X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

beta Galactosidase antibody

RRID:AB_307210

Antibody ID

AB_307210

Target Antigen

beta Galactosidase antibody drosophila/arthropod, mouse, bacteria/archaea, rat, mouse, rat, escherichia coli, fruit fly (drosophila melanogaster)

Proper Citation

(Abcam Cat# ab9361, RRID:AB_307210)

Clonality

polyclonal antibody

Comments

validation status unknown, seller recommendations provided in 2012: IgY; IgY Immunocytochemistry; Other; Flow Cytometry; Immunofluorescence; Immunohistochemistry; Western Blot; Functional Assay; ELISA; Immunohistochemistry - fixed; Immunohistochemistry - frozen; ELISA, Flow Cyt, ICC/IF, Ie, IHC-FoFr, IHC-Fr, IHC-FrFl, IHC-P

Host Organism

chicken, bird

Vendor

Abcam

Loss of Axon Bifurcation in Mesencephalic Trigeminal Neurons Impairs the Maximal Biting Force in Npr2-Deficient Mice.

  • Ter-Avetisyan G
  • Front Cell Neurosci
  • 2018 Jul 3

Literature context:


Abstract:

Bifurcation of axons from dorsal root ganglion (DRG) and cranial sensory ganglion (CSG) neurons is mediated by a cGMP-dependent signaling pathway composed of the ligand C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2 and the cGMP-dependent protein kinase I (cGKI). Here, we demonstrate that mesencephalic trigeminal neurons (MTN) which are the only somatosensory neurons whose cell bodies are located within the CNS co-express Npr2 and cGKI. Afferents of MTNs form Y-shaped branches in rhombomere 2 where the ligand CNP is expressed. Analyzing mouse mutants deficient for CNP or Npr2 we found that in the absence of CNP-induced cGMP signaling MTN afferents no longer bifurcate and instead extend either into the trigeminal root or caudally in the hindbrain. Since MTNs provide sensory information from jaw closing muscles and periodontal ligaments we measured the bite force of conditional mouse mutants of Npr2 (Npr2flox/flox;Engr1Cre ) that lack bifurcation of MTN whereas the bifurcation of trigeminal afferents is normal. Our study revealed that the maximal biting force of both sexes is reduced in Npr2flox/flox;Engr1Cre mice as compared to their Npr2flox/flox littermate controls. In conclusion sensory feedback mechanisms from jaw closing muscles or periodontal ligaments might be impaired in the absence of MTN axon bifurcation.

Funding information:
  • PHS HHS - RCA128770A(United States)

Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila.

  • Katsukawa M
  • Curr. Biol.
  • 2018 Jun 4

Literature context:


Abstract:

Normal epithelial tissue exerts an intrinsic tumor-suppressive effect against oncogenically transformed cells. In Drosophila imaginal epithelium, clones of oncogenic polarity-deficient cells mutant for scribble (scrib) or discs large (dlg) are eliminated by cell competition when surrounded by wild-type cells. Here, through a genetic screen in Drosophila, we identify Serpin5 (Spn5), a secreted negative regulator of Toll signaling, as a crucial factor for epithelial cells to eliminate scrib mutant clones from epithelium. Downregulation of Spn5 in wild-type cells leads to elevation of Toll signaling in neighboring scrib cells. Strikingly, forced activation of Toll signaling or Toll-related receptor (TRR) signaling in scrib clones transforms scrib cells from losers to supercompetitors, resulting in tumorous overgrowth of mutant clones. Mechanistically, Toll activation in scrib clones leads to c-Jun N-terminal kinase (JNK) activation and F-actin accumulation, which cause strong activation of the Hippo pathway effector Yorkie that blocks cell death and promotes cell proliferation. Our data suggest that Spn5 secreted from normal epithelial cells acts as a component of the extracellular surveillance system that facilitates elimination of pre-malignant cells from epithelium.

Funding information:
  • NCI NIH HHS - R01 CA097214(United States)

A Switch-like Activation Relay of EGFR-ERK Signaling Regulates a Wave of Cellular Contractility for Epithelial Invagination.

  • Ogura Y
  • Dev. Cell
  • 2018 Jun 27

Literature context:


Abstract:

The dynamics of extracellular signal-regulated kinase (ERK) signaling underlies its versatile functions in cell differentiation, cell proliferation, and cell motility. Classical studies in Drosophila established that a gradient of epidermal growth factor receptor (EGFR)-ERK signaling is essential for these cellular responses. However, we challenge this view by the real-time monitoring of ERK activation; we show that a switch-like ERK activation is essential for the invagination movement of the Drosophila tracheal placode. This switch-like ERK activation stems from the positive feedback regulation of the EGFR-ERK signaling and a resultant relay of EGFR-ERK signaling among tracheal cells. A key transcription factor Trachealess (Trh) permissively regulates the iteration of the relay, and the ERK activation becomes graded in trh mutant. A mathematical model based on these observations and a molecular link between ERK activation dynamics and myosin shows that the relay mechanism efficiently promotes epithelial invagination while the gradient mechanism does not.

Funding information:
  • Wellcome Trust - RG53217(United Kingdom)

The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog.

  • Winkler CC
  • J. Neurosci.
  • 2018 Jun 6

Literature context:


Abstract:

Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1+ dorsal forebrain progenitors. Deletion of the Shh signaling effector Smo specifically in Emx1+ progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist Sufu was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of Shh from Dlx5/6+ interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon Shh deletion from the entire CNS using Nestin-Cre, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of Shh from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources.SIGNIFICANCE STATEMENT Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.

Funding information:
  • Intramural NIH HHS - Z01 ES050165-11(United States)
  • NCI NIH HHS - K01 CA201068()
  • NIMH NIH HHS - R01 MH077694()

The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord.

  • Tröster P
  • Front Mol Neurosci
  • 2018 Feb 24

Literature context:


Abstract:

A cGMP signaling cascade composed of C-type natriuretic peptide, the guanylyl cyclase receptor Npr2 and cGMP-dependent protein kinase I (cGKI) controls the bifurcation of sensory axons upon entering the spinal cord during embryonic development. However, the impact of axon bifurcation on sensory processing in adulthood remains poorly understood. To investigate the functional consequences of impaired axon bifurcation during adult stages we generated conditional mouse mutants of Npr2 and cGKI (Npr2fl/fl;Wnt1Cre and cGKIKO/fl;Wnt1Cre ) that lack sensory axon bifurcation in the absence of additional phenotypes observed in the global knockout mice. Cholera toxin labeling in digits of the hind paw demonstrated an altered shape of sensory neuron termination fields in the spinal cord of conditional Npr2 mouse mutants. Behavioral testing of both sexes indicated that noxious heat sensation and nociception induced by chemical irritants are impaired in the mutants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are not affected. Recordings from C-fiber nociceptors in the hind limb skin showed that Npr2 function was not required to maintain normal heat sensitivity of peripheral nociceptors. Thus, the altered behavioral responses to noxious heat found in Npr2fl/fl;Wnt1Cre mice is not due to an impaired C-fiber function. Overall, these data point to a critical role of axonal bifurcation for the processing of pain induced by heat or chemical stimuli.

Funding information:
  • NICHD NIH HHS - HD037102-07(United States)

Origin and Segmental Diversity of Spinal Inhibitory Interneurons.

  • Sweeney LB
  • Neuron
  • 2018 Jan 17

Literature context:


Abstract:

Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.

Funding information:
  • Cancer Research UK - (United Kingdom)

Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development.

  • Moon KH
  • Dev. Cell
  • 2018 Jan 8

Literature context:


Abstract:

The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.

Funding information:
  • NEI NIH HHS - R01 EY013760()
  • NIAMS NIH HHS - R01 AR050772-09(United States)

Drosophila VAMP7 regulates Wingless intracellular trafficking.

  • Gao H
  • PLoS ONE
  • 2017 Nov 13

Literature context:


Abstract:

Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium.

  • Coleman JH
  • J. Comp. Neurol.
  • 2017 Nov 1

Literature context:


Abstract:

Neurons in the olfactory epithelium (OE) each express a single dominant olfactory receptor (OR) allele from among roughly 1,000 different OR genes. While monogenic and monoallelic OR expression has been appreciated for over two decades, regulators of this process are still being described; most recently, epigenetic modifiers have been of high interest as silent OR genes are decorated with transcriptionally repressive trimethylated histone 3 lysine 9 (H3K9me3) whereas active OR genes are decorated with transcriptionally activating trimethylated histone 3 lysine 4 (H3K4me3). The lysine specific demethylase 1 (LSD1) demethylates at both of these lysine residues and has been shown to disrupt neuronal maturation and OR expression in the developing embryonic OE. Despite the growing literature on LSD1 expression in the OE, a complete characterization of the timing of LSD1 expression relative to neuronal maturation and of the function of LSD1 in the adult OE have yet to be reported. To fill this gap, the present study determined that LSD1 (1) is expressed in early dividing cells before OR expression and neuronal maturation and decreases at the time of OR stabilization; (2) colocalizes with the repressor CoREST (also known as RCOR1) and histone deacetylase 2 in these early dividing cells; and (3) is required for neuronal maturation during a distinct time window between activating reserve stem cells (horizontal basal cells) and Neurogenin1 (+) immediate neuronal precursors. Thus, this study clarifies the role of LSD1 in olfactory neuronal maturation.

Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn.

  • Tran M
  • J. Comp. Neurol.
  • 2017 Nov 1

Literature context:


Abstract:

In both acute and chronic pain conditions, women tend to be more sensitive than men. This sex difference may be regulated by estrogens, such as estradiol, that are synthesized in the spinal cord and brainstem and act locally to influence pain processing. To identify a potential cellular source of local estrogen, here we examined the expression of aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol. Our studies focused on primary afferent neurons and on their central targets in the spinal cord and medulla as well as in the nucleus of the solitary tract, the target of nodose ganglion-derived visceral afferents. Immunohistochemical staining in an aromatase reporter mouse revealed that many neurons in laminae I and V of the spinal cord dorsal horn and caudal spinal trigeminal nucleus and in the nucleus of the solitary tract express aromatase. The great majority of these cells also express inhibitory interneuron markers. We did not find sex differences in aromatase expression and neither the pattern nor the number of neurons changed in a sciatic nerve transection model of neuropathic pain or in the Complete Freund's adjuvant model of inflammatory pain. A few aromatase neurons express Fos after cheek injection of capsaicin, formalin, or chloroquine. In total, given their location, these aromatase neurons are poised to engage nociceptive circuits, whether it is through local estrogen synthesis or inhibitory neurotransmitter release.

Funding information:
  • NINDS NIH HHS - R35 NS097306()
  • NINDS NIH HHS - R37 NS014627()

A Population Representation of Absolute Light Intensity in the Mammalian Retina.

  • Milner ES
  • Cell
  • 2017 Nov 2

Literature context:


Abstract:

Environmental illumination spans many log units of intensity and is tracked for essential functions that include regulation of the circadian clock, arousal state, and hormone levels. Little is known about the neural representation of light intensity and how it covers the necessary range. This question became accessible with the discovery of mammalian photoreceptors that are required for intensity-driven functions, the M1 ipRGCs. The spike outputs of M1s are thought to uniformly track intensity over a wide range. We provide a different understanding: individual cells operate over a narrow range, but the population covers irradiances from moonlight to full daylight. The range of most M1s is limited by depolarization block, which is generally considered pathological but is produced intrinsically by these cells. The dynamics of block allow the population to code stimulus intensity with flexibility and efficiency. Moreover, although spikes are distorted by block, they are regularized during axonal propagation.

Social Control of Hypothalamus-Mediated Male Aggression.

  • Yang T
  • Neuron
  • 2017 Aug 16

Literature context:


Abstract:

How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male's territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression.

Funding information:
  • NIDA NIH HHS - R01 NS049488()
  • NINDS NIH HHS - R01 NS083872()
  • Wellcome Trust - R01 DA035913()

Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

  • Semerci F
  • Elife
  • 2017 Jul 12

Literature context:


Abstract:

Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

Funding information:
  • NCI NIH HHS - P30 CA125123()
  • NCRR NIH HHS - S10 RR024574()
  • NIAID NIH HHS - P30 AI036211()
  • NICHD NIH HHS - U54 HD083092()
  • NIDCD NIH HHS - R01 DC006185()
  • NIDCD NIH HHS - R01 DC014832()
  • NIH HHS - S10 OD016167()

Repression of Interstitial Identity in Nephron Progenitor Cells by Pax2 Establishes the Nephron-Interstitium Boundary during Kidney Development.

  • Naiman N
  • Dev. Cell
  • 2017 May 22

Literature context:


Abstract:

The kidney contains the functional units, the nephrons, surrounded by the renal interstitium. Previously we discovered that, once Six2-expressing nephron progenitor cells and Foxd1-expressing renal interstitial progenitor cells form at the onset of kidney development, descendant cells from these populations contribute exclusively to the main body of nephrons and renal interstitial tissues, respectively, indicating a lineage boundary between the nephron and renal interstitial compartments. Currently it is unclear how lineages are regulated during kidney organogenesis. We demonstrate that nephron progenitor cells lacking Pax2 fail to differentiate into nephron cells but can switch fates into renal interstitium-like cell types. These data suggest that Pax2 function maintains nephron progenitor cells by repressing a renal interstitial cell program. Thus, the lineage boundary between the nephron and renal interstitial compartments is maintained by the Pax2 activity in nephron progenitor cells during kidney organogenesis.

Funding information:
  • NIDDK NIH HHS - R01 DK094933()
  • NIDDK NIH HHS - R37 DK054364()
  • NIH HHS - R21 OD021437()

Skilled Movements Require Non-apoptotic Bax/Bak Pathway-Mediated Corticospinal Circuit Reorganization.

  • Gu Z
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements.

Funding information:
  • NINDS NIH HHS - R01 NS079569()
  • NINDS NIH HHS - R01 NS093002()

Genetic Tracing of Cav3.2 T-Type Calcium Channel Expression in the Peripheral Nervous System.

  • Bernal Sierra YA
  • Front Mol Neurosci
  • 2017 Mar 31

Literature context:


Abstract:

Characterizing the distinct functions of the T-type ion channel subunits Cav3.1, 3.2 or 3.3 has proven difficult due to their highly conserved amino-acid sequences and the lack of pharmacological blockers specific for each subunit. To precisely determine the expression pattern of the Cav3.2 channel in the nervous system we generated two knock-in mouse strains that express EGFP or Cre recombinase under the control of the Cav3.2 gene promoter. We show that in the brains of these animals, the Cav3.2 channel is predominantly expressed in the dentate gyrus of the hippocampus. In the peripheral nervous system, the activation of the promoter starts at E9.5 in neural crest cells that will give rise to dorsal root ganglia (DRG) neurons, but not sympathetic neurons. As development progresses the number of DRG cells expressing the Cav3.2 channel reaches around 7% of the DRG at E16.5, and remains constant until E18.5. Characterization of sensory neuron subpopulations at E18.5 showed that EGFP+ cells are a heterogeneous population consisting mainly of TrkB+ and TrkC+ cells, while only a small percentage of DRG cells were TrkA+. Genetic tracing of the sensory nerve end-organ innervation of the skin showed that the activity of the Cav3.2 channel promoter in sensory progenitors marks many mechanoreceptor and nociceptor endings, but spares slowly adapting mechanoreceptors with endings associated with Merkel cells. Our genetic analysis reveals for the first time that progenitors that express the Cav3.2 T-type calcium channel, defines a sensory specific lineage that populates a large proportion of the DRG. Using our Cav3.2-Cre mice together with AAV viruses containing a conditional fluorescent reporter (tdTomato) we could also show that Cre expression is largely restricted to two functionally distinct sensory neuron types in the adult ganglia. Cav3.2 positive neurons innervating the skin were found to only form lanceolate endings on hair follicles and are probably identical to D-hair receptors. A second population of nociceptive sensory neurons expressing the Cav3.2 gene was found to be positive for the calcitonin-gene related peptide but these neurons are deep tissue nociceptors that do not innervate the skin.

Funding information:
  • European Research Council - 294678()

Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues.

  • Lischinsky JE
  • Elife
  • 2017 Mar 13

Literature context:


Abstract:

The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes.

Funding information:
  • NICHD NIH HHS - P30 HD040677()
  • NIDA NIH HHS - R01 DA020140()
  • NIDCD NIH HHS - R01 DC012050()

Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles.

  • Mendelsohn AI
  • Neuron
  • 2017 Feb 22

Literature context:


Abstract:

The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles.

Funding information:
  • NINDS NIH HHS - R01 NS033245()
  • NINDS NIH HHS - R01 NS062822()
  • NINDS NIH HHS - R01 NS080932()

Gsg1, Trnp1, and Tmem215 Mark Subpopulations of Bipolar Interneurons in the Mouse Retina.

  • Park KU
  • Invest. Ophthalmol. Vis. Sci.
  • 2017 Feb 1

Literature context:


Abstract:

Purpose: How retinal bipolar cell interneurons are specified and assigned to specialized subtypes is only partially understood. In part, this is due to a lack of early pan- and subtype-specific bipolar cell markers. To discover these factors, we identified genes that were upregulated in Blimp1 (Prdm1) mutant retinas, which exhibit precocious bipolar cell development. Methods: Postnatal day (P)2 retinas from Blimp1 conditional knock-out (CKO) mice and controls were processed for RNA sequencing. Genes that increased at least 45% and were statistically different between conditions were considered candidate bipolar-specific factors. Candidates were further evaluated by RT-PCR, in situ hybridization, and immunohistochemistry. Knock-in Tmem215-LacZ mice were used to better trace retinal expression. Results: A comparison between Blimp1 CKO and control RNA-seq datasets revealed approximately 40 significantly upregulated genes. We characterized the expression of three genes that have no known function in the retina, Gsg1 (germ cell associated gene), Trnp1 (TMF-regulated nuclear protein), and Tmem215 (a predicted transmembrane protein). Germ cell associated gene appeared restricted to a small subset of cone bipolars while Trnp1 was seen in all ON type bipolar cells. Using Tmem215-LacZ heterozygous knock-in mice, we observed that β-galactosidase expression started early in bipolar cell development. In adults, Tmem215 was expressed by a subset of ON and OFF cone bipolar cells. Conclusions: We have identified Gsg1, Tmem215, and Trnp1 as novel bipolar subtype-specific genes. The spatial and temporal pattern of their expression is consistent with a role in controlling bipolar subtype fate choice, differentiation, or physiology.

Funding information:
  • NEI NIH HHS - R01 EY024272()

BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription.

  • Dias C
  • Am. J. Hum. Genet.
  • 2016 Aug 4

Literature context:


Abstract:

Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.

Funding information:
  • European Research Council - (International)

A Novel and Multivalent Role of Pax6 in Cerebellar Development.

  • Yeung J
  • J. Neurosci.
  • 2016 Aug 31

Literature context:


Abstract:

Pax6 is a prominent gene in brain development. The deletion of Pax6 results in devastated development of eye, olfactory bulb, and cortex. However, it has been reported that the Pax6-null Sey cerebellum only has minor defects involving granule cells despite Pax6 being expressed throughout cerebellar development. The present work has uncovered a requirement of Pax6 in the development of all rhombic lip (RL) lineages. A significant downregulation of Tbr1 and Tbr2 expression is found in the Sey cerebellum, these are cell-specific markers of cerebellar nuclear (CN) neurons and unipolar brush cells (UBCs), respectively. The examination of Tbr1 and Lmx1a immunolabeling and Nissl staining confirmed the loss of CN neurons from the Sey cerebellum. CN neuron progenitors are produced in the mutant but there is an enhanced death of these neurons as shown by increased presence of caspase-3-positive cells. These data indicate that Pax6 regulates the survival of CN neuron progenitors. Furthermore, the analysis of experimental mouse chimeras suggests a cell-extrinsic role of Pax6 in CN neuron survival. For UBCs, using Tbr2 immunolabeling, these cells are significantly reduced in the Sey cerebellum. The loss of UBCs in the mutant is due partly to cell death in the RL and also to the reduced production of progenitors from the RL. These results demonstrate a critical role for Pax6 in regulating the generation and survival of UBCs. This and previous work from our laboratory demonstrate a seminal role of Pax6 in the development of all cerebellar glutamatergic neurons. SIGNIFICANCE STATEMENT: Pax6 is a key molecule in development. Pax6 is best known as the master control gene in eye development with mutations causing aniridia in humans. Pax6 also plays important developmental roles in the cortex and olfactory bulb. During cerebellar development, Pax6 is robustly expressed in the germinal zone of all glutamatergic neurons [cerebellar nuclear (CN) neurons, granule cells, and unipolar brush cells (UBCs)]. Past work has not found abnormalities in the CN and UBC populations. Our study reveals that the Pax6-null mutation dramatically affects these cells and identifies Pax6 as a key regulator of cell survival in CN neurons and of cell production in UBCs. The present study shows how Pax6 is key to the development of glutamatergic cells in the cerebellum.

Funding information:
  • Wellcome Trust - 101253/Z/13/Z(United Kingdom)

A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.

  • Takahashi H
  • J. Neurosci.
  • 2016 Aug 3

Literature context:


Abstract:

Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. SIGNIFICANCE STATEMENT: Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors.

Funding information:
  • NEI NIH HHS - R01 EY025555(United States)

Context-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons.

  • Satoh D
  • Neuron
  • 2016 Mar 2

Literature context:


Abstract:

The most commonly used locomotor strategy in rodents is left-right limb alternation. Mutation of the axon guidance molecule EphA4 profoundly alters this basic locomotor pattern to synchrony. Here we report that conditional mutation of EphA4 in spinal interneurons expressing the transcription factor Lbx1 degrades the robustness in the expression of left-right alternating gait during development. Lbx1 EphA4 conditional mice exhibit alternating gait when walking on ground, but synchronous gait in environments with decreased weight-load, like swimming and airstepping. Using cell-type-specific, transient pharmacogenetic silencing approaches, we attribute this behavioral gait switch to neuronal activity of dorsal Lbx1 spinal interneurons. We also found that in Lbx1 EphA4 conditional mice these dorsal interneurons form aberrant bilateral connections to motor neurons, thereby indirectly transmitting received unilateral proprioceptive sensory information to both spinal sides. Together, our findings reveal the behavioral and circuit-level impact of conditional EphA4 mutation in a transcriptionally defined spinal interneuron subpopulation.

Funding information:
  • NCI NIH HHS - R01 CA154130(United States)

Age-Related Hearing Loss and Degeneration of Cochlear Hair Cells in Mice Lacking Thyroid Hormone Receptor β1.

  • Ng L
  • Endocrinology
  • 2015 Oct 19

Literature context:


Abstract:

A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrb(b1) reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood.

Funding information:
  • NIMH NIH HHS - R01 MH100217(United States)

A Novel Population of Inner Cortical Cells in the Adrenal Gland That Displays Sexually Dimorphic Expression of Thyroid Hormone Receptor-β1.

  • Huang CC
  • Endocrinology
  • 2015 Jun 18

Literature context:


Abstract:

The development of the adrenal cortex involves the formation and then subsequent regression of immature or fetal inner cell layers as the mature steroidogenic outer layers expand. However, controls over this remodeling, especially in the immature inner layer, are incompletely understood. Here we identify an inner cortical cell population that expresses thyroid hormone receptor-β1 (TRβ1), one of two receptor isoforms encoded by the Thrb gene. Using mice with a Thrb(b1) reporter allele that expresses lacZ instead of TRβ1, β-galactosidase was detected in the inner cortex from early stages. Expression peaked at juvenile ages in an inner zone that included cells expressing 20-α-hydroxysteroid dehydrogenase, a marker of the transient, so-called X-zone in mice. The β-galactosidase-positive zone displayed sexually dimorphic regression in males after approximately 4 weeks of age but persisted in females into adulthood in either nulliparous or parous states. T3 treatment promoted hypertrophy of inner cortical cells, induced some markers of mature cortical cells, and, in males, delayed the regression of the TRβ1-positive zone, suggesting that TRβ1 could partly divert the differentiation fate and counteract male-specific regression of inner zone cells. TRβ1-deficient mice were resistant to these actions of T3, supporting a functional role for TRβ1 in the inner cortex.

Funding information:
  • NIGMS NIH HHS - R01 GM102253(United States)

Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates.

  • Broms J
  • J. Comp. Neurol.
  • 2015 Feb 15

Literature context:


Abstract:

The habenula is a phylogenetically conserved brain structure in the epithalamus. It is a major node in the information flow between fronto-limbic brain regions and monoaminergic brainstem nuclei, and is thus anatomically and functionally ideally positioned to regulate emotional, motivational, and cognitive behaviors. Consequently, the habenula may be critically important in the pathophysiology of psychiatric disorders such as addiction and depression. Here we investigated the expression pattern of GPR151, a G protein-coupled receptor (GPCR), whose mRNA has been identified as highly and specifically enriched in habenular neurons by in situ hybridization and translating ribosome affinity purification (TRAP). In the present immunohistochemical study we demonstrate a pronounced and highly specific expression of the GPR151 protein in the medial and lateral habenula of rodent brain. Specific expression was also seen in efferent habenular fibers projecting to the interpeduncular nucleus, the rostromedial tegmental area, the rhabdoid nucleus, the mesencephalic raphe nuclei, and the dorsal tegmental nucleus. Using confocal microscopy and quantitative colocalization analysis, we found that GPR151-expressing axons and terminals overlap with cholinergic, substance P-ergic, and glutamatergic markers. Virtually identical expression patterns were observed in rat, mouse, and zebrafish brains. Our data demonstrate that GPR151 is highly conserved, specific for a subdivision of the habenular neurocircuitry, and constitutes a promising novel target for psychiatric drug development.

Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons.

  • Goldstein BJ
  • J. Comp. Neurol.
  • 2015 Jan 1

Literature context:


Abstract:

The olfactory epithelium houses chemosensory neurons, which transmit odor information from the nose to the brain. In adult mammals, the olfactory epithelium is a uniquely robust neuroproliferative zone, with the ability to replenish its neuronal and non-neuronal populations due to the presence of germinal basal cells. The stem and progenitor cells of these germinal layers, and their regulatory mechanisms, remain incompletely defined. Here we show that progenitor cells expressing c-Kit, a receptor tyrosine kinase marking stem cells in a variety of embryonic tissues, are required for maintenance of the adult neuroepithelium. Mouse genetic fate-mapping analyses show that embryonically, a c-Kit(+) population contributes to olfactory neurogenesis. In adults under conditions of normal turnover, there is relatively sparse c-Kit(+) progenitor cell (ckPC) activity. However, after experimentally induced neuroepithelial injury, ckPCs are activated such that they reconstitute the neuronal population. There are also occasional non-neuronal cells found to arise from ckPCs. Moreover, the selective depletion of the ckPC population, utilizing temporally controlled targeted diphtheria toxin A expression, results in failure of neurogenesis after experimental injury. Analysis of this model indicates that most ckPCs reside among the globose basal cell populations and act downstream of horizontal basal cells, which can serve as stem cells. Identification of the requirement for olfactory c-Kit-expressing progenitors in olfactory maintenance provides new insight into the mechanisms involved in adult olfactory neurogenesis. Additionally, we define an important and previously unrecognized site of adult c-Kit activity.

Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development.

  • Yeung J
  • J. Neurosci.
  • 2014 Sep 10

Literature context:


Abstract:

Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.

Visualizing corticotropin-releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele.

  • Kühne C
  • J. Comp. Neurol.
  • 2012 Oct 1

Literature context:


Abstract:

The corticotropin-releasing hormone (CRH) and its type 1 receptor (CRHR1) play a central role in coordinating the endocrine, autonomic, and behavioral responses to stress. A prerequisite to functionally dissect the complexity of the CRH/CRHR1 system is to unravel the identity of CRHR1-expressing neurons and their connectivities. Therefore, we used a knockin approach to genetically label CRHR1-expressing cells with a tau-lacZ (tZ) reporter gene. The distribution of neurons expressing β-galactosidase in the brain and the relative intensity of labeling is in full accordance with previously described Crhr1 mRNA expression. Combining the microtubule-binding properties of TAU with the Cre-loxP system allowed to direct the β-galactosidase to proximal dendrites, and in particular to axons. Thereby, we were able to visualize projections of CRHR1 neurons such as glutamatergic and dopaminergic afferent connections of the striatum and GABAergic CRHR1-expressing neurons located within its patch compartment. In addition, the tZ reporter gene revealed novel details of CRHR1 expression in the spinal cord, skin, and eye. CRHR1 expression in the retina prompted the identification of a new physiological role of CRHR1 related to the visual system. Besides its reporter properties, this novel CRHR1 allele comprises the possibility to conditionally restore or delete CRHR1 via Flp and Cre recombinase, respectively. Finally, the allele is suitable for further manipulations of the CRHR1 locus by recombinase-mediated cassette exchange. Taken together, this novel mouse allele will significantly facilitate the neuroanatomical analysis of CRHR1 circuits and opens up new avenues to address CRHR1 function in more detail.

Funding information:
  • Wellcome Trust - WT085949MA(United Kingdom)

Molecular organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo.

  • Brown A
  • J. Comp. Neurol.
  • 2011 Oct 15

Literature context:


Abstract:

Midbrain dopamine (MbDA) neurons are functionally heterogeneous and modulate complex functions through precisely organized anatomical groups. MbDA neurons are generated from Wnt1-expressing progenitors located in the ventral mesencephalon (vMes) during embryogenesis. However, it is unclear whether the progenitor pool is partitioned into distinct cohorts based on molecular identity and whether the timing of gene expression uniquely identifies subtypes of MbDA neurons. In this study we show that Wnt1-expressing MbDA progenitors from embryonic day (E)8.5-12.5 have dynamic molecular identities that correlate with specific spatial locations in the vMes. We also tested the hypothesis that the timing of Wnt1 expression in progenitors is related to the distribution of anatomically distinct cohorts of adult MbDA neurons using genetic inducible fate mapping (GIFM). We demonstrate that the Wnt1 lineage contributes to specific cohorts of MbDA neurons during a 7-day epoch and that the contribution to MbDA neurons predominates over other ventral Mb domains. In addition, we show that calbindin-, GIRK2-, and calretinin-expressing MbDA neuron subtypes are derived from Wnt1-expressing progenitors marked over a broad temporal window. Through GIFM and quantitative analysis we demonstrate that the Wnt1 lineage does not undergo progressive lineage restriction, which eliminates a restricted competence model of generating MbDA diversity. Interestingly, we uncover that two significant peaks of Wnt1 lineage contribution to MbDA neurons occur at E9.5 and E11.5. Collectively, our findings delineate the temporal window of MbDA neuron generation and show that lineage and timing predicts the terminal distribution pattern of MbDA neurons.

Funding information:
  • NIGMS NIH HHS - R01 GM068851(United States)

Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons.

  • Hayes L
  • J. Comp. Neurol.
  • 2011 Oct 15

Literature context:


Abstract:

The ventral midbrain (vMb) is organized into distinct anatomical domains and contains cohorts of functionally distinct subtypes of midbrain dopamine (mDA) neurons. We tested the hypothesis that genetic history and timing of gene expression within mDA neuron progenitors impart spatial diversity. Using genetic inducible fate mapping to mark the Sonic hedgehog (Shh) and Gli1 lineages at varying embryonic stages, we performed a quantitative and qualitative comparison of the two lineages' contribution to the mDA neuron domains. Dynamic changes in Shh and Gli1 expression in the vMb primordia delineated their spatial contribution to the embryonic day 12.5 vMb: Both lineages first contributed to the medial domain, but subsequently the Gli1 lineage exclusively contributed to the lateral vMb while the Shh lineage expanded more broadly across the vMb. The contribution of both lineages to the differentiated mDA neuron domain was initially biased anteriorly and became more uniform across the anterior/posterior vMb throughout development. Our findings demonstrate that the early Shh and Gli1 lineages specify mDA neurons of the substantia nigra pars compacta while the late Shh and Gli1 lineages maintain their progenitor state longer in the posterior vMb to extend the production of mDA neurons in the ventral tegmental area. Together, our study demonstrates that the timing of gene expression along with the genetic lineage (Shh or Gli1) within the neural progenitors segregate mDA neurons into distinct spatial domains.

Funding information:
  • NCRR NIH HHS - 1S10RR026605-01(United States)

Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system.

  • Kim EJ
  • J. Comp. Neurol.
  • 2011 May 1

Literature context:


Abstract:

Neurog1 (Ngn1, Neurod3, neurogenin1) is a basic helix-loop-helix (bHLH) transcription factor essential for neuronal differentiation and subtype specification during embryogenesis. Due to the transient expression of Neurog1 and extensive migration of neuronal precursors, it has been challenging to understand the full complement of Neurog1 lineage cells throughout the central nervous system (CNS). Here we labeled and followed Neurog1 lineages using inducible Cre-flox recombination systems with Neurog1-Cre and Neurog1-CreER(T2) BAC (bacterial artificial chromosome) transgenic mice. Neurog1 lineage cells are restricted to neuronal fates and contribute to diverse but discrete populations in each brain region. In the forebrain, Neurog1 lineages include mitral cells and glutamatergic interneurons in the olfactory bulb, pyramidal and granule neurons in the hippocampus, and pyramidal cells in the cortex. In addition, most of the thalamus, but not the hypothalamus, arises from Neurog1 progenitors. Although Neurog1 lineages are largely restricted to glutamatergic neurons, there are multiple exceptions including Purkinje cells and other GABAergic neurons in the cerebellum. This study provides the first overview of the spatiotemporal fate map of Neurog1 lineages in the CNS.

Funding information:
  • Canadian Institutes of Health Research - 202452(Canada)

Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells.

  • Siembab VC
  • J. Comp. Neurol.
  • 2010 Dec 1

Literature context:


Abstract:

The diversity of premotor interneurons in the mammalian spinal cord is generated from a few phylogenetically conserved embryonic classes of interneurons (V0, V1, V2, V3). Their mechanisms of diversification remain unresolved, although these are clearly important to understand motor circuit assembly in the spinal cord. Some Ia inhibitory interneurons (IaINs) and all Renshaw cells (RCs) derive from embryonic V1 interneurons; however, in adult they display distinct functional properties and synaptic inputs, for example proprioceptive inputs preferentially target IaINs, while motor axons target RCs. Previously, we found that both inputs converge on RCs in neonates, raising the possibility that proprioceptive (VGLUT1-positive) and motor axon synapses (VAChT-positive) initially target several different V1 interneurons populations and then become selected or deselected postnatally. Alternatively, specific inputs might precisely connect only with predefined groups of V1 interneurons. To test these hypotheses we analyzed synaptic development on V1-derived IaINs and compared them to RCs of the same age and spinal cord levels. V1-interneurons were labeled using genetically encoded lineage markers in mice. The results show that although neonatal V1-derived IaINs and RCs are competent to receive proprioceptive synapses, these synapses preferentially target the proximal somato-dendritic regions of IaINs and postnatally proliferate on IaINs, but not on RCs. In contrast, cholinergic synapses on RCs are specifically derived from motor axons, while on IaINs they originate from Pitx2 V0c interneurons. Thus, motor, proprioceptive, and even some interneuron inputs are biased toward specific subtypes of V1-interneurons. Postnatal strengthening of these inputs is later superimposed on this initial preferential targeting.

Funding information:
  • NIGMS NIH HHS - R01 GM071966(United States)

Tuberoinfundibular peptide of 39 residues modulates the mouse hypothalamic-pituitary-adrenal axis via paraventricular glutamatergic neurons.

  • Dimitrov E
  • J. Comp. Neurol.
  • 2010 Nov 1

Literature context:


Abstract:

Neurons in the subparafascicular area at the caudal border of the thalamus that contain the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39) densely innervate several hypothalamic areas, including the paraventricular nucleus (PVN). These areas contain a matching distribution of TIP39's receptor, the parathyroid hormone receptor 2 (PTH2R). Frequent PTH2R coexpression with a vesicular glutamate transporter (VGlut2) suggests that TIP39 could presynaptically regulate glutamate release. By using immunohistochemistry we found CRH-ir neurons surrounded by PTH2R-ir fibers and TIP39-ir axonal projections in the PVN area of the mouse brain. Labeling hypothalamic neuroendocrine neurons by peripheral injection of fluorogold in PTH2R-lacZ knock-in mice showed that most PTH2Rs are on PVN and peri-PVN interneurons and not on neuroendocrine cells. Double fluorescent in situ hybridization revealed a high level of coexpression between PTH2R and VGlut2 mRNA by cells located in the PVN and nearby brain areas. Local TIP39 infusion (100 pmol) robustly increased pCREB-ir in the PVN and adjacent perinuclear zone. It also increased plasma corticosterone and decreased plasma prolactin. These effects of TIP39 on pCREB-ir, corticosterone, and prolactin were abolished by coinfusion of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonopentanoic acid (AP-5; 30 pmol each) and were absent in PTH2R knockout mice. Basal plasma corticosterone was slightly decreased in TIP39 knockout mice just before onset of their active phase. The present data indicate that the TIP39 ligand/PTH2 receptor system provides facilitatory regulation of the hypothalamic-pituitary-adrenal axis via hypothalamic glutamatergic neurons and that it may regulate other neuroendocrine systems by a similar mechanism.

Funding information:
  • Cancer Research UK - (United Kingdom)

Identifying the efferent projections of leptin-responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach.

  • Gautron L
  • J. Comp. Neurol.
  • 2010 Jun 1

Literature context:


Abstract:

Tracing the axonal projections of selected neurons is labor intensive and inherently limited by currently available neuroanatomical methods. We developed an adeno-associated virus (AAV) that can be used for efficiently tracing identified neuronal populations. The virus encodes a humanized Renilla green fluorescent protein (hrGFP) that is transcriptionally silenced by a neo cassette flanked by LoxH/LoxP sites (AAV-lox-Stop-hrGFP). Thus, hrGFP is expressed only in neurons with Cre recombinase activity. To demonstrate the utility of this approach, the virus was injected unilaterally into the dorsomedial hypothalamus (DMH) of mice that express Cre in neurons expressing the leptin receptor. Animals with DMH injections showed robust hrGFP expression in DMH neurons, as visualized by its endogenous fluorescence or following immunolabeling. We found that hrGFP was expressed in approximately one-third to one-half of Cre-expressing neurons at the site of injection, but not in non-Cre-expressing neurons. The expression of GFP allowed us to identify the projection fields of DMH leptin-responsive neurons. Our results show hrGFP-positive axonal projections and terminals in the paraventricular nucleus of the hypothalamus, arcuate nucleus, preoptic area, bed nucleus of the stria terminalis, paraventricular thalamus, periaqueductal gray, and precoeruleus. The aforementioned pattern of projections was similar to DMH projections determined by injections of biotinylated dextran amine in the mouse DMH. Interestingly, some hrGFP-positive terminals were seen contacting the ependymal layer of the third and fourth ventricles. In summary, this approach is an effective tool for tracing axonal projections of chemically identified neurons, including leptin-responsive neurons.

Funding information:
  • NHGRI NIH HHS - HG005232(United States)

Leptin targets in the mouse brain.

  • Scott MM
  • J. Comp. Neurol.
  • 2009 Jun 10

Literature context:


Abstract:

The central actions of leptin are essential for homeostatic control of adipose tissue mass, glucose metabolism, and many autonomic and neuroendocrine systems. In the brain, leptin acts on numerous different cell types via the long-form leptin receptor (LepRb) to elicit its effects. The precise identification of leptin's cellular targets is fundamental to understanding the mechanism of its pleiotropic central actions. We have systematically characterized LepRb distribution in the mouse brain using in situ hybridization in wildtype mice as well as by EYFP immunoreactivity in a novel LepRb-IRES-Cre EYFP reporter mouse line showing high levels of LepRb mRNA/EYFP coexpression. We found substantial LepRb mRNA and EYFP expression in hypothalamic and extrahypothalamic sites described before, including the dorsomedial nucleus of the hypothalamus, ventral premammillary nucleus, ventral tegmental area, parabrachial nucleus, and the dorsal vagal complex. Expression in insular cortex, lateral septal nucleus, medial preoptic area, rostral linear nucleus, and in the Edinger-Westphal nucleus was also observed and had been previously unreported. The LepRb-IRES-Cre reporter line was used to chemically characterize a population of leptin receptor-expressing neurons in the midbrain. Tyrosine hydroxylase and Cre reporter were found to be coexpressed in the ventral tegmental area and in other midbrain dopaminergic neurons. Lastly, the LepRb-IRES-Cre reporter line was used to map the extent of peripheral leptin sensing by central nervous system (CNS) LepRb neurons. Thus, we provide data supporting the use of the LepRb-IRES-Cre line for the assessment of the anatomic and functional characteristics of neurons expressing leptin receptor.

Sall3 is required for the terminal maturation of olfactory glomerular interneurons.

  • Harrison SJ
  • J. Comp. Neurol.
  • 2008 Apr 10

Literature context:


Abstract:

Sall3 is a zinc finger containing putative transcription factor and a member of the Sall gene family. Members of the Sall gene family are highly expressed during development. Sall3-deficient mice die in the perinatal period because of dehydration and display alterations in palate formation and cranial nerve formation (Parrish et al. [2004] Mol Cell Biol 24:7102-7112). We examined the role of Sall3 in the development of the olfactory system. We determined that Sall3 is expressed by cells in the olfactory epithelium and olfactory bulb. Sall3 deficiency specifically alters formation of the glomerular layer. The glomerular layer was hypocellular, because of a decrease in the number of interneurons. The lateral ganglionic eminence and rostral migratory stream developed normally in Sall3-deficient animals, which suggests that Sall3 is not required for the initial specification of olfactory bulb interneurons. Fewer GAD65/67-, Pax6-, calretinin-, and calbindin-positive cells were detected in the glomerular layer, accompanied by an increase in cells positive for these markers in the granule cell layer. In addition, a complete absence of tyrosine hydroxylase expression was observed in the olfactory bulb in the absence of Sall3. However, expression of Nurr1, a marker of dopaminergic precursors, was maintained, indicating that dopaminergic precursors were present. Our data suggest that Sall3 is required for the terminal maturation of neurons destined for the glomerular layer.

Funding information:
  • Intramural NIH HHS - Z01 NS002787-19(United States)