X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

NMDAR1 antibody

RRID:AB_396353

Antibody ID

AB_396353

Target Antigen

NMDAR1 human, monkey, rat, human, non-human primate, rat

Proper Citation

(BD Biosciences Cat# 556308, RRID:AB_396353)

Clonality

monoclonal antibody

Comments

Bioimaging, Immunohistochemistry, Western blot

Host Organism

mouse

Vendor

BD Biosciences Go To Vendor

Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation In Vivo.

  • Chenaux G
  • eNeuro
  • 2017 Oct 31

Literature context:


Abstract:

Modification of the strength of excitatory synaptic connections is a fundamental mechanism by which neural circuits are refined during development and learning. Synapse Differentiation Induced Gene 1 (SynDIG1) has been shown to play a key role in regulating synaptic strength in vitro. Here, we investigated the role of SynDIG1 in vivo in mice with a disruption of the SynDIG1 gene rather than use an alternate loxP-flanked conditional mutant that we find retains a partial protein product. The gene-trap insertion with a reporter cassette mutant mice shows that the SynDIG1 promoter is active during embryogenesis in the retina with some activity in the brain, and postnatally in the mouse hippocampus, cortex, hindbrain, and spinal cord. Ultrastructural analysis of the hippocampal CA1 region shows a decrease in the average PSD length of synapses and a decrease in the number of synapses with a mature phenotype. Intriguingly, the total synapse number appears to be increased in SynDIG1 mutant mice. Electrophysiological analyses show a decrease in AMPA and NMDA receptor function in SynDIG1-deficient hippocampal neurons. Glutamate stimulation of individual dendritic spines in hippocampal slices from SynDIG1-deficient mice reveals increased short-term structural plasticity. Notably, the overall levels of PSD-95 or glutamate receptors enriched in postsynaptic biochemical fractions remain unaltered; however, activity-dependent synapse development is strongly compromised upon the loss of SynDIG1, supporting its importance for excitatory synapse maturation. Together, these data are consistent with a model in which SynDIG1 regulates the maturation of excitatory synapse structure and function in the mouse hippocampus in vivo.

Funding information:
  • NIMH NIH HHS - R01 MH104638(United States)

Assembly rules for GABAA receptor complexes in the brain.

  • Martenson JS
  • Elife
  • 2017 Aug 17

Literature context:


Abstract:

GABAA receptor (GABAAR) pentamers are assembled from a pool of 19 subunits, and variety in subunit combinations diversifies GABAAR functions to tune brain activity. Pentamers with distinct subunit compositions localize differentially at synaptic and non-synaptic sites to mediate phasic and tonic inhibition, respectively. Despite multitudes of theoretical permutations, limited subunit combinations have been identified in the brain. Currently, no molecular model exists for combinatorial GABAAR assembly in vivo. Here, we reveal assembly rules of native GABAAR complexes that explain GABAAR subunit subcellular distributions using mice and Xenopus laevis oocytes. First, α subunits possess intrinsic signals to segregate into distinct pentamers. Second, γ2 is essential for GABAAR assembly with Neuroligin-2 (NL2) and GARLHs, which localize GABAARs at synapses. Third, δ suppresses α6 synaptic localization by preventing assembly with GARLHs/NL2. These findings establish the first molecular model for combinatorial GABAAR assembly in vivo and reveal an assembly pathway regulating GABAAR synaptic localization.

Funding information:
  • NIMH NIH HHS - R01 MH077939()
  • NIMH NIH HHS - U01 MH104984()

Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.

  • Siu CR
  • J. Neurosci.
  • 2017 Jun 21

Literature context:


Abstract:

Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan.SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most synapses in V1 are excitatory leaving unanswered how they change. So we studied expression of glutamatergic proteins in human V1 to determine their development. Here we report prolonged maturation of glutamatergic proteins, with five stages that map onto life-long changes in human visual perception. Thus, the apparent discrepancy between development of structure and function may be explained by life-long synaptic changes in human V1.

Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses.

  • Ferreira JS
  • Elife
  • 2017 Jun 9

Literature context:


Abstract:

The subunit composition of synaptic NMDA receptors (NMDAR), such as the relative content of GluN2A- and GluN2B-containing receptors, greatly influences the glutamate synaptic transmission. Receptor co-agonists, glycine and D-serine, have intriguingly emerged as potential regulators of the receptor trafficking in addition to their requirement for its activation. Using a combination of single-molecule imaging, biochemistry and electrophysiology, we show that glycine and D-serine relative availability at rat hippocampal glutamatergic synapses regulate the trafficking and synaptic content of NMDAR subtypes. Acute manipulations of co-agonist levels, both ex vivo and in vitro, unveil that D-serine alter the membrane dynamics and content of GluN2B-NMDAR, but not GluN2A-NMDAR, at synapses through a process requiring PDZ binding scaffold partners. In addition, using FRET-based FLIM approach, we demonstrate that D-serine rapidly induces a conformational change of the GluN1 subunit intracellular C-terminus domain. Together our data fuels the view that the extracellular microenvironment regulates synaptic NMDAR signaling.

GARLH Family Proteins Stabilize GABAA Receptors at Synapses.

  • Yamasaki T
  • Neuron
  • 2017 Mar 8

Literature context:


Abstract:

Ionotropic neurotransmitter receptors mediate fast synaptic transmission by functioning as ligand-gated ion channels. Fast inhibitory transmission in the brain is mediated mostly by ionotropic GABAA receptors (GABAARs), but their essential components for synaptic localization remain unknown. Here, we identify putative auxiliary subunits of GABAARs, which we term GARLHs, consisting of LH4 and LH3 proteins. LH4 forms a stable tripartite complex with GABAARs and neuroligin-2 in the brain. Moreover, LH4 is required for the synaptic localization of GABAARs and inhibitory synaptic transmission in the hippocampus. Our findings propose GARLHs as the first identified auxiliary subunits for anion channels. These findings provide new insights into the regulation of inhibitory transmission and the molecular constituents of native anion channels in vivo.

Funding information:
  • NCATS NIH HHS - UL1 TR001863()
  • NIGMS NIH HHS - T32 GM007205()
  • NIMH NIH HHS - F30 MH099742()
  • NIMH NIH HHS - U01 MH104984()
  • NINDS NIH HHS - U24 NS050606()

Sodium-dependent vitamin C transporter-2 mediates vitamin C transport at the cortical nerve terminal.

  • Pierce MR
  • J. Neurosci. Res.
  • 2016 Jul 27

Literature context:


Abstract:

It has been shown that vitamin C (VC) is transported at synaptic boutons, but how this occurs has not been elucidated. This study investigates the role of the sodium-dependent vitamin C transporter-2 (SVCT2) in transporting VC at the cortical nerve terminal. Immunostaining of cultured mouse superior cervical ganglion cells showed the SVCT2 to be expressed in presynaptic boutons, colocalizing with the vesicular monoamine transporter-2 and the norepinephrine transporter. Immunoblotting of enriched cortical synaptosomes demonstrated that the SVCT2 was enriched in presynaptic fractions, confirming a predominantly presynaptic location. In crude synaptosomes, known inhibitors of SVCT2 inhibited uptake of VC. Furthermore, the kinetic features of VC uptake were consistent with SVCT2-mediated function. VC was also found to efflux from synaptosomes by a mechanism not involving the SVCT2. Indeed, VC efflux was substantially offset by reuptake of VC on the SVCT2. The presence and function of the SVCT2 at the presynaptic nerve terminal suggest that it is the transporter responsible for recovery of VC released into the synaptic cleft.

Erratum: Borderud SP, Li Y, Burkhalter JE, Sheffer CE and Ostroff JS. Electronic cigarette use among patients with cancer: Characteristics of electronic cigarette users and their smoking cessation outcomes. Cancer. doi: 10.1002/ cncr.28811.

  • Cancer
  • 2015 Mar 1

Literature context:


Abstract:

The authors discovered some errors regarding reference group labels in Table 2. The corrected table is attached. The authors regret these errors.

Funding information:
  • European Research Council - 293926(International)

Drebrin a knockout eliminates the rapid form of homeostatic synaptic plasticity at excitatory synapses of intact adult cerebral cortex.

  • Aoki C
  • J. Comp. Neurol.
  • 2009 Nov 1

Literature context:


Abstract:

Homeostatic synaptic plasticity (HSP) is important for maintaining neurons' excitability within the dynamic range and for protecting neurons from unconstrained long-term potentiation that can cause breakdown of synapse specificity (Turrigiano [2008] Cell 135:422-435). Knowledge of the molecular mechanism underlying this phenomenon remains incomplete, especially for the rapid form of HSP. To test whether HSP in adulthood depends on an F-actin binding protein, drebrin A, mice deleted of the adult isoform of drebrin (DAKO) but retaining the embryonic isoform (drebrin E) were generated. HSP was assayed by determining whether the NR2A subunit of N-methyl-D-aspartate receptors (NMDARs) can rise rapidly within spines following the application of an NMDAR antagonist, D-APV, onto the cortical surface. Electron microscopic immunocytochemistry revealed that, as expected, the D-APV treatment of wild-type (WT) mouse cortex increased the proportion of NR2A-immunolabeled spines within 30 minutes relative to basal levels in hemispheres treated with an inactive enantiomer, L-APV. This difference was significant at the postsynaptic membrane and postsynaptic density (i.e., synaptic junction) as well as at nonsynaptic sites within spines and was not accompanied by spine size changes. In contrast, the D-APV treatment of DAKO brains did not augment NR2A labeling within the spine cytoplasm or at the synaptic junction, even though basal levels of NR2A were not significantly different from those of WT cortices. These findings indicate that drebrin A is required for the rapid (<30 minutes) form of HSP at excitatory synapses of adult cortices, whereas drebrin E is sufficient for maintaining basal NR2A levels within spines.

Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons.

  • Lim ST
  • J. Comp. Neurol.
  • 2008 Mar 10

Literature context:


Abstract:

Nectins are cell adhesion molecules that, together with the intracellular binding partner afadin, mediate adhesion and signaling at a variety of intercellular junctions. In this work we studied the distribution of nectin-1 and afadin during hippocampal synapse formation using cultured primary hippocampal neurons. Nectin-1 and afadin cluster at developing synapses between hippocampal neurons. These nectin-afadin clusters uniformly colocalize with N-cadherin-catenin pairs, suggesting that formation of developing synapses involves participation of both bimolecular systems. Nectin-1 is initially expressed at excitatory and inhibitory synapses but is progressively lost at inhibitory synapses during their maturation. Treatment of neurons with actin depolymerizing agents disrupts the synaptically localized nectin-1 and afadin cluster at an early stage and elicits nectin-1 ectodomain shedding. These data indicate that the synaptic localization of nectin-1 and l-afadin are F-actin-dependent and that the shedding of nectin-1 is a mechanism contributing to synaptic plasticity.

Funding information:
  • Wellcome Trust - 091593(United Kingdom)