X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

CD69 Monoclonal Antibody (H1.2F3), PE-Cyanine7, eBioscience(TM)

RRID:AB_469637

Antibody ID

AB_469637

Target Antigen

CD69 See NCBI gene mouse

Proper Citation

(Thermo Fisher Scientific Cat# 25-0691-82, RRID:AB_469637)

Clonality

monoclonal antibody

Comments

Applications: Flow (0.5 µg/test)

Clone ID

Clone H1.2F3

Host Organism

armenian hamster

Vendor

Thermo Fisher Scientific Go To Vendor

Cat Num

25-0691-82

Publications that use this research resource

Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells.

  • Gaya M
  • Cell
  • 2018 Jan 25

Literature context:


Abstract:

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.

Funding information:
  • NICHD NIH HHS - R01 HD049808(United States)
  • Wellcome Trust - UM1 AI100663()

Dichotomous Expression of TNF Superfamily Ligands on Antigen-Presenting Cells Controls Post-priming Anti-viral CD4+ T Cell Immunity.

  • Chang YH
  • Immunity
  • 2017 Nov 21

Literature context:


Abstract:

T cell antigen-presenting cell (APC) interactions early during chronic viral infection are crucial for determining viral set point and disease outcome, but how and when different APC subtypes contribute to these outcomes is unclear. The TNF receptor superfamily (TNFRSF) member GITR is important for CD4+ T cell accumulation and control of chronic lymphocytic choriomeningitis virus (LCMV). We found that type I interferon (IFN-I) induced TNFSF ligands GITRL, 4-1BBL, OX40L, and CD70 predominantly on monocyte-derived APCs and CD80 and CD86 predominantly on classical dendritic cells (cDCs). Mice with hypofunctional GITRL in Lyz2+ cells had decreased LCMV-specific CD4+ T cell accumulation and increased viral load. GITR signals in CD4+ T cells occurred after priming to upregulate OX40, CD25, and chemokine receptor CX3CR1. Thus IFN-I (signal 3) induced a post-priming checkpoint (signal 4) for CD4+ T cell accumulation, revealing a division of labor between cDCs and monocyte-derived APCs in regulating T cell expansion.

Funding information:
  • NIA NIH HHS - P01 AG017617(United States)