X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-RNA polymerase II, clone CTD4H8 antibody

RRID:AB_309852

Antibody ID

AB_309852

Target Antigen

RNA polymerase II clone CTD4H8 yeast/fungi, h, r, m, yeast (s cerevisiae)

Proper Citation

(Millipore Cat# 05-623, RRID:AB_309852)

Clonality

monoclonal antibody

Comments

seller recommendations: IgG1; IgG1 ChIP, WB; Western Blot; ChIP

Host Organism

mouse

Vendor

Millipore

A Linc1405/Eomes Complex Promotes Cardiac Mesoderm Specification and Cardiogenesis.

  • Guo X
  • Cell Stem Cell
  • 2018 Jun 1

Literature context:


Abstract:

Large intergenic non-coding RNAs (lincRNAs) play widespread roles in epigenetic regulation during multiple differentiation processes, but little is known about their mode of action in cardiac differentiation. Here, we identified the key roles of a lincRNA, termed linc1405, in modulating the core network of cardiac differentiation by functionally interacting with Eomes. Chromatin- and RNA-immunoprecipitation assays showed that exon 2 of linc1405 physically mediates a complex consisting of Eomes, trithorax group (TrxG) subunit WDR5, and histone acetyltransferase GCN5 binding at the enhancer region of Mesp1 gene and activates its expression during cardiac mesoderm specification of embryonic stem cells. Importantly, linc1405 co-localizes with Eomes, WDR5, and GCN5 at the primitive streak, and linc1405 depletion impairs heart development and function in vivo. In summary, linc1405 mediates a Eomes/WDR5/GCN5 complex that contributes to cardiogenesis, highlighting the critical roles of lincRNA-based complexes in the epigenetic regulation of cardiogenesis in vitro and in vivo.

Funding information:
  • NCATS NIH HHS - UL1TR000124(United States)

SRC-3 Coactivator Governs Dynamic Estrogen-Induced Chromatin Looping Interactions during Transcription.

  • Panigrahi AK
  • Mol. Cell
  • 2018 May 17

Literature context:


Abstract:

Enhancers are thought to activate transcription by physically contacting promoters via looping. However, direct assays demonstrating these contacts are required to mechanistically verify such cellular determinants of enhancer function. Here, we present versatile cell-free assays to further determine the role of enhancer-promoter contacts (EPCs). We demonstrate that EPC is linked to mutually stimulatory transcription at the enhancer and promoter in vitro. SRC-3 was identified as a critical looping determinant for the estradiol-(E2)-regulated GREB1 locus. Surprisingly, the GREB1 enhancer and promoter contact two internal gene body SRC-3 binding sites, GBS1 and GBS2, which stimulate their transcription. Utilizing time-course 3C assays, we uncovered SRC-3-dependent dynamic chromatin interactions involving the enhancer, promoter, GBS1, and GBS2. Collectively, these data suggest that the enhancer and promoter remain "poised" for transcription via their contacts with GBS1 and GBS2. Upon E2 induction, GBS1 and GBS2 disengage from the enhancer, allowing direct EPC for active transcription.

Funding information:
  • NCI NIH HHS - P30 CA125123()
  • NICHD NIH HHS - F32 HD007875()
  • NICHD NIH HHS - R01 HD007857()
  • NIGMS NIH HHS - R01 GM062591(United States)

MEF2C Interacts With c-FOS in PTH-Stimulated Mmp13 Gene Expression in Osteoblastic Cells.

  • Nakatani T
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Parathyroid hormone (PTH) regulates the transcription of many genes in the osteoblast. One of these genes is Mmp13, which is involved in bone remodeling and early stages of endochondral bone formation. Previously, we reported that PTH induces Mmp13 transcription by regulating the dissociation of histone deacetylase 4 (HDAC4) from runt-related transcription factor 2 (Runx2), and the association of the HATs, p300, and p300/CREB binding protein (CBP)-associated factor. It is known that, in addition to Runx2, HDAC4 binds to the transcription factor, myocyte-specific enhancer factor 2c (MEF2C), and represses its activity. In this work, we investigated whether MEF2C participates in PTH-stimulated Mmp13 gene expression in osteoblastic cells and how it does so. Knockdown of Mef2c in UMR 106-01 cells repressed Mmp13 messenger RNA expression and promoter activity with or without PTH treatment. Chromatin immunoprecipitation (ChIP) assays showed that MEF2C associated with the Mmp13 promoter; this increased after 4 hours of PTH treatment. ChIP-reChIP results indicate that endogenous MEF2C associates with HDAC4 on the Mmp13 promoter; after PTH treatment, this association decreased. From gel shift, ChIP, and promoter-reporter assays, MEF2C was found to associate with the activator protein-1 (AP-1) site without directly binding to DNA and had its stimulatory effect through interaction with c-FOS. In conclusion, MEF2C is necessary for Mmp13 gene expression at the transcriptional level and participates in PTH-stimulated Mmp13 gene expression by increased binding to c-FOS at the AP-1 site in the Mmp13 promoter. The observation of MEF2C interacting with a member of the AP-1 transcription factor family provides knowledge of the functions of HDAC4, c-FOS, and MEF2C.

Funding information:
  • NEI NIH HHS - R01 EY026024(United States)

HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1.

  • Liu J
  • Dev. Cell
  • 2017 Aug 21

Literature context:


Abstract:

Cardiogenesis processes in human and animals have differential dynamics, suggesting the existence of species-specific regulators during heart development. However, it remains a challenge to discover the human-specific cardiac regulatory genes, given that most coding genes are conserved. Here, we report the identification of a human-specific long noncoding RNA, Heart Brake LncRNA 1 (HBL1), which regulates cardiomyocyte development from human induced pluripotent stem cells (hiPSCs). Overexpression of HBL1 repressed, whereas knockdown and knockout of HBL1 increased, cardiomyocyte differentiation from hiPSCs. HBL1 physically interacted with MIR1 in an AGO2 complex. Disruption of MIR1 binding sites in HBL1 showed an effect similar to that of HBL1 knockout. SOX2 bound to HBL1 promoter and activated its transcription. Knockdown of SOX2 in hiPSCs led to decreased HBL1 expression and increased cardiomyocyte differentiation efficiency. Thus, HBL1 plays a modulatory role in fine-tuning human-specific cardiomyocyte development by forming a regulatory network with SOX2 and MIR1.

Funding information:
  • NHLBI NIH HHS - DP2 HL127727()

Aging Triggers Cytoplasmic Depletion and Nuclear Translocation of the E3 Ligase Mahogunin: A Function for Ubiquitin in Neuronal Survival.

  • Benvegnù S
  • Mol. Cell
  • 2017 May 4

Literature context:


Abstract:

A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination.

Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6-adenosine Methylation.

  • Slobodin B
  • Cell
  • 2017 Apr 6

Literature context:


Abstract:

Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs.

Inverse Regulation of DHT Synthesis Enzymes 5α-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer.

  • Audet-Walsh É
  • Endocrinology
  • 2017 Apr 1

Literature context:


Abstract:

5α-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. 5α-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown. Interrogation of SRD5A messenger RNA expression in three publicly available data sets confirmed that SRD5A1 is increased in primary and metastatic PCa compared with nontumoral prostate tissues, whereas SRD5A2 is decreased. Activation of AR, a major oncogenic driver of PCa, induced the expression of SRD5A1 from twofold to fourfold in three androgen-responsive PCa cell lines. In contrast, AR repressed SRD5A2 expression in this context. Chromatin-immunoprecipitation studies established that AR is recruited to both SRD5A1 and SRD5A2 genes following androgen stimulation but initiates transcriptional activation only at SRD5A1 as monitored by recruitment of RNA polymerase II and the presence of the H3K27Ac histone mark. Furthermore, we showed that the antiandrogens bicalutamide and enzalutamide block the AR-mediated regulation of both SRD5A1 and SRD5A2, highlighting an additional mechanism explaining their beneficial effects in patients. In summary, we identified an AR-dependent transcriptional regulation that explains the differential expression of 5α-reductase types 1 and 2 during PCa progression. Our work thus defines a mechanism by which androgens control their own synthesis via differential regulatory control of the expression of SRD5A1 and SRD5A2.

Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling.

  • Wilde JJ
  • J. Neurosci.
  • 2017 Mar 8

Literature context:


Abstract:

Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARβ. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.

Epigenetic modifications during sex change repress gonadotropin stimulation of cyp19a1a in a teleost ricefield eel (Monopterus albus).

  • Zhang Y
  • Endocrinology
  • 2013 Aug 22

Literature context:


Abstract:

In vertebrates, cytochrome P450 aromatase, encoded by cyp19a1, converts androgens to estrogens and plays important roles in gonadal differentiation and development. The present study examines whether epigenetic mechanisms are involved in cyp19a1a expression and subsequent gonadal development in the hermaphroditic ricefield eel. The expression of the ricefield eel cyp19a1a was stimulated by gonadotropin via the cAMP pathway in the ovary but not the ovotestis or testis. The CpG within the cAMP response element (CRE) of the cyp19a1a promoter was hypermethylated in the ovotestis and testis compared with the ovary. The methylation levels of CpG sites around CRE in the distal region (region II) and around steroidogenic factor 1/adrenal 4 binding protein sites and TATA box in the proximal region (region I) were inversely correlated with cyp19a1a expression during the natural sex change from female to male. In vitro DNA methylation decreased the basal and forskolin-induced activities of cyp19a1a promoter. Chromatin immunoprecipitation assays indicated that histone 3 (Lys9) in both regions I and II of the cyp19a1a promoter were deacetylated and trimethylated in the testis, and in contrast to the ovary, phosphorylated CRE-binding protein failed to bind to these regions. Lastly, the DNA methylation inhibitor 5-aza-2'-deoxycytidine reversed the natural sex change of ricefield eels. These results suggested that epigenetic mechanisms involving DNA methylation and histone deacetylation and methylation may abrogate the stimulation of cyp19a1a by gonadotropins in a male-specific fashion. This may be a mechanism widely used to drive natural sex change in teleosts as well as gonadal differentiation in other vertebrates.

Funding information:
  • NIA NIH HHS - AG039669(United States)
  • NIEHS NIH HHS - U01 ES019480(United States)