X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ki-67 antibody

RRID:AB_393778

Chronic Liver Injury Induces Conversion of Biliary Epithelial Cells into Hepatocytes.

  • Deng X
  • Cell Stem Cell
  • 2018 Jul 5

Literature context:


Abstract:

Chronic liver injury can cause cirrhosis and impaired liver regeneration, impairing organ function. Adult livers can regenerate in response to parenchymal insults, and multiple cellular sources have been reported to contribute to this response. In this study, we modeled human chronic liver injuries, in which such responses are blunted, without genetic manipulations, and assessed potential contributions of non-parenchymal cells (NPCs) to hepatocyte regeneration. We show that NPC-derived hepatocytes replenish a large fraction of the liver parenchyma following severe injuries induced by long-term thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) treatment. Through lineage tracing of biliary epithelial cells (BECs), we show that BECs are a source of new hepatocytes and gain an Hnf4α+CK19+ bi-phenotypic state in periportal regions and fibrotic septa. Bi-phenotypic cells were also detected in cirrhotic human livers. Together, these data provide further support for hepatocyte regeneration from BECs without genetic interventions and show their cellular plasticity during severe liver injury.

Funding information:
  • NCI NIH HHS - U01 CA172027(United States)

Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes.

  • Qin XY
  • EBioMedicine
  • 2018 Jun 18

Literature context:


Abstract:

The acute phase protein orosomucoid-1 (Orm1) is mainly expressed by hepatocytes (HPCs) under stress conditions. However, its specific function is not fully understood. Here, we report a role of Orm1 as an executer of HPC proliferation. Increases in serum levels of Orm1 were observed in patients after surgical resection for liver cancer and in mice undergone partial hepatectomy (PH). Transcriptome study showed that Orm1 became the most abundant in HPCs isolated from regenerating mouse liver tissues after PH. Both in vitro and in vivo siRNA-induced knockdown of Orm1 suppressed proliferation of mouse regenerating HPCs and human hepatic cells. Microarray analysis in regenerating mouse livers revealed that the signaling pathways controlling chromatin replication, especially the minichromosome maintenance protein complex genes were uniformly down-regulated following Orm1 knockdown. These data suggest that Orm1 is induced in response to hepatic injury and executes liver regeneration by activating cell cycle progression in HPCs.

MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes.

  • Dhar SS
  • Mol. Cell
  • 2018 Jun 7

Literature context:


Abstract:

Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes.

Funding information:
  • NCI NIH HHS - P30 CA016672()
  • NCI NIH HHS - R01 CA157919()
  • NCI NIH HHS - R01 CA207098()
  • NCI NIH HHS - R01 CA207109()
  • NIAID NIH HHS - 1R01AI059372(United States)

The Epigenetic State of PRDM16-Regulated Enhancers in Radial Glia Controls Cortical Neuron Position.

  • Baizabal JM
  • Neuron
  • 2018 Jun 6

Literature context:


Abstract:

The epigenetic landscape is dynamically remodeled during neurogenesis. However, it is not understood how chromatin modifications in neural stem cells instruct the formation of complex structures in the brain. We report that the histone methyltransferase PRDM16 is required in radial glia to regulate lineage-autonomous and stage-specific gene expression programs that control number and position of upper layer cortical projection neurons. PRDM16 regulates the epigenetic state of transcriptional enhancers to activate genes involved in intermediate progenitor cell production and repress genes involved in cell migration. The histone methyltransferase domain of PRDM16 is necessary in radial glia to promote cortical neuron migration through transcriptional silencing. We show that repression of the gene encoding the E3 ubiquitin ligase PDZRN3 by PRDM16 determines the position of upper layer neurons. These findings provide insights into how epigenetic control of transcriptional enhancers in radial glial determines the organization of the mammalian cerebral cortex.

Funding information:
  • NCI NIH HHS - R01 CA109038-04(United States)

Proliferation of hippocampal progenitors relies on p27-dependent regulation of Cdk6 kinase activity.

  • Caron N
  • Cell. Mol. Life Sci.
  • 2018 May 4

Literature context:


Abstract:

Neural stem cells give rise to granule dentate neurons throughout life in the hippocampus. Upon activation, these stem cells generate fast proliferating progenitors that complete several rounds of divisions before differentiating into neurons. Although the mechanisms regulating the activation of stem cells have been intensively studied, little attention has been given so far to the intrinsic machinery allowing the expansion of the progenitor pool. The cell cycle protein Cdk6 positively regulates the proliferation of hippocampal progenitors, but the mechanism involved remains elusive. Whereas Cdk6 functions primarily as a cell cycle kinase, it can also act as transcriptional regulator in cancer cells and hematopoietic stem cells. Using mouse genetics, we show here that the function of Cdk6 in hippocampal neurogenesis relies specifically on its kinase activity. The present study also reveals a specific regulatory mechanism for Cdk6 in hippocampal progenitors. In contrast to the classical model of the cell cycle, we observe that the Cip/Kip family member p27, rather than the Ink4 family, negatively regulates Cdk6 in the adult hippocampus. Altogether, our data uncover a unique, cell type-specific regulatory mechanism controlling the expansion of hippocampal progenitors, where Cdk6 kinase activity is modulated by p27.

Funding information:
  • Belspo - P7/07()
  • NIDDK NIH HHS - P30DK56336(United States)

Spatial-Temporal Lineage Restrictions of Embryonic p63+ Progenitors Establish Distinct Stem Cell Pools in Adult Airways.

  • Yang Y
  • Dev. Cell
  • 2018 Mar 26

Literature context:


Abstract:

Basal cells (BCs) are p63-expressing multipotent progenitors of skin, tracheoesophageal and urinary tracts. p63 is abundant in developing airways; however, it remains largely unclear how embryonic p63+ cells contribute to the developing and postnatal respiratory tract epithelium, and ultimately how they relate to adult BCs. Using lineage-tracing and functional approaches in vivo, we show that p63+ cells arising from the lung primordium are initially multipotent progenitors of airway and alveolar lineages but later become restricted proximally to generate the tracheal adult stem cell pool. In intrapulmonary airways, these cells are maintained immature to adulthood in bronchi, establishing a rare p63+Krt5- progenitor cell population that responds to H1N1 virus-induced severe injury. Intriguingly, this pool includes a CC10 lineage-labeled p63+Krt5- cell subpopulation required for a full H1N1-response. These data elucidate key aspects in the establishment of regionally distinct adult stem cell pools in the respiratory system, potentially with relevance to other organs.

Funding information:
  • Intramural NIH HHS - ZIA HL006151-02(United States)
  • NCI NIH HHS - R01 CA112403()
  • NCI NIH HHS - R01 CA193455()
  • NHLBI NIH HHS - R35 HL135834()
  • NIAID NIH HHS - HHSN272201400008C()

Sonic Hedgehog and WNT Signaling Promote Adrenal Gland Regeneration in Male Mice.

  • Finco I
  • Endocrinology
  • 2018 Feb 1

Literature context:


Abstract:

The atrophy and hypofunction of the adrenal cortex following long-term pharmacologic glucocorticoid therapy is a major health problem necessitating chronic glucocorticoid replacement that often prolongs the ultimate return of endogenous adrenocortical function. Underlying this functional recovery is anatomic regeneration, the cellular and molecular mechanisms of which are poorly understood. Investigating the lineage contribution of cortical Sonic hedgehog (Shh)+ progenitor cells and the SHH-responsive capsular Gli1+ cells to the regenerating adrenal cortex, we observed a spatially and temporally bimodal contribution of both cell types to adrenocortical regeneration following cessation of glucocorticoid treatment. First, an early repopulation of the cortex is defined by a marked delamination and expansion of capsular Gli1+ cells, recapitulating the establishment of the capsular-cortical homeostatic niche during embryonic development. This rapid repopulation is promptly cleared from the cortical compartment only to be supplanted by repopulating cortical cells derived from the resident long-term-retained zona glomerulosa Shh+ progenitors. Pharmacologic and genetic dissection of SHH signaling further defines an SHH-dependent activation of WNT signaling that supports regeneration of the cortex following long-term glucocorticoid therapy. We define the signaling and lineage relationships that underlie the regeneration process.

Funding information:
  • NIDDK NIH HHS - R01 DK062027()
  • Wellcome Trust - (United Kingdom)

The Response of Prostate Smooth Muscle Cells to Testosterone Is Determined by the Subcellular Distribution of the Androgen Receptor.

  • Peinetti N
  • Endocrinology
  • 2018 Feb 1

Literature context:


Abstract:

Androgen signaling in prostate smooth muscle cells (pSMCs) is critical for the maintenance of prostate homeostasis, the alterations of which are a central aspect in the development of pathological conditions. Testosterone can act through the classic androgen receptor (AR) in the cytoplasm, eliciting genomic signaling, or through different types of receptors located at the plasma membrane for nongenomic signaling. We aimed to find evidence of nongenomic testosterone-signaling mechanisms in pSMCs and their participation in cell proliferation, differentiation, and the modulation of the response to lipopolysaccharide. We demonstrated that pSMCs can respond to testosterone by a rapid activation of ERK1/2 and Akt. Furthermore, a pool of ARs localized at the cell surface of pSMCs is responsible for a nongenomic testosterone-induced increase in cell proliferation. Through membrane receptor stimulation, testosterone favors a muscle phenotype, indicated by an increase in smooth muscle markers. We also showed that the anti-inflammatory effects of testosterone, capable of attenuating lipopolysaccharide-induced proinflammatory actions, are promoted only by receptors located inside the cell. We postulate that testosterone might perform prohomeostatic effects through intracellular-initiated mechanisms by modulating cell proliferation and inflammation, whereas some pathological, hyperproliferative actions would be induced by membrane-initiated nongenomic signaling in pSMCs.

Funding information:
  • Intramural NIH HHS - ZIA AG000741-09(United States)

Acute oligodendrocyte loss with persistent white matter injury in a third trimester equivalent mouse model of fetal alcohol spectrum disorder.

  • Newville J
  • Glia
  • 2018 Feb 2

Literature context:


Abstract:

Alcohol exposure during central nervous system (CNS) development can lead to fetal alcohol spectrum disorder (FASD). Human imaging studies have revealed significant white matter (WM) abnormalities linked to cognitive impairment in children with FASD; however, the underlying mechanisms remain unknown. Here, we evaluated both the acute and long-term impacts of alcohol exposure on oligodendrocyte number and WM integrity in a third trimester-equivalent mouse model of FASD, in which mouse pups were exposed to alcohol during the first 2 weeks of postnatal development. Our results demonstrate a 58% decrease in the number of mature oligodendrocytes (OLs) and a 75% decrease in the number of proliferating oligodendrocyte progenitor cells (OPCs) within the corpus callosum of alcohol-exposed mice at postnatal day 16 (P16). Interestingly, neither mature OLs nor OPCs derived from the postnatal subventricular zone (SVZ) were numerically affected by alcohol exposure, indicating heterogeneity in susceptibility based on OL ontogenetic origin. Although mature OL and proliferating OPC numbers recovered by postnatal day 50 (P50), abnormalities in myelin protein expression and microstructure within the corpus callosum of alcohol-exposed subjects persisted, as assessed by western immunoblotting of myelin basic protein (MBP; decreased expression) and MRI diffusion tensor imaging (DTI; decreased fractional anisotropy). These results indicate that third trimester-equivalent alcohol exposure leads to an acute, albeit recoverable, decrease in OL lineage cell numbers, accompanied by enduring WM injury. Additionally, our finding of heterogeneity in alcohol susceptibility based on the developmental origin of OLs may have therapeutic implications in FASD and other disorders of WM development.

Funding information:
  • NIAAA NIH HHS - P50 AA022534()

Crk proteins transduce FGF signaling to promote lens fiber cell elongation.

  • Collins TN
  • Elife
  • 2018 Jan 23

Literature context:


Abstract:

Specific cell shapes are fundamental to the organization and function of multicellular organisms. Fibroblast Growth Factor (FGF) signaling induces the elongation of lens fiber cells during vertebrate lens development. Nonetheless, exactly how this extracellular FGF signal is transmitted to the cytoskeletal network has previously not been determined. Here, we show that the Crk family of adaptor proteins, Crk and Crkl, are required for mouse lens morphogenesis but not differentiation. Genetic ablation and epistasis experiments demonstrated that Crk and Crkl play overlapping roles downstream of FGF signaling in order to regulate lens fiber cell elongation. Upon FGF stimulation, Crk proteins were found to interact with Frs2, Shp2 and Grb2. The loss of Crk proteins was partially compensated for by the activation of Ras and Rac signaling. These results reveal that Crk proteins are important partners of the Frs2/Shp2/Grb2 complex in mediating FGF signaling, specifically promoting cell shape changes.

Funding information:
  • National Eye Institute - 5P30EY019007()
  • National Eye Institute - EY017061()
  • NCI NIH HHS - R21-CA102733(United States)
  • NEI NIH HHS - R01 EY017061()
  • Research to Prevent Blindness - Jules and Doris Stein professorship()

Non-Newly Generated, "Immature" Neurons in the Sheep Brain Are Not Restricted to Cerebral Cortex.

  • Piumatti M
  • J. Neurosci.
  • 2018 Jan 24

Literature context:


Abstract:

A newly proposed form of brain structural plasticity consists of non-newly generated, "immature" neurons of the adult cerebral cortex. Similar to newly generated neurons, these cells express the cytoskeletal protein Doublecortin (DCX), yet they are generated prenatally and then remain in a state of immaturity for long periods. In rodents, the immature neurons are restricted to the paleocortex, whereas in other mammals, they are also found in neocortex. Here, we analyzed the DCX-expressing cells in the whole sheep brain of both sexes to search for an indicator of structural plasticity at a cellular level in a relatively large-brained, long-living mammal. Brains from adult and newborn sheep (injected with BrdU and analyzed at different survival times) were processed for DCX, cell proliferation markers (Ki-67, BrdU), pallial/subpallial developmental origin (Tbr1, Sp8), and neuronal/glial antigens for phenotype characterization. We found immature-like neurons in the whole sheep cortex and in large populations of DCX-expressing cells within the external capsule and the surrounding gray matter (claustrum and amygdala). BrdU and Ki-67 detection at neonatal and adult ages showed that all of these DCX+ cells were generated during embryogenesis, not after birth. These results show that the adult sheep, unlike rodents, is largely endowed with non-newly generated neurons retaining immature features, suggesting that such plasticity might be particularly important in large-brained, long-living mammals.SIGNIFICANCE STATEMENT Brain plasticity is important in adaptation and brain repair. Structural changes span from synaptic plasticity to adult neurogenesis, the latter being highly reduced in large-brained, long-living mammals (e.g., humans). The cerebral cortex contains "immature" neurons, which are generated prenatally and then remain in an undifferentiated state for long periods, being detectable with markers of immaturity. We studied the distribution and developmental origin of these cells in the whole brain of sheep, relatively large-brained, long-living mammals. In addition to the expected cortical location, we also found populations of non-newly generated neurons in several subcortical regions (external capsule, claustrum, and amygdala). These results suggests that non-neurogenic, parenchymal structural plasticity might be more important in large mammals with respect to adult neurogenesis.

Funding information:
  • Howard Hughes Medical Institute - N01-AI-40096(United States)

mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance.

  • Haller S
  • Cell Stem Cell
  • 2017 Dec 7

Literature context:


Abstract:

The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.

Funding information:
  • BLRD VA - I01 BX002324()
  • NCRR NIH HHS - UL1 RR024989(United States)
  • NHLBI NIH HHS - R01 HL132996()
  • NIA NIH HHS - K99 AG041764()
  • NIA NIH HHS - P01 AG036695()
  • NIA NIH HHS - R00 AG041764()
  • NIA NIH HHS - R01 AG047497()
  • NIA NIH HHS - R01 AG047820()
  • NIA NIH HHS - R37 AG023806()
  • NIDDK NIH HHS - R01 DK100342()
  • NIDDK NIH HHS - R01 DK113144()

Population dynamics of neural progenitor cells during aging in the cerebral cortex.

  • Okada Y
  • Biochem. Biophys. Res. Commun.
  • 2017 Nov 4

Literature context:


Abstract:

Recent studies indicate that adult neurogenesis occurs in the cerebral cortex of rodents. Neural progenitor cells (NPCs) have been found in the adult cerebral cortex. These cells are expected to be regulated by various stimuli, including environmental enrichment, exercise, learning, and stress. However, it is unclear what stimuli can regulate cortical NPCs. In this study, we examined whether aging has an impact on population dynamics of NPCs in the murine cerebral cortex, using immunohistological staining for NPCs. The density of NPCs was kept from 5- to 12-month-old, dramatically decreased at 17-month-old, and thereafter maintained the same level until 24-month-old. Comparing the densities of NPCs in the cortical areas, such as the cingulate, primary motor, primary somatosensory, and insular cortices, we found that the degrees of decreased densities of NPCs in the cingulate and insular cortices were significantly smaller than those in the primary motor and somatosensory cortices. NPCs in aged cortex produced new neurons by ischemia. These results indicate that in aged mice, NPCs exist and produce new neurons in the cerebral cortex. Additionally, the extent of reduction of the density of NPCs in the cortices with higher cognitive functions may be less than that in the primary motor and somatosensory cortices.

Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma.

  • Braun CJ
  • Cancer Cell
  • 2017 Oct 9

Literature context:


Abstract:

Glioblastoma (GBM) is a devastating malignancy with few therapeutic options. We identify PRMT5 in an in vivo GBM shRNA screen and show that PRMT5 knockdown or inhibition potently suppresses in vivo GBM tumors, including patient-derived xenografts. Pathway analysis implicates splicing in cellular PRMT5 dependency, and we identify a biomarker that predicts sensitivity to PRMT5 inhibition. We find that PRMT5 deficiency primarily disrupts the removal of detained introns (DIs). This impaired DI splicing affects proliferation genes, whose downregulation coincides with cell cycle defects, senescence and/or apoptosis. We further show that DI programs are evolutionarily conserved and operate during neurogenesis, suggesting that they represent a physiological regulatory mechanism. Collectively, these findings reveal a PRMT5-regulated DI-splicing program as an exploitable cancer vulnerability.

Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins.

  • Yoon KJ
  • Cell Stem Cell
  • 2017 Sep 7

Literature context:


Abstract:

Zika virus (ZIKV) directly infects neural progenitors and impairs their proliferation. How ZIKV interacts with the host molecular machinery to impact neurogenesis in vivo is not well understood. Here, by systematically introducing individual proteins encoded by ZIKV into the embryonic mouse cortex, we show that expression of ZIKV-NS2A, but not Dengue virus (DENV)-NS2A, leads to reduced proliferation and premature differentiation of radial glial cells and aberrant positioning of newborn neurons. Mechanistically, in vitro mapping of protein-interactomes and biochemical analysis suggest interactions between ZIKA-NS2A and multiple adherens junction complex (AJ) components. Functionally, ZIKV-NS2A, but not DENV-NS2A, destabilizes the AJ complex, resulting in impaired AJ formation and aberrant radial glial fiber scaffolding in the embryonic mouse cortex. Similarly, ZIKA-NS2A, but not DENV-NS2A, reduces radial glial cell proliferation and causes AJ deficits in human forebrain organoids. Together, our results reveal pathogenic mechanisms underlying ZIKV infection in the developing mammalian brain.

Anatomically and Functionally Distinct Lung Mesenchymal Populations Marked by Lgr5 and Lgr6.

  • Lee JH
  • Cell
  • 2017 Sep 7

Literature context:


Abstract:

The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.

Funding information:
  • NCI NIH HHS - K99 CA187317()
  • NCI NIH HHS - P30 CA014051()
  • NCI NIH HHS - U24 CA180922()
  • NHLBI NIH HHS - R01 HL090136()
  • NHLBI NIH HHS - R01 HL125821()
  • NHLBI NIH HHS - U01 HL100402()
  • Wellcome Trust - R01 HL132266()

Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice.

  • Chen KS
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context:


Abstract:

The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.

Role of ERα in Mediating Female Uterine Transcriptional Responses to IGF1.

  • Hewitt SC
  • Endocrinology
  • 2017 Aug 1

Literature context:


Abstract:

Estrogen (E2) signaling through its nuclear receptor, E2 receptor α (ERα) increases insulinlike growth factor 1 (IGF1) in the rodent uterus, which then initiates further signals via the IGF1 receptor. Directly administering IGF1 results in similar biological and transcriptional uterine responses. Our studies using global ERα-null mice demonstrated a loss of uterine biological responses of the uterus to E2 or IGF1 treatment, while maintaining transcriptional responses to IGF1. To address this discrepancy in the need for uterine ERα in mediating the IGF1 transcriptional vs growth responses, we assessed the IGF1 transcriptional responses in PgrCre+Esr1f/f (called ERαUtcKO) mice, which selectively lack ERα in progesterone receptor (PGR) expressing cells, including all uterine cells, while maintaining ERα expression in other tissues and cells that do not express Pgr. Additionally, we profiled IGF1-induced ERα binding sites in uterine chromatin using chromatin immunoprecipitation sequencing. Herein, we explore the transcriptional and molecular signaling that underlies our findings to refine our understanding of uterine IGF1 signaling and identify ERα-mediated and ERα-independent uterine transcriptional responses. Defining these mechanisms in vivo in whole tissue and animal contexts provides details of nuclear receptor mediated mechanisms that impact biological systems and have potential applicability to reproductive processes of humans, livestock and wildlife.

Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice.

  • Li Q
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Environmental and occupational exposure to bisphenol A (BPA), a chemical widely used in polycarbonate plastics and epoxy resins, has received much attention in female reproductive health due to its widespread toxic effects. Although BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In this study, we addressed the effect of prolonged exposure to an environmental relevant dose of BPA on embryo implantation and establishment of pregnancy. Our studies revealed that treatment of mice with BPA led to improper endometrial epithelial and stromal functions thus affecting embryo implantation and establishment of pregnancy. Upon further analyses, we found that the expression of progesterone receptor (PGR) and its downstream target gene, HAND2 (heart and neural crest derivatives expressed 2), was markedly suppressed in BPA-exposed uterine tissues. Previous studies have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor and the MAPK signaling pathways and inhibiting epithelial proliferation. Interestingly, we observed that down-regulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with enhanced activation of fibroblast growth factor and MAPK signaling in the epithelium, thus contributing to aberrant proliferation and lack of uterine receptivity. Further, the differentiation of endometrial stromal cells to decidual cells, an event critical for the establishment and maintenance of pregnancy, was severely compromised in response to BPA. In summary, our studies revealed that chronic exposure to BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy.

Funding information:
  • NIDCD NIH HHS - R00 DC012775(United States)

SOX2 regulates acinar cell development in the salivary gland.

  • Emmerson E
  • Elife
  • 2017 Jun 17

Literature context:


Abstract:

Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ.

Funding information:
  • NIDCR NIH HHS - R01 DE024188()

Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids.

  • Nikolić MZ
  • Elife
  • 2017 Jun 30

Literature context:


Abstract:

The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated.

Particulate Array of Well-Ordered HIV Clade C Env Trimers Elicits Neutralizing Antibodies that Display a Unique V2 Cap Approach.

  • Martinez-Murillo P
  • Immunity
  • 2017 May 16

Literature context:


Abstract:

The development of soluble envelope glycoprotein (Env) mimetics displaying ordered trimeric symmetry has ushered in a new era in HIV-1 vaccination. The recently reported native, flexibly linked (NFL) design allows the generation of native-like trimers from clinical isolates at high yields and homogeneity. As the majority of infections world-wide are of the clade C subtype, we examined responses in non-human primates to well-ordered subtype C 16055 trimers administered in soluble or high-density liposomal formats. We detected superior germinal center formation and enhanced autologous neutralizing antibodies against the neutralization-resistant (tier 2) 16055 virus following inoculation of liposome-arrayed trimers. Epitope mapping of the neutralizing monoclonal antibodies (mAbs) indicated major contacts with the V2 apex, and 3D electron microscopy reconstructions of Fab-trimer complexes revealed a horizontal binding angle to the Env spike. These vaccine-elicited mAbs target the V2 cap, demonstrating a means to accomplish tier 2 virus neutralization by penetrating the dense N-glycan shield.

Funding information:
  • NIAID NIH HHS - P01 AI104722()
  • NIAID NIH HHS - UM1 AI100663()

BMP7 Induces Uterine Receptivity and Blastocyst Attachment.

  • Monsivais D
  • Endocrinology
  • 2017 Apr 1

Literature context:


Abstract:

In women, the window of implantation is limited to a brief 2- to 3-day period characterized by optimal levels of circulating ovarian hormones and a receptive endometrium. Although the window of implantation is assumed to occur 8 to 10 days after ovulation in women, molecular markers of endometrial receptivity are necessary to determine optimal timing prior to embryo transfer. Previous studies showed that members of the bone morphogenetic protein (BMP) family are expressed in the uterus necessary for female fertility; however, the role of BMP7 during implantation and in late gestation is not known. To determine the contribution of BMP7 to female fertility, we generated Bmp7flox/flox-Pgr-cre+/- [BMP7 conditional knockout (cKO)] mice. We found that absence of BMP7 in the female reproductive tract resulted in subfertility due to uterine defects. At the time of implantation, BMP7 cKO females displayed a nonreceptive endometrium with elevated estrogen-dependent signaling. These implantation-related defects also affected decidualization and resulted in decreased expression of decidual cell markers such as Wnt4, Cox2, Ereg, and Bmp2. We also observed placental abnormalities in pregnant Bmp7 cKO mice, including excessive parietal trophoblast giant cells and absence of a mature placenta at 10.5 days post coitum. To establish possible redundant roles of BMP5 and BMP7 during pregnancy, we generated double BMP5 knockout/BMP7 cKO [BMP5/7 double knockout (DKO)] mice; however, we found that the combined deletion had no additive disruptive effect on fertility. Our studies indicate that BMP7 is an important factor during the process of implantation that contributes to healthy embryonic development.

Funding information:
  • Cancer Research UK - 11832(United Kingdom)
  • NICHD NIH HHS - R01 HD032067(United States)
  • NIGMS NIH HHS - K12 GM084897(United States)
  • NIGMS NIH HHS - T32 GM008307(United States)

Virgin Beta Cells Persist throughout Life at a Neogenic Niche within Pancreatic Islets.

  • van der Meulen T
  • Cell Metab.
  • 2017 Apr 4

Literature context:


Abstract:

Postnatal maintenance or regeneration of pancreatic beta cells is considered to occur exclusively via the replication of existing beta cells, but clinically meaningful restoration of human beta cell mass by proliferation has never been achieved. We discovered a population of immature beta cells that is present throughout life and forms from non-beta precursors at a specialized micro-environment or "neogenic niche" at the islet periphery. These cells express insulin, but lack other key beta cell markers, and are transcriptionally immature, incapable of sensing glucose, and unable to support calcium influx. They constitute an intermediate stage in the transdifferentiation of alpha cells to cells that are functionally indistinguishable from conventional beta cells. We thus identified a lifelong source of new beta cells at a specialized site within healthy islets. By comparing co-existing immature and mature beta cells within healthy islets, we stand to learn how to mature insulin-expressing cells into functional beta cells.

Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation.

  • Close JL
  • Neuron
  • 2017 Mar 8

Literature context:


Abstract:

GABAergic interneurons are essential for neural circuit function, and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and, ultimately, for therapeutic cell replacement. Here we describe a protocol for generating cortical interneurons from hESCs and analyze the properties and maturation time course of cell types using single-cell RNA-seq. We find that the cell types produced mimic in vivo temporal patterns of neuron and glial production, with immature progenitors and neurons observed early and mature cortical neurons and glial cell types produced late. By comparing the transcriptomes of immature interneurons to those of more mature neurons, we identified genes important for human interneuron differentiation. Many of these genes were previously implicated in neurodevelopmental and neuropsychiatric disorders.

Funding information:
  • NICHD NIH HHS - R24 HD000836()
  • NIMH NIH HHS - DP1 MH099906()

Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans.

  • Chrenek R
  • J. Comp. Neurol.
  • 2017 Feb 15

Literature context:


Abstract:

Neural stem cells (NSCs) reside in a unique microenvironment within the central nervous system (CNS) called the NSC niche. Although they are relatively rare, niches have been previously characterized in both the brain and spinal cord of adult animals. Recently, another potential NSC niche has been identified in the filum terminale (FT), which is a thin band of tissue at the caudal end of the spinal cord. While previous studies have demonstrated that NSCs can be isolated from the FT, the in vivo architecture of this tissue and its relation to other NSC niches in the CNS has not yet been established. In this article we report a histological analysis of the FT NSC niche in postnatal rats and humans. Immunohistochemical characterization reveals that the FT is mitotically active and its cells express similar markers to those in other CNS niches. In addition, the organization of the FT most closely resembles that of the adult spinal cord niche. J. Comp. Neurol. 525:661-675, 2017. © 2016 Wiley Periodicals, Inc.

Variability in the number of abdominal leucokinergic neurons in adult Drosophila melanogaster.

  • Alvarez-Rivero J
  • J. Comp. Neurol.
  • 2017 Feb 15

Literature context:


Abstract:

Developmental plasticity allows individuals with the same genotype to show different phenotypes in response to environmental changes. An example of this is how neuronal diversity is protected at the expense of neuronal number under sustained undernourishment during the development of the Drosophila optic lobe. In the development of the Drosophila central nervous system, neuroblasts go through two phases of neurogenesis separated by a period of mitotic quiescence. Although during embryonic development much evidence indicates that both cell number and the cell fates generated by each neuroblast are very precisely controlled in a cell autonomous manner, after quiescence extrinsic factors control the reactivation of neuroblast proliferation in a fashion that has not yet been elucidated. Moreover, there is very little information about whether environmental changes affect lineage progression during postembryonic neurogenesis. Using as a model system the pattern of abdominal leucokinergic neurons (ABLKs), we have analyzed how changes in a set of environmental factors affect the number of ABLKs generated during postembryonic neurogenesis. We describe the variability in ABLK number between individuals and between hemiganglia of the same individual and, by genetic analysis, we identify the bithorax-complex genes and the ecdysone hormone as critical factors in these differences. We also explore the possible adaptive roles involved in this process. J. Comp. Neurol. 525:639-660, 2017. © 2016 Wiley Periodicals, Inc.

Periostin induces pancreatic regeneration.

  • Smid JK
  • Endocrinology
  • 2015 Mar 21

Literature context:


Abstract:

We found that the secreted protein periostin (Postn) is highly induced after partial pancreatectomy in regenerating areas containing mesenchymal stroma and tubular complexes. Importantly, after partial pancreatectomy, Postn-deficient mice exhibit impaired mesenchymal formation and reduced regeneration specifically within the pancreatic β-cell compartment. Furthermore, Postn-deficient mice demonstrate an increased sensitivity to streptozotocin. Notably, injection of Postn directly into the pancreas stimulated proliferation of vimentin-expressing cells within 24 hours, and by 3 days, a mesenchymal stroma was present containing proliferating duct-like cells expressing the progenitor markers Ngn3 and Pdx1. Intraperitoneal injection of Postn resulted in increased numbers of islets and long-term glucoregulatory benefits with no adverse effects found in other tissues. Delivery of Postn throughout the pancreas via the common bile duct resulted in increased numbers of small insulin-expressing clusters and a significant improvement in glucose tolerance. Therefore, Postn is novel molecule capable of potentiating pancreatic β-cell regeneration.

Funding information:
  • NIDDK NIH HHS - R01 DK055758(United States)
  • NINDS NIH HHS - R01 NS073981(United States)

Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis.

  • Pfister S
  • J. Comp. Neurol.
  • 2015 Feb 15

Literature context:


Abstract:

The olfactory epithelium (OE) of mice deficient in cystic fibrosis transmembrane conductance regulator (CFTR) exhibits ion transport deficiencies reported in human CF airways, as well as progressive neuronal loss, suggesting defects in olfactory neuron homeostasis. Microvillar cells, a specialized OE cell-subtype, have been implicated in maintaining tissue homeostasis. These cells are endowed with a PLCβ2/IP3 R3/TRPC6 signal transduction pathway modulating release of neuropeptide Y (NPY), which stimulates OE stem cell activity. It is unknown, however, whether microvillar cells also mediate the deficits observed in CFTR-null mice. Here we show that Cftr mRNA in mouse OE is exclusively localized in microvillar cells and CFTR immunofluorescence is coassociated with the scaffolding protein NHERF-1 and PLCβ2 in microvilli. In CFTR-null mice, PLCβ2 was undetectable, NHERF-1 mislocalized, and IP3 R3 more intensely stained, along with increased levels of NPY, suggesting profound alteration of the PLCβ2/IP3 R3 signaling pathway. In addition, basal olfactory neuron homeostasis was altered, shown by increased progenitor cell proliferation, differentiation, and apoptosis and by reduced regenerative capacity following methimazole-induced neurodegeneration. The importance of CFTR in microvillar cells was further underscored by decreased thickness of the OE mucus layer and increased numbers of immune cells within this tissue in CFTR-KO mice. Finally, we observed enhanced immune responses to an acute viral-like infection, as well as hyper-responsiveness to chemical and physical stimuli applied intranasally. Taken together, these data strengthen the notion that microvillar cells in the OE play a key role in maintaining tissue homeostasis and identify several mechanisms underlying this regulation through the multiple functions of CFTR.

Funding information:
  • NIAMS NIH HHS - R01 AR041464(United States)

β-cell induction in vivo in severely diabetic male mice by changing the circulating levels and pattern of the ratios of estradiol to androgens.

  • Inada A
  • Endocrinology
  • 2014 Oct 20

Literature context:


Abstract:

Previously we have generated transgenic (Tg) mice developing severe diabetes early in life with a profound depletion of β-cells with β-cell-directed expression of inducible cAMP early repressor-Iγ. Only male mice continue to demonstrate hyperglycemia throughout life. To investigate this sexual dimorphism, we treated severely diabetic male Tg mice with orchiectomy (ORX) or 17β-estradiol (E2) pellet implantation alone or in combination with ORX and E2-implantation to change the circulating levels and patterns of the ratio of estradiol to androgens. In the Tg-ORX group, the blood-glucose levels decreased to a certain level within several weeks but never reached the female Tg-control level. In contrast, the Tg-ORX+E2 or Tg-E2 group showed a more rapid drop in blood glucose to the basal level with a substantial increase in β-cells, thus preventing the occurrence of severe diabetes in the male mice. The β-cells, not only within islet but also in and adjacent to ducts and scattered β-cell clusters, were strongly induced by 1 week after treatment, and the islet morphology dramatically changed. Enhanced β-cell induction in the ducts occurred concomitantly with markedly increased levels of pancreatic duodenal homeobox-1 and related transcription factors. The glucose-lowering and β-cell-increasing effects were independent of the age at which the treatment is started. These data provide evidence that the circulating level of E2 and the ratio of E2 to T greatly affect the blood glucose levels, the β-cell induction, and the islet morphology in diabetic male Tg mice. This novel mechanism offers great potential for developing strategies to increase the number of β-cells in vivo.

Funding information:
  • European Research Council - 249845(International)

Growth hormone potentiates 17β-estradiol-dependent breast cancer cell proliferation independently of IGF-I receptor signaling.

  • Felice DL
  • Endocrinology
  • 2013 Sep 26

Literature context:


Abstract:

Estrogen action in mammary gland development and breast cancer progression is tightly linked to the GH/IGF-I axis. Although many of the effects of GH on mammary gland growth and development require IGF-I, the extent to which GH action in breast cancer depends on IGF-I is not known. We examined GH action in a panel of estrogen receptor-positive breast cancer cell lines and found that T47D cells express significant levels of GH receptor and that GH significantly enhances 17β-estradiol (E2)-stimulated proliferation in these cells. GH action in the T47D cells was independent of changes in IGF-I and IGF-I receptor (IGF-IR) expression and IGF-IR signaling, suggesting that GH can exert direct effects on breast cancer cells. Although E2-dependent proliferation required IGF-IR signaling, the combination of GH+E2 overcame inhibition of IGF-IR activity to restore proliferation. In contrast, GH required both Janus kinase 2 and epidermal growth factor receptor signaling for subsequent ERK activation and potentiation of E2-dependent proliferation. Downstream of these pathways, we identified a number of immediate early-response genes associated with proliferation that are rapidly and robustly up-regulated by GH. These findings demonstrate that GH can have important effects in breast cancer cells that are distinct from IGF-IR activity, suggesting that novel drugs or improved combination therapies targeting estrogen receptor and the GH/IGF axis may be beneficial for breast cancer patients.

Funding information:
  • NIMH NIH HHS - T32 MH096678(United States)

Age-related changes of the regeneration mode in the mouse peripheral olfactory system following olfactotoxic drug methimazole-induced damage.

  • Suzukawa K
  • J. Comp. Neurol.
  • 2011 Aug 1

Literature context:


Abstract:

We investigated age-related changes in the mode of regeneration in the mouse peripheral olfactory system after olfactotoxic drug-induced damage. Mice at postnatal ages of 10 days, 3 months, and 16 months were given an intraperitoneal injection of methimazole to produce damage in the olfactory neuroepithelium. The olfactory neuroepithelia were harvested and analyzed immunohistochemically at various postlesion timepoints, from 1 day through to 94 days, to investigate neuroepithelial cell proliferation, the time course of neuronal differentiation, the reconstitution of neuroepithelium, and the innervation of the olfactory bulb. Functional recovery was assessed using the vanillin avoidance behavioral test. The chronological pattern in the expression of Ki67, beta III tubulin, and olfactory marker protein, molecular markers for neuronal cell proliferation and differentiation, changed similarly among the different age groups. In contrast, the extent of neuroepithelial cell proliferation after injury decreased with age, and the final histological recovery of the olfactory neuroepithelium and the innervation of the olfactory bulb were significantly smaller in the 16-month-old group compared to the younger age groups. These results suggest that the age-related decline in the capacity of olfactory neuroepithelium to reconstitute neuroepithelium is associated with its age-related decrease in proliferative activity after the neuroepithelial injury rather than changes in the process of neuronal differentiation. In spite of these incomplete anatomical recoveries, 16-month-old mice regained the ability to avoid vanillin solution by 1 month postlesion, suggesting that the extent of anatomical epithelial damage is not necessarily proportional to the threshold of olfactory perception.

Funding information:
  • Intramural NIH HHS - ZIB HG200319-07(United States)

Nestin expression defines both glial and neuronal progenitors in postnatal sympathetic ganglia.

  • Shi H
  • J. Comp. Neurol.
  • 2008 Jun 20

Literature context:


Abstract:

Sympathetic ganglia are primarily composed of noradrenergic neurons and satellite glial cells. Although both cell types originate from neural crest cells, the identities of the progenitor populations at intermediate stages of the differentiation process remain to be established. Here we report on the identification in vivo of glial and neuronal progenitor cells in postnatal sympathetic ganglia, by using mouse superior cervical ganglia as a model system. There are significant levels of cellular proliferation in mouse superior cervical ganglia during the first 18 days after birth. A majority of the proliferating cells express both nestin and brain lipid-binding protein (BLBP). Bromodeoxyuridine (BrdU) fate-tracing experiments demonstrate that these nestin and BLBP double-positive cells represent a population of glial progenitors for sympathetic satellite cells. The glial differentiation process is characterized by a marked downregulation of nestin and upregulation of S100, with no significant changes in the levels of BLBP expression. We also identify a small number of proliferating cells that express nestin and tyrosine hydroxylase, a key enzyme of catecholamine biosynthesis that defines sympathetic noradrenergic neurons. Together, these results establish nestin as a common marker for sympathetic neuronal and glial progenitor cells and delineate the cellular basis for the generation and maturation of sympathetic satellite cells.

Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat.

  • Pecchi E
  • J. Comp. Neurol.
  • 2007 Mar 20

Literature context:


Abstract:

The dorsal vagal complex (DVC), an integrative center of autonomic functions located dorsally in the caudal brainstem, comprises the nucleus tractus solitarius (NTS), the area postrema (AP), and the dorsal motor nucleus of the vagus nerve (DMNX). Recently, this area of the brainstem was shown to retain, during adulthood, the expression of developmental markers, which is consistent with several forms of morphological and functional plasticity. These data led us to attempt to determine the structural organization and phenotypical characteristics of the astroglial compartment in the adult DVC. We report a strikingly high density of glial fibrillary acidic protein (GFAP) immunoreactive cells in the NTS and the DMNX compared to other brainstem structures. Furthermore, we observed a subpopulation of atypical GFAP+ cells in the NTS. These cells expressed vimentin and nestin and displayed unbranched processes that radiate rostrocaudally from cuboid cell bodies located in the 4th ventricle wall. Interestingly, these radiating cells were found in close association with neural progenitors whose proliferation was stimulated by intracerebroventricular injection of epidermal growth factor/basic fibroblast growth factor or lesion of the vagus nerve. Newly born neurons in the NTS identified by doublecortin (DCX) immunolabeling were also preferentially found in the vicinity of the radiating cells. Altogether, these results indicate that the adult NTS retains, during adulthood, astroglial cells that display morphological and phenotypical features seen during development. The overlap in the distribution of proliferative neural progenitors, newborn neurons, and radiating GFAP-positive cells suggest a possible role of the glial compartment of the NTS in functional plasticity in this structure.

Funding information:
  • NINDS NIH HHS - R03 NS071442(United States)