Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Mouse CD8a PE-Cy7 100 ug antibody


Antibody ID


Target Antigen

Mouse CD8a PE-Cy7 100 ug mouse

Proper Citation

(Thermo Fisher Scientific Cat# 25-0081-82, RRID:AB_469584)


monoclonal antibody


Applications: Flow (0.5 µg/test)

Clone ID

Clone 53-6.7

Host Organism



Thermo Fisher Scientific Go To Vendor

Cat Num


Spred1 Safeguards Hematopoietic Homeostasis against Diet-Induced Systemic Stress.

  • Tadokoro Y
  • Cell Stem Cell
  • 2018 May 3

Literature context:


Stem cell self-renewal is critical for tissue homeostasis, and its dysregulation can lead to organ failure or tumorigenesis. While obesity can induce varied abnormalities in bone marrow components, it is unclear how diet might affect hematopoietic stem cell (HSC) self-renewal. Here, we show that Spred1, a negative regulator of RAS-MAPK signaling, safeguards HSC homeostasis in animals fed a high-fat diet (HFD). Under steady-state conditions, Spred1 negatively regulates HSC self-renewal and fitness, in part through Rho kinase activity. Spred1 deficiency mitigates HSC failure induced by infection mimetics and prolongs HSC lifespan, but it does not initiate leukemogenesis due to compensatory upregulation of Spred2. In contrast, HFD induces ERK hyperactivation and aberrant self-renewal in Spred1-deficient HSCs, resulting in functional HSC failure, severe anemia, and myeloproliferative neoplasm-like disease. HFD-induced hematopoietic abnormalities are mediated partly through alterations to the gut microbiota. Together, these findings reveal that diet-induced stress disrupts fine-tuning of Spred1-mediated signals to govern HSC homeostasis.

Funding information:
  • Arthritis Research UK - 17522(United Kingdom)

Commensal Microbes Induce Serum IgA Responses that Protect against Polymicrobial Sepsis.

  • Wilmore JR
  • Cell Host Microbe
  • 2018 Mar 14

Literature context:


Serum immunoglobulin A (IgA) antibodies are readily detected in mice and people, but the mechanisms underlying the induction of serum IgA and its role in host protection remain uncertain. We report that select commensal bacteria induce several facets of systemic IgA-mediated immunity. Exposing conventional mice to a unique but natural microflora that included several members of the Proteobacteria phylum led to T cell-dependent increases in serum IgA levels and the induction of large numbers of IgA-secreting plasma cells in the bone marrow. The resulting serum IgA bound to a restricted collection of bacterial taxa, and antigen-specific serum IgA antibodies were readily induced after intestinal colonization with the commensal bacterium Helicobacter muridarum. Finally, movement to a Proteobacteria-rich microbiota led to serum IgA-mediated resistance to polymicrobial sepsis. We conclude that commensal microbes overtly influence the serum IgA repertoire, resulting in constitutive protection against bacterial sepsis.

Funding information:
  • NIAID NIH HHS - U19 AI057229(United States)

Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches.

  • Pinho S
  • Dev. Cell
  • 2018 Mar 12

Literature context:


The spatial localization of hematopoietic stem cells (HSCs) in the bone marrow (BM) remains controversial, with some studies suggesting that they are maintained in homogeneously distributed niches while others have suggested the contributions of distinct niche structures. Subsets of quiescent HSCs have been reported to associate with megakaryocytes (MK) or arterioles in the BM. However, these HSC subsets have not been prospectively defined. Here, we show that platelet and myeloid-biased HSCs, marked by von Willebrand factor (vWF) expression, are highly enriched in MK niches. Depletion of MK selectively expands vWF+ HSCs, whereas the depletion of NG2+ arteriolar niche cells selectively depletes vWF- lymphoid-biased HSCs. In addition, MK depletion compromises vWF+ HSC function by reducing their long-term self-renewal capacity and eliminating their lineage bias after transplantation. These studies demonstrate the existence of two spatially and functionally separate BM niches for HSC subsets with distinct developmental potential.

Funding information:
  • Cancer Research UK - 089009(United Kingdom)
  • NHLBI NIH HHS - R01 HL097819()
  • NHLBI NIH HHS - R01 HL116340()
  • NIDDK NIH HHS - R01 DK056638()
  • NIGMS NIH HHS - T32 GM007288()

Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

  • Booth CAG
  • Cancer Cell
  • 2018 Feb 12

Literature context:


Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation.

Funding information:
  • Medical Research Council - G0501838()
  • Medical Research Council - MC_UU_12009/6()
  • Medical Research Council - MR/M00919X/1()
  • Medical Research Council - MR/M010392/1()
  • NHGRI NIH HHS - HG02357(United States)
  • Worldwide Cancer Research - 14-1069()

Anti-TCRβ mAb in Combination With Neurogenin3 Gene Therapy Reverses Established Overt Type 1 Diabetes in Female NOD Mice.

  • Xie A
  • Endocrinology
  • 2017 Oct 1

Literature context:


Insulin-producing β cells in patients with type 1 diabetes (T1D) are destroyed by T lymphocytes. We investigated whether targeting the T-cell receptor (TCR) with a monoclonal antibody (mAb) abrogates T-cell response against residual and newly formed islets in overtly diabetic nonobese diabetic (NOD) mice. NOD mice with blood glucose levels of 250 to 350 mg/dL or 350 to 450 mg/dL were considered as new-onset or established overt diabetes, respectively. These diabetic NOD mice were transiently treated with an anti-TCR β chain (TCRβ) mAb, H57-597, for 5 days. Two weeks later, some NOD mice with established overt diabetes further received hepatic gene therapy using the islet-lineage determining gene Neurogenin3 (Ngn3), in combination with the islet growth factor gene betacellulin (Btc). We found that anti-TCRβ mAb (50 µg/d) reversed >80% new-onset diabetes in NOD mice for >14 weeks by reducing the number of effector T cells in the pancreas. However, anti-TCRβ mAb therapy alone reversed only ∼20% established overt diabetes in these mice. Among those overtly diabetic NOD mice whose diabetes was resistant to anti-TCRβ mAb treatment, ∼60% no longer had diabetes when they also received Ngn3-Btc hepatic gene transfer 2 weeks after initial anti-TCRβ mAb treatment. This combination of Ngn3-Btc gene therapy and anti-TCRβ mAb treatment induced the sustained formation of periportal insulin-producing cells in the liver of overtly diabetic mice. Therefore, directly targeting TCRβ with a mAb potently reverses new-onset T1D in NOD mice and protects residual and newly formed gene therapy-induced hepatic neo-islets from T-cell‒mediated destruction in mice with established overt diabetes.

Funding information:
  • NIAID NIH HHS - R01 AI074847(United States)
  • NIDDK NIH HHS - P30 DK079638()

Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay.

  • Pierce H
  • Cell Stem Cell
  • 2017 May 4

Literature context:


Hematopoietic stem cells (HSCs) are mobilized from niches in the bone marrow (BM) to the blood circulation by the cytokine granulocyte colony-stimulating factor (G-CSF) through complex mechanisms. Among these, signals from the sympathetic nervous system regulate HSC egress via its niche, but how the brain communicates with the BM remains largely unknown. Here we show that muscarinic receptor type-1 (Chrm1) signaling in the hypothalamus promotes G-CSF-elicited HSC mobilization via hormonal priming of the hypothalamic-pituitary-adrenal (HPA) axis. Blockade of Chrm1 in the CNS, but not the periphery, reduces HSC mobilization. Mobilization is impaired in Chrm1-∕- mice and rescued by parabiosis with wild-type mice, suggesting a relay by a blood-borne factor. We have identified the glucocorticoid (GC) hormones as critical for optimal mobilization. Physiological levels of corticosterone promote HSC migration via the GC receptor Nr3c1-dependent signaling and upregulation of actin-organizing molecules. These results uncover long-range regulation of HSC migration emerging from the brain.

Funding information:
  • NHLBI NIH HHS - R01 HL069438()
  • NHLBI NIH HHS - R01 HL097700()
  • NIDDK NIH HHS - R01 DK056638()
  • NIGMS NIH HHS - T32 GM007491()

Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

  • Crauste F
  • Cell Syst
  • 2017 Mar 22

Literature context:


Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated.