons were also characterized and quantified. Together, these studies reveal a diverse range of potential targets by which artemin could influence bladder function, nerve regeneration, and pain, and provide a strong microanatomical framework for understanding bladder physiology and pathophysiology.

Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats.

  • Bailey EM
  • J. Neurosci.
  • 2014 Sep 24

Literature context:


Abstract:

Spiral ganglion neurons (SGNs) receive input from cochlear hair cells and project from the cochlea to the cochlear nucleus. After destruction of hair cells with aminoglycoside antibiotics or noise, SGNs gradually die. It has been assumed that SGN death is attributable to loss of neurotrophic factors (NTFs) derived from hair cells or supporting cells in the organ of Corti (OC). We used quantitative PCR (qPCR) to assay NTF expression-neurotrophin-3 (NT-3), BDNF, GDNF, neurturin, artemin, and CNTF-in the OC and cochlear nucleus at various ages from postnatal day 0 (P0) to P90 in control hearing and neonatally deafened rats. NT-3, neurturin, and CNTF were most abundant in the postnatal hearing OC; CNTF and neurturin most abundant in the cochlear nucleus. In the OC, NT-3 and CNTF showed a postnatal increase in expression approximately concomitant with hearing onset. In rats deafened by daily kanamycin injections (from P8 to P16), surviving inner hair cells were evident at P16 but absent by P19, with most postsynaptic boutons lost before P16. NT-3 and CNTF, which normally increase postnatally, had significantly reduced expression in the OC of deafened rats, although CNTF was expressed throughout the time that SGNs were dying. In contrast, neurturin expression was constant, unaffected by deafening or by age. CNTF and neurturin expression in the cochlear nucleus was unaffected by deafening or age. Thus, NTFs other than NT-3 are available to SGNs even as they are dying after deafening, apparently conflicting with the hypothesis that SGN death is attributable to lack of NTFs.

Funding information:
  • NEI NIH HHS - R01-EY016155(United States)

Molecular cloning and characterization of chicken neuronal intermediate filament protein α-internexin.

  • Liu CH
  • J. Comp. Neurol.
  • 2013 Jun 15

Literature context:


Abstract:

α-Internexin is one of the neuronal intermediate filament (IF) proteins, which also include low-, middle-, and high-molecular-weight neurofilament (NF) triplet proteins, designated NFL, NFM, and NFH, respectively. The expression of α-internexin occurs in most neurons as they begin differentiation and precedes the expression of the NF triplet proteins in mammals. However, little is known about the gene sequence and physiological function of α-internexin in avians. In this study we describe the molecular cloning of the mRNA sequence encoding the chicken α-internexin (chkINA) protein from embryonic brains. The gene structure and predicted amino acid sequence of chkINA exhibited high similarity to those of its zebrafish, mouse, rat, bovine, and human homologs. Data from transient-transfection experiments show that the filamentous pattern of chkINA was found in transfected cells and colocalized with other endogenous IFs, as demonstrated via immunocytochemistry using a chicken-specific antibody. The expression of chkINA was detected at the early stage of development and increased during the developmental process of the chicken. chkINA was expressed widely in chicken brains and colocalized with NF triplet proteins in neuronal processes, as assessed using immunohistochemistry. We also found that chkINA was expressed abundantly in the developing cerebellum and was the major IF protein in the parallel processes of granule neurons. Thus, we suggest that chkINA is a neuron-specific IF protein that may be a useful marker for studies of chicken brain development.

Funding information:
  • NCRR NIH HHS - RR 13642(United States)
  • NEI NIH HHS - EY17130(United States)

Scene from above: retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis).

  • Coimbra JP
  • J. Comp. Neurol.
  • 2013 Jun 15

Literature context:


Abstract:

The giraffe (Giraffa camelopardalis) is a browser that uses its extensible tongue to selectively collect leaves during foraging. As the tallest extant terrestrial mammal, its elevated head height provides panoramic surveillance of the environment. These aspects of the giraffe's ecology and phenotype suggest that vision is of prime importance. Using Nissl-stained retinal wholemounts and stereological methods, we quantitatively assessed the retinal specializations in the ganglion cell layer of the giraffe. The mean total number of retinal ganglion cells was 1,393,779 and their topographic distribution revealed the presence of a horizontal visual streak and a temporal area. With a mean peak of 14,271 cells/mm(2), upper limits of spatial resolving power in the temporal area ranged from 25 to 27 cycles/degree. We also observed a dorsotemporal extension (anakatabatic area) that tapers toward the nasal retina giving rise to a complete dorsal arch. Using neurofilament-200 immunohistochemistry, we also detected a dorsal arch formed by alpha ganglion cells with density peaks in the temporal (14-15 cells/mm(2)) and dorsonasal (10 cells/mm(2)) regions. As with other artiodactyls, the giraffe shares the presence of a horizontal streak and a temporal area which, respectively, improve resolution along the horizon and in the frontal visual field. The dorsal arch is related to the giraffe's head height and affords enhanced resolution in the inferior visual field. The alpha ganglion cell distribution pattern is unique to the giraffe and enhances acquisition of motion information for the control of tongue movement during foraging and the detection of predators.

Heterogeneity of intrinsically photosensitive retinal ganglion cells in the mouse revealed by molecular phenotyping.

  • Karnas D
  • J. Comp. Neurol.
  • 2013 Mar 1

Literature context:


Abstract:

Intrinsically photosensitive retinal ganglion cell (ipRGC) types can be distinguished by their dendritic tree stratification and intensity of melanopsin staining. We identified heavily stained melanopsin-positive M1 cells branching in the outermost part of the inner plexiform layer (IPL) and weakly melanopsin-positive M2 cells branching in the innermost layer of the IPL. A third type can be distinguished by the displacement of the soma to the inner nuclear layer and has morphological similarities with either M1 cells or M2 cells, and is termed here displaced or M-d cells. The aim of the present study was to examine the phenotypic traits of ipRGC types. Using whole retinae from adult mice, we performed immunohistochemistry using melanopsin immunostaining and a number of antibodies directed against proteins typically expressed in retinal ganglion cells. The majority of M1 and M2 ipRGCs expressed Isl-1, microtubule associated protein-2 (MAP2), γ-synuclein, and NeuN, whereas Brn3 transcription factor and the different neurofilaments (NF68, NF160, NF200) were able to discriminate between ipRGC subtypes. Brn3 was expressed preferentially in M2 cells and in a small subpopulation of weakly melanopsin-positive M-d cells with similarities to M2 cells. All three neurofilaments were primarily expressed in large M2 cells with similarities to the recently described alpha-like M4 cells, but not in M1 cells. Expression of NF68 and NF160 was also observed in a few large M-d ipRGCs. These findings show that ipRGCs are not a phenotypically homogenous population and that specific neuronal markers (Brn3 and neurofilament) can partly distinguish between different ipRGC subtypes.

Funding information:
  • Canadian Institutes of Health Research - 82762(Canada)
  • NHGRI NIH HHS - 1R21HG006171-01(United States)

Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse.

  • Gautron L
  • J. Comp. Neurol.
  • 2012 Dec 1

Literature context:


Abstract:

Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities.

Funding information:
  • NINDS NIH HHS - RC2 NS069350(United States)

Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain.

  • Yamanaka H
  • J. Comp. Neurol.
  • 2011 Jun 1

Literature context:


Abstract:

The L1 family of cell adhesion molecules (L1-CAMs) is known to be involved in various neuronal functions such as cell adhesion, axon guidance, and synaptic plasticity. We investigated the detailed expression/changes of a close homolog of the L1 cell adhesion molecule (CHL1) after nerve injury and the possible role on neuropathic pain using the rat spared nerve injury (SNI) model. SNI induced the expression of CHL1 in L4/5 DRG neurons, particularly in small-size injured neurons and in satellite cells. In the spinal cord, CHL1 immunoreactivity increased mainly in laminae I-II of the dorsal horn on the side ipsilateral to the nerve injury. Ultrastructural study clarified the fine localization of CHL1 in axons of primary afferents in the dorsal horn. CHL1 immunoreactivities were localized in the adherence such as axon-axon, axon-dorsal horn neurons (dendrite, soma), and axon-glial cells (astrocyte and microglia). Experimental inhibition of CHL1 adhesion by intrathecal administration of the antibody for CHL1 extracellular domain significantly prevented and reversed SNI-induced mechanical allodynia. Thus, alterations of CHL1 may be involved in the structural plasticity after peripheral nerve injury and have important roles in neuropathic pain.

Funding information:
  • NIBIB NIH HHS - EB006733(United States)
  • NINDS NIH HHS - NS19865(United States)

Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors.

  • Keast JR
  • J. Comp. Neurol.
  • 2010 Aug 1

Literature context:


Abstract:

Most small unmyelinated neurons in adult rat dorsal root ganglia (DRG) express one or more of the coreceptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin (GFRalpha1, GFRalpha2, and GFRalpha3, respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitization. In this study we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found that the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord there was a widespread increase in neuronal GFRalpha1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRalpha3-IR also increased but in a more restricted area. In contrast, GFRalpha2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabeled L5 DRG sections suggested the main effect of injury on GFRalpha1- and GFRalpha3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRalpha2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRalpha2-IR neurons. Our results suggest that the DRG neuronal populations targeted by GDNF, neurturin, or artemin and the effect of exogenous GFLs could change significantly after a peripheral nerve injury.

Funding information:
  • NIAID NIH HHS - AI 15416(United States)

Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice.

  • Jyothi V
  • J. Comp. Neurol.
  • 2010 Aug 15

Literature context:


Abstract:

With the exception of humans, the somata of type I spiral ganglion neurons (SGNs) of most mammalian species are heavily myelinated. In an earlier study, we used Ly5.1 congenic mice as transplant recipients to investigate the role of hematopoietic stem cells in the adult mouse inner ear. An unanticipated finding was that a large percentage of the SGNs in this strain were unmyelinated. Further characterization of the auditory phenotype of young adult Ly5.1 mice in the present study revealed several unusual characteristics, including 1) large aggregates of unmyelinated SGNs in the apical and middle turns, 2) symmetrical junction-like contacts between the unmyelinated neurons, 3) abnormal expression patterns for CNPase and connexin 29 in the SGN clusters, 4) reduced SGN density in the basal cochlea without a corresponding loss of sensory hair cells, 5) significantly delayed auditory brainstem response (ABR) wave I latencies at low and middle frequencies compared with control mice with similar ABR threshold, and 6) elevated ABR thresholds and deceased wave I amplitudes at high frequencies. Taken together, these data suggest a defect in Schwann cells that leads to incomplete myelinization of SGNs during cochlear development. The Ly5.1 mouse strain appears to be the only rodent model so far identified with a high degree of the "human-like" feature of unmyelinated SGNs that aggregate into neural clusters. Thus, this strain may provide a suitable animal platform for modeling human auditory information processing such as synchronous neural activity and other auditory response properties.

Funding information:
  • NHGRI NIH HHS - HG00376(United States)

Identification of perineal sensory neurons activated by innocuous heat.

  • Kiasalari Z
  • J. Comp. Neurol.
  • 2010 Jan 10

Literature context:


Abstract:

C-fiber sensory neurons comprise nociceptors and smaller populations of cells detecting innocuous thermal and light tactile stimuli. Markers identify subpopulations of these cells, aiding our understanding of their physiological roles. The transient receptor potential vanilloid 1 (TRPV1) cation channel is characteristic of polymodal C-fiber nociceptors and is sensitive to noxious heat, irritant vanilloids, and protons. By using immunohistochemistry, in situ hybridization, and retrograde tracing, we anatomically characterize a small subpopulation of C-fiber cells that express high levels of TRPV1 (HE TRPV1 cells). These cells do not express molecular markers normally associated with C-fiber nociceptors. Furthermore, they express a unique complement of neurotrophic factor receptors, namely, the trkC receptor for neurotrophin 3, as well as receptors for neurturin and glial cell line-derived neurotrophic factor. HE TRPV1 cells are distributed in sensory ganglia throughout the neuraxis, with higher numbers noted in the sixth lumbar ganglion. In this ganglion and others of the lumbar and sacral regions, 75% or more of such HE TRPV1 cells express estrogen receptor alpha, suggestive of their regulation by estrogen and a role in afferent sensation related to reproduction. Afferents from these cells provide innervation to the hairy skin of the perineal region and can be activated by thermal stimuli from 38 degrees C, with a maximal response at 42 degrees C, as indicated by induction of extracellular signal-regulated kinase phosphorylation. We hypothesize that apart from participating in normal thermal sensation relevant to thermoregulation and reproductive functions, HE TRPV1 cells may mediate burning pain in chronic pain syndromes with perineal localization.

Size, neurochemistry, and segmental distribution of sensory neurons innervating the rat tibia.

  • Ivanusic JJ
  • J. Comp. Neurol.
  • 2009 Nov 20

Literature context:


Abstract:

Retrograde labeling has been used to identify sensory neurons in the lumbar dorsal root ganglia (DRG) that innervate the rat tibial periosteum, medullary cavity, and trabecular bone. The size, neurochemical profile [isolectin B4 (IB4) binding, substance P (SP), calcitonin gene-related peptide (CGRP), and NF200 immunoreactivity (-IR)], and segmental distribution of sensory neurons innervating each of these bony compartments are reported. After injections of fast blue into the periosteum, medullary cavity, and trabecular bone (epiphysis), retrogradely labeled neurons were observed throughout the ipsilateral (but not contralateral) lumbar DRG. They were predominantly small (<800 microm(2)) or medium-sized (800-1,800 microm(2)) neurons. CGRP-IR and SP-IR were found in 23% and 16% of the retrogradely labeled neurons, respectively. IB4 binding was observed in 20% and NF200-IR in 40% of the retrogradely labeled neurons. There were no significant differences in the percentage of neurons labeled with any one of the antisera following injections into each of the three bony compartments. To allow a direct comparison with sensory neurons innervating cutaneous tissues, injections of fast blue were also made into the skin overlying the tibia. The percentage of CGRP-IR neurons innervating bone was significantly lower than the percentage of CGRP-IR neurons innervating skin (ANOVA; P < 0.05). No other significant differences in the neurochemical profiles of neurons labeled from bone vs. skin were observed. The findings of the present study show that the periosteum, medullary cavity, and trabecular bone are all innervated by sensory neurons that have size and neurochemical profiles consistent with a role in nociception.

Funding information:
  • NIA NIH HHS - AG16765(United States)

Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body.

  • Buniel M
  • J. Comp. Neurol.
  • 2008 Oct 1

Literature context:


Abstract:

The chemosensory glomus cells of the carotid body (CB) detect changes in O2 tension. Carotid sinus nerve fibers, which originate from peripheral sensory neurons located within the petrosal ganglion, innervate the CB. Release of transmitter from glomus cells activates the sensory afferent fibers to transmit information to the nucleus of the solitary tract in the brainstem. The ion channels expressed within the sensory nerve terminals play an essential role in the ability of the terminal to initiate action potentials in response to transmitter-evoked depolarization. However, with a few exceptions, the identity of ion channels expressed in these peripheral nerve fibers is unknown. This study addresses the expression of voltage-gated channels in the sensory fibers with a focus on channels that set the resting membrane potential and regulate discharge patterns. By using immunohistochemistry and fluorescence confocal microscopy, potassium channel subunits and HCN (hyperpolarization-activated) family members were localized both in petrosal neurons that expressed tyrosine hydroxylase and in the CSN axons within the carotid body. Channels contributing to resting membrane potential, including HCN2 responsible in part for I(h) current and the KCNQ2 and KCNQ5 subunits thought to underlie the neuronal "M current," were identified in the sensory neurons and their axons innervating the carotid body. In addition, the results presented here demonstrate expression of several potassium channels that shape the action potential and the frequency of discharge, including Kv1.4, Kv1.5, Kv4.3, and K(Ca) (BK). The role of these channels should be considered in interpretation of the fiber discharge in response to perturbation of the carotid body environment.

Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

  • Fukuoka T
  • J. Comp. Neurol.
  • 2008 Sep 10

Literature context:


Abstract:

We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply.

Funding information:
  • NIDA NIH HHS - R01 DA018928-04(United States)

Bone-marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity.

  • Tan BT
  • J. Comp. Neurol.
  • 2008 Jul 10

Literature context:


Abstract:

The high degree of bone marrow cell (BMC) plasticity has prompted us to test its restoration possibility in inner ear repair. Our aim was to determine the potential of these cells to transdifferentiate into specialized cochlea cell types after acoustic injury and BMC mobilization. Lethally irradiated mice were transplanted with BMCs from green fluorescent protein (GFP) transgenic mice and subjected to acoustic deafening 3 months later. In a separate experiment, stem cell factor and granulocyte colony-stimulating factor were administered to test the effect of BMC mobilization on bone marrow-derived cell (BMDC) transdifferentiation. All mice showed almost complete chimerism 3 months after bone marrow transplantation. Upon acoustic trauma, robust BMDC migration was observed in the deafened cochlea. GFP+ cell migration was most prominent during the first week after acoustic deafening, and these cells accumulated significantly at the spiral ligament, perilymphatic compartment walls, and limbus regions. Most of the BMDCs expressed CD45 and CD68 and were identified as macrophages. Upregulation of stromal-derived factor 1 (SDF-1) was also observed in the spiral ligament during the first week after acoustic deafening. Cytokine treatment resulted in increased BMC mobilization in the systemic circulation. However, the presence of any stem cell progenitors or the differentiation of BMDCs into any cell types expressing cochlea sensory, supporting, fibrocytic, or neuronal markers were not detected in the deafened cochlea. In conclusion, we have demonstrated the homing capability of BMDCs to the deafened cochlea, and these cells displayed mature hematopoietic properties without spontaneous transdifferentiation to any cochlea cell types after acoustic trauma or bone marrow mobilization.

Tetrodotoxin-resistant voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 are expressed in the retina.

  • O'Brien BJ
  • J. Comp. Neurol.
  • 2008 Jun 20

Literature context:


Abstract:

Voltage-gated sodium channels (VGSCs) are one of the fundamental building blocks of electrically excitable cells in the nervous system. These channels are responsible for the generation of action potentials that are required for the communication of neuronal signals over long distances within a cell. VGSCs are encoded by a family of nine genes whose products have widely varying biophysical properties. In this study, we have detected the expression of two atypical VGSCs (Na(v)1.8 and Na(v)1.9) in the retina. Compared with more common VGSCs, Na(v)1.8 and Na(v)1.9 have unusual biophysical and pharmacological properties, including persistent sodium currents and resistance to the canonical sodium channel blocker tetrodotoxin (TTX). Our molecular biological and immunohistochemical data derived from mouse (Mus musculus) retina demonstrate expression of Na(v)1.8 by retinal amacrine and ganglion cells, whereas Na(v)1.9 is expressed by photoreceptors and Müller glia. The fact that these channels exist in the central nervous system (CNS) and exhibit robust TTX resistance requires a re-evaluation of prior physiological, pharmacological, and developmental data in the visual system, in which the diversity of VGSCs has been previously underestimated.

Funding information:
  • NCRR NIH HHS - U42 RR018877(United States)

Fibroblast growth factor homologous factor 1 (FHF1) is expressed in a subpopulation of calcitonin gene-related peptide-positive nociceptive neurons in the murine dorsal root ganglia.

  • Hubert T
  • J. Comp. Neurol.
  • 2008 Apr 1

Literature context:


Abstract:

Dorsal root ganglia (DRG) neurons exhibit a wide molecular heterogeneity in relation to the various sensory modalities (mechanoception, thermoception, nociception) that they subserve. Finding markers of subpopulations is an important step in understanding how these neurons convey specific information. We identified fibroblast growth factor homologous factor 1 (FHF1) in a search for markers of subpopulations of DRG neurons. FHFs constitute a family of four factors that share some structural properties with fibroblast growth factors (FGFs) but are functionally distinct. They are expressed in specific subsets of neurons and are involved in the modulation of sodium channel activity. The pattern of expression of FHF1 in the DRG was determined during development, in the adult and after axotomy. We show that in the adult, FHF1 is expressed in two populations, one composed of nociceptors and another in which no neurotrophic factor receptors were detected (panTrk-/c-Ret-). Interestingly, in the nociceptors, FHF1 expression was restricted to a subset of TrkA+/calcitonin gene-related peptide (CGRP)-positive neurons. Neurofilament 200 (NF-200) and peripherin labeling indicates that 70% of the FHF1-expressing neurons contribute to A-fibers and 30% to C-fibers. FHF1 interacts with the Na(v)1.9 sodium channel isoform, which is strongly expressed in cRet+/isolectin-B4 binding neurons, but we show that FHF1 is not expressed in the cRet+/IB4+ subclass and that it does not colocalize with Na(v)1.9. Our results argue strongly against the possibility that FHF1 has a modulatory effect on this channel in cRet+/IB4+ neurons, but FHF1 could play a role in a distinct subset of TrkA+/CGRP+ nociceptors.

Funding information:
  • NIDCD NIH HHS - R01 DC003820(United States)
  • NIMH NIH HHS - MH059490(United States)

Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

  • Jaafari N
  • J. Comp. Neurol.
  • 2008 Apr 1

Literature context:


Abstract:

The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility.

Funding information:
  • Medical Research Council - (United Kingdom)

Modification of classical neurochemical markers in identified primary afferent neurons with Abeta-, Adelta-, and C-fibers after chronic constriction injury in mice.

  • Ruscheweyh R
  • J. Comp. Neurol.
  • 2007 May 10

Literature context:


Abstract:

It is functionally important to differentiate between primary afferent neurons with A-fibers, which are nociceptive or nonnociceptive, and C-fibers, which are mainly nociceptive. Neurochemical markers such as neurofilament 200 (NF200), substance P (SP), and isolectin B4 (IB4) have been useful to distinguish between A- and C-fiber neurons. However, the expression patterns of these markers change after peripheral nerve injury, so that it is not clear whether they still distinguish between fiber types in models of neuropathic pain. We identified neurons with Abeta-, Adelta-, and C-fibers by their conduction velocity (corrected for utilization time) in dorsal root ganglia taken from mice after a chronic constriction injury (CCI) of the sciatic nerve and control mice, and later stained them for IB4, SP, calcitonin gene-related peptide (CGRP), NF200, and neuropeptide Y (NPY). NF200 remained a good marker for A-fiber neurons, and IB4 and SP remained good markers for C-fiber neurons after CCI. NPY was absent in controls but was expressed in A-fiber neurons after CCI. After CCI, a group of C-fiber neurons emerged that expressed none of the tested markers. The size distribution of the markers was investigated in larger samples of unidentified dorsal root ganglion neurons and, together with the results from the identified neurons, provided only limited evidence for the expression of SP in Abeta-fiber neurons after CCI. The extent of up-regulation of NPY showed a strong inverse correlation with the degree of heat hyperalgesia.

Funding information:
  • NLM NIH HHS - T15LM07056(United States)

Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study.

  • Gargini C
  • J. Comp. Neurol.
  • 2007 Jan 10

Literature context:


Abstract:

Retinal degeneration 10 (rd10) mice are a model of autosomal recessive retinitis pigmentosa (RP), identified by Chang et al. in 2002 (Vision Res. 42:517-525). These mice carry a spontaneous mutation of the rod-phosphodiesterase (PDE) gene, leading to a rod degeneration that starts around P18. Later, cones are also lost. Because photoreceptor degeneration does not overlap with retinal development, and light responses can be recorded for about a month after birth, rd10 mice mimic typical human RP more closely than the well-known rd1 mutants. The aim of this study is to provide a comprehensive analysis of the morphology and function of the rd10 mouse retina during the period of maximum photoreceptor degeneration, thus contributing useful data for exploiting this novel model to study RP. We analyzed the morphology and survival of retinal cells in rd10 mice of various ages with quantitative immunocytochemistry and confocal microscopy; we also studied retinal function with the electroretinogram (ERG), recorded between P18 and P30. We found that photoreceptor death (peaking around P25) is accompanied and followed by dendritic retraction in bipolar and horizontal cells, which eventually undergo secondary degeneration. ERG reveals alterations in the physiology of the inner retina as early as P18 (before any obvious morphological change of inner neurons) and yet consistently with a reduced band amplification by bipolar cells. Thus, changes in the rd10 retina are very similar to what was previously found in rd1 mutants. However, an overall slower decay of retinal structure and function predicts that rd10 mice might become excellent models for rescue approaches.

Funding information:
  • NCI NIH HHS - P01CA24014(United States)

Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord.

  • Kobayashi K
  • J. Comp. Neurol.
  • 2006 Oct 1

Literature context:


Abstract:

We examined the precise distribution of mRNAs for six cloned rat P2Y receptor subtypes, P2Y1, P2Y2, P2Y4, P2Y6, P2Y12, and P2Y14, in the dorsal root ganglion (DRG) and spinal cord by in situ hybridization histochemistry (ISHH) with 35S-labeled riboprobes. In the DRG, P2Y1 and P2Y2 mRNAs were expressed by 15% and 24% of all neurons, respectively. Although each receptor was evenly distributed between neurofilament-positive and -negative neurons, P2Y2 was rather selectively expressed by TrkA-positive neurons. Schwann cells expressed P2Y2 mRNA, and the nonneuronal cells around the DRG neurons, perhaps the satellite cells, expressed P2Y12 and P2Y14 mRNAs. No ISHH signals for P2Y4 or P2Y6 were seen in any cellular components of the DRG. In the spinal cord, P2Y1 and P2Y4 mRNAs were expressed by some of the dorsal horn neurons, whereas the motor neurons in the ventral horn had P2Y4 and P2Y6 mRNAs. In addition, astrocytes in the gray matter had P2Y1 mRNA, and the microglia throughout the spinal cord expressed P2Y12 mRNA. P2Y14 mRNA was weakly expressed by putative microglia. These findings should provide useful information in interpreting pharmacological and electrophysiological studies in this field given the lack of highly selective antagonists for each P2Y receptor subtype.

Funding information:
  • Medical Research Council - G0600717(United Kingdom)