X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-GFP antibody

RRID:AB_300798

Antibody ID

AB_300798

Target Antigen

GFP

Proper Citation

(Abcam Cat# ab13970, RRID:AB_300798)

Clonality

polyclonal antibody

Comments

Suitable for: IHC-P, WB, IHC - Wholemount, IHC-FrFl, ICC/IF, IHC-Fr, IHC-FoFr

Host Organism

chicken

Vendor

Abcam

Cat Num

ab13970

Publications that use this research resource

Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice.

  • Alcalde I
  • J. Comp. Neurol.
  • 2018 Aug 1

Literature context:


Abstract:

Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8+ corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8+ corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people.

Funding information:
  • NIH HHS - DP1 OD003958(United States)

Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity.

  • Chan SS
  • Cell Stem Cell
  • 2018 Jul 5

Literature context:


Abstract:

Derivation of functional skeletal muscle stem cells from pluripotent cells without genetic modification has proven elusive. Here we show that teratomas formed in adult skeletal muscle differentiate in vivo to produce large numbers of α7-Integrin+ VCAM-1+ myogenic progenitors. When FACS-purified and transplanted into diseased muscles, mouse teratoma-derived myogenic progenitors demonstrate very high engraftment potential. As few as 40,000 cells can reconstitute ∼80% of the tibialis anterior muscle volume. Newly generated fibers are innervated, express adult myosins, and ameliorate dystrophy-related force deficit and fatigability. Teratoma-derived myogenic progenitors also contribute quiescent PAX7+ muscle stem cells, enabling long-term maintenance of regenerated muscle and allowing muscle regeneration in response to subsequent injuries. Transcriptional profiling reveals that teratoma-derived myogenic progenitors undergo embryonic-to-adult maturation when they contribute to the stem cell compartment of regenerated muscle. Thus, teratomas are a rich and accessible source of potent transplantable skeletal muscle stem cells. VIDEO ABSTRACT.

Funding information:
  • Wellcome Trust - 098330(United Kingdom)

Spatial Fold Change of FGF Signaling Encodes Positional Information for Segmental Determination in Zebrafish.

  • Simsek MF
  • Cell Rep
  • 2018 Jul 3

Literature context:


Abstract:

Signal gradients encode instructive information for numerous decision-making processes during embryonic development. A striking example of precise, scalable tissue-level patterning is the segmentation of somites-the precursors of the vertebral column-during which the fibroblast growth factor (FGF), Wnt, and retinoic acid (RA) pathways establish spatial gradients. Despite decades of studies proposing roles for all three pathways, the dynamic feature of these gradients that encodes instructive information determining segment sizes remained elusive. We developed a non-elongating tail explant system, integrated quantitative measurements with computational modeling, and tested alternative models to show that positional information is encoded solely by spatial fold change (SFC) in FGF signal output. Neighboring cells measure SFC to accurately position the determination front and thus determine segment size. The SFC model successfully recapitulates results of spatiotemporal perturbation experiments on both explants and intact embryos, and it shows that Wnt signaling acts permissively upstream of FGF signaling and that RA gradient is dispensable.

Funding information:
  • NIGMS NIH HHS - 1R15GM94732-1 A1(United States)

Ubiquitination of ABCE1 by NOT4 in Response to Mitochondrial Damage Links Co-translational Quality Control to PINK1-Directed Mitophagy.

  • Wu Z
  • Cell Metab.
  • 2018 Jul 3

Literature context:


Abstract:

Translation of mRNAs is tightly regulated and constantly surveyed for errors. Aberrant translation can trigger co-translational protein and RNA quality control processes, impairments of which cause neurodegeneration by still poorly understood mechanism(s). Here we show that quality control of translation of mitochondrial outer membrane (MOM)-localized mRNA intersects with the turnover of damaged mitochondria, both orchestrated by the mitochondrial kinase PINK1. Mitochondrial damage causes stalled translation of complex-I 30 kDa subunit (C-I30) mRNA on MOM, triggering the recruitment of co-translational quality control factors Pelo, ABCE1, and NOT4 to the ribosome/mRNA-ribonucleoprotein complex. Damage-induced ubiquitination of ABCE1 by NOT4 generates poly-ubiquitin signals that attract autophagy receptors to MOM to initiate mitophagy. In the Drosophila PINK1 model, these factors act synergistically to restore mitophagy and neuromuscular tissue integrity. Thus ribosome-associated co-translational quality control generates an early signal to trigger mitophagy. Our results have broad therapeutic implications for the understanding and treatment of neurodegenerative diseases.

Funding information:
  • NCI NIH HHS - CA 19014(United States)
  • NIMH NIH HHS - R01 MH080378()
  • NINDS NIH HHS - R01 NS083417()
  • NINDS NIH HHS - R01 NS084412()

Chronic Liver Injury Induces Conversion of Biliary Epithelial Cells into Hepatocytes.

  • Deng X
  • Cell Stem Cell
  • 2018 Jul 5

Literature context:


Abstract:

Chronic liver injury can cause cirrhosis and impaired liver regeneration, impairing organ function. Adult livers can regenerate in response to parenchymal insults, and multiple cellular sources have been reported to contribute to this response. In this study, we modeled human chronic liver injuries, in which such responses are blunted, without genetic manipulations, and assessed potential contributions of non-parenchymal cells (NPCs) to hepatocyte regeneration. We show that NPC-derived hepatocytes replenish a large fraction of the liver parenchyma following severe injuries induced by long-term thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) treatment. Through lineage tracing of biliary epithelial cells (BECs), we show that BECs are a source of new hepatocytes and gain an Hnf4α+CK19+ bi-phenotypic state in periportal regions and fibrotic septa. Bi-phenotypic cells were also detected in cirrhotic human livers. Together, these data provide further support for hepatocyte regeneration from BECs without genetic interventions and show their cellular plasticity during severe liver injury.

Funding information:
  • NCI NIH HHS - U01 CA172027(United States)

MicroRNAs Overcome Cell Fate Barrier by Reducing EZH2-Controlled REST Stability during Neuronal Conversion of Human Adult Fibroblasts.

  • Lee SW
  • Dev. Cell
  • 2018 Jul 2

Literature context:


Abstract:

The ability to convert human somatic cells efficiently to neurons facilitates the utility of patient-derived neurons for studying neurological disorders. As such, ectopic expression of neuronal microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124) in adult human fibroblasts has been found to evoke extensive reconfigurations of the chromatin and direct the fate conversion to neurons. However, how miR-9/9∗-124 break the cell fate barrier to activate the neuronal program remains to be defined. Here, we identified an anti-neurogenic function of EZH2 in fibroblasts that acts outside its role as a subunit of Polycomb Repressive Complex 2 to directly methylate and stabilize REST, a transcriptional repressor of neuronal genes. During neuronal conversion, miR-9/9∗-124 induced the repression of the EZH2-REST axis by downregulating USP14, accounting for the opening of chromatin regions harboring REST binding sites. Our findings underscore the interplay between miRNAs and protein stability cascade underlying the activation of neuronal program.

Funding information:
  • NHLBI NIH HHS - P50 HL077107(United States)

A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury.

  • Curtis E
  • Cell Stem Cell
  • 2018 Jun 1

Literature context:


Abstract:

We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting.

Funding information:
  • NIGMS NIH HHS - R01 GM66516(United States)

Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization.

  • Clark AM
  • eNeuro
  • 2018 Jun 11

Literature context:


Abstract:

Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.

Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination.

  • Woglar A
  • Cell
  • 2018 Jun 14

Literature context:


Abstract:

Meiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. We use structured-illumination microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutSγ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutSγ population, and lose RPA. These and other data suggest that the SC may protect CO intermediates from being dismantled inappropriately and promote CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites.

Funding information:
  • NCI NIH HHS - P30 CA016672(United States)
  • NIGMS NIH HHS - R01 GM053804()
  • NIGMS NIH HHS - R01 GM067268()

LSD1 Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade.

  • Sheng W
  • Cell
  • 2018 Jun 18

Literature context:


Abstract:

Chromatin regulators play a broad role in regulating gene expression and, when gone awry, can lead to cancer. Here, we demonstrate that ablation of the histone demethylase LSD1 in cancer cells increases repetitive element expression, including endogenous retroviral elements (ERVs), and decreases expression of RNA-induced silencing complex (RISC) components. Significantly, this leads to double-stranded RNA (dsRNA) stress and activation of type 1 interferon, which stimulates anti-tumor T cell immunity and restrains tumor growth. Furthermore, LSD1 depletion enhances tumor immunogenicity and T cell infiltration in poorly immunogenic tumors and elicits significant responses of checkpoint blockade-refractory mouse melanoma to anti-PD-1 therapy. Consistently, TCGA data analysis shows an inverse correlation between LSD1 expression and CD8+ T cell infiltration in various human cancers. Our study identifies LSD1 as a potent inhibitor of anti-tumor immunity and responsiveness to immunotherapy and suggests LSD1 inhibition combined with PD-(L)1 blockade as a novel cancer treatment strategy.

Funding information:
  • Intramural NIH HHS - U01-CA84967(United States)
  • NCI NIH HHS - R01 CA118487()
  • NCI NIH HHS - R35 CA210104()
  • NCI NIH HHS - T32 CA207021()

Biallelic Mutations in MYORG Cause Autosomal Recessive Primary Familial Brain Calcification.

  • Yao XP
  • Neuron
  • 2018 Jun 27

Literature context:


Abstract:

Primary familial brain calcification (PFBC) is a genetically heterogeneous disorder characterized by bilateral calcifications in the basal ganglia and other brain regions. The genetic basis of this disorder remains unknown in a significant portion of familial cases. Here, we reported a recessive causal gene, MYORG, for PFBC. Compound heterozygous or homozygous mutations of MYORG co-segregated completely with PFBC in six families, with logarithm of odds (LOD) score of 4.91 at the zero recombination fraction. In mice, Myorg mRNA was expressed specifically in S100β-positive astrocytes, and knockout of Myorg induced the formation of brain calcification at 9 months of age. Our findings provide strong evidence that loss-of-function mutations of MYORG cause brain calcification in humans and mice.

Funding information:
  • NIAID NIH HHS - R01 AI095097(United States)

A Visual-Cue-Dependent Memory Circuit for Place Navigation.

  • Qin H
  • Neuron
  • 2018 Jun 5

Literature context:


Abstract:

The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation.

Funding information:
  • NCI NIH HHS - R01 CA154915(United States)

SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity.

  • Alonso-Martin S
  • Elife
  • 2018 Jun 8

Literature context:


Abstract:

Muscle satellite cells are the primary source of stem cells for postnatal skeletal muscle growth and regeneration. Understanding genetic control of satellite cell formation, maintenance, and acquisition of their stem cell properties is on-going, and we have identified SOXF (SOX7, SOX17, SOX18) transcriptional factors as being induced during satellite cell specification. We demonstrate that SOXF factors regulate satellite cell quiescence, self-renewal and differentiation. Moreover, ablation of Sox17 in the muscle lineage impairs postnatal muscle growth and regeneration. We further determine that activities of SOX7, SOX17 and SOX18 overlap during muscle regeneration, with SOXF transcriptional activity requisite. Finally, we show that SOXF factors also control satellite cell expansion and renewal by directly inhibiting the output of β-catenin activity, including inhibition of Ccnd1 and Axin2. Together, our findings identify a key regulatory function of SoxF genes in muscle stem cells via direct transcriptional control and interaction with canonical Wnt/β-catenin signaling.

Funding information:
  • Agence Nationale de la Recherche - ANR 11 BSV2 017 02()
  • Agence Nationale de la Recherche - ANR-12-BSV1-0038-04()
  • Agence Nationale de la Recherche - ANR-13-BSV1-0011-02()
  • Agence Nationale de la Recherche - ANR-15-CE13-0011-01()
  • Agence Nationale de la Recherche - ANR-15-RHUS-0003()
  • Association Française contre les Myopathies - AFM 16050()
  • Association Française contre les Myopathies - AFM 17865()
  • Association Française contre les Myopathies - TRANSLAMUSCLE 19507()
  • Basque Community - BF106.177()
  • Biotechnology and Biological Sciences Research Council - BB/I017585/1(United Kingdom)
  • Deutsche Forschungsgemeinschaft - GK 1631()
  • Deutsche Forschungsgemeinschaft - KFO192 (Sp1152/8-1)()
  • European Union Sixth and Seventh Framework Program - MYORES and ENDOSTEM # 241440()
  • Fondation pour la Recherche Médicale - DEQ20130326526()
  • Fondation pour la Recherche Médicale - FDT20130928236()
  • FSH Society - 262948-2()
  • FSH Society and BIODESIGN - 262948-2()
  • Horizon 2020 Framework Programme - BIODESIGN (262948-2)()
  • Horizon 2020 Framework Programme - MYORES and ENDOSTEM # 241440()
  • Labex REVIVE - ANR-10-LABX-73()
  • Medical Research Council - MR/PO23215/1()
  • Muscular Dystrophy UK - RA3/3052()

A Distance-Dependent Distribution of Presynaptic Boutons Tunes Frequency-Dependent Dendritic Integration.

  • Grillo FW
  • Neuron
  • 2018 Jun 28

Literature context:


Abstract:

How presynaptic inputs and neurotransmitter release dynamics are distributed along a dendritic tree is not well established. Here, we show that presynaptic boutons that form onto basal dendrites of CA1 pyramidal neurons display a decrease in active zone (AZ) size with distance from the soma, resulting in a distance-dependent increase in short-term facilitation. Our findings suggest that the spatial distribution of short-term facilitation serves to compensate for the electrotonic attenuation of subthreshold distal inputs during repeated stimulation and fine-tunes the preferred input frequency of dendritic domains.

Funding information:
  • NCI NIH HHS - CA138617(United States)

Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation.

  • Wang QA
  • Cell Metab.
  • 2018 Jun 8

Literature context:


Abstract:

Adipose tissue in the mammary gland undergoes dramatic remodeling during reproduction. Adipocytes are replaced by mammary alveolar structures during pregnancy and lactation, then reappear upon weaning. The fate of the original adipocytes during lactation and the developmental origin of the re-appearing adipocyte post involution are unclear. Here, we reveal that adipocytes in the mammary gland de-differentiate into Pdgfrα+ preadipocyte- and fibroblast-like cells during pregnancy and remain de-differentiated during lactation. Upon weaning, de-differentiated fibroblasts proliferate and re-differentiate into adipocytes. This cycle occurs over multiple pregnancies. These observations reveal the potential of terminally differentiated adipocytes to undergo repeated cycles of de-differentiation and re-differentiation in a physiological setting.

Funding information:
  • NIDDK NIH HHS - P30DK079333(United States)

Stress Granule Assembly Disrupts Nucleocytoplasmic Transport.

  • Zhang K
  • Cell
  • 2018 May 3

Literature context:


Abstract:

Defects in nucleocytoplasmic transport have been identified as a key pathogenic event in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mediated by a GGGGCC hexanucleotide repeat expansion in C9ORF72, the most common genetic cause of ALS/FTD. Furthermore, nucleocytoplasmic transport disruption has also been implicated in other neurodegenerative diseases with protein aggregation, suggesting a shared mechanism by which protein stress disrupts nucleocytoplasmic transport. Here, we show that cellular stress disrupts nucleocytoplasmic transport by localizing critical nucleocytoplasmic transport factors into stress granules, RNA/protein complexes that play a crucial role in ALS pathogenesis. Importantly, inhibiting stress granule assembly, such as by knocking down Ataxin-2, suppresses nucleocytoplasmic transport defects as well as neurodegeneration in C9ORF72-mediated ALS/FTD. Our findings identify a link between stress granule assembly and nucleocytoplasmic transport, two fundamental cellular processes implicated in the pathogenesis of C9ORF72-mediated ALS/FTD and other neurodegenerative diseases.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits.

  • Meng C
  • Neuron
  • 2018 May 16

Literature context:


Abstract:

To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. VIDEO ABSTRACT.

Funding information:
  • NHLBI NIH HHS - R01 HL107953-01(United States)

Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits.

  • Cavaccini A
  • Neuron
  • 2018 May 16

Literature context:


Abstract:

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.

Funding information:
  • Wellcome Trust - (United Kingdom)

Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system.

  • Schubert FK
  • J. Comp. Neurol.
  • 2018 May 1

Literature context:


Abstract:

Drosophila melanogaster is a long-standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor-labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s-LNv ) and one ITP positive dorsolateral neuron (LNd ). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre- and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF-neurons (l-LNv s). We could show that the four hardly distinguishable l-LNv s consist of two subgroups with different innervation patterns. While three of the neurons reflect the well-known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla-surface. We named this neuron "extra" l-LNv (l-LNv x). We suggest the anatomical findings reflect different functional properties of the two l-LNv subgroups.

Funding information:
  • NCI NIH HHS - R01 CA031363(United States)

Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development.

  • Storer MA
  • Stem Cell Reports
  • 2018 May 8

Literature context:


Abstract:

Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools.

Funding information:
  • NIGMS NIH HHS - GM61712(United States)

The Dystrophin Glycoprotein Complex Regulates the Epigenetic Activation of Muscle Stem Cell Commitment.

  • Chang NC
  • Cell Stem Cell
  • 2018 May 3

Literature context:


Abstract:

Asymmetrically dividing muscle stem cells in skeletal muscle give rise to committed cells, where the myogenic determination factor Myf5 is transcriptionally activated by Pax7. This activation is dependent on Carm1, which methylates Pax7 on multiple arginine residues, to recruit the ASH2L:MLL1/2:WDR5:RBBP5 histone methyltransferase complex to the proximal promoter of Myf5. Here, we found that Carm1 is a specific substrate of p38γ/MAPK12 and that phosphorylation of Carm1 prevents its nuclear translocation. Basal localization of the p38γ/p-Carm1 complex in muscle stem cells occurs via binding to the dystrophin-glycoprotein complex (DGC) through β1-syntrophin. In dystrophin-deficient muscle stem cells undergoing asymmetric division, p38γ/β1-syntrophin interactions are abrogated, resulting in enhanced Carm1 phosphorylation. The resulting progenitors exhibit reduced Carm1 binding to Pax7, reduced H3K4-methylation of chromatin, and reduced transcription of Myf5 and other Pax7 target genes. Therefore, our experiments suggest that dysregulation of p38γ/Carm1 results in altered epigenetic gene regulation in Duchenne muscular dystrophy.

Funding information:
  • NCI NIH HHS - CA32317(United States)

Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium.

  • Lynch TJ
  • Cell Stem Cell
  • 2018 May 3

Literature context:


Abstract:

The mouse trachea is thought to contain two distinct stem cell compartments that contribute to airway repair-basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) cell type. Whether a lineage relationship exists between these two stem cell compartments remains unclear. Using lineage tracing of glandular myoepithelial cells (MECs), we demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established lasting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly, dose-dependent MEC conditional activation of Lef-1 in vivo promoted self-limited airway regeneration in the absence of injury. Thus, modulating the Lef-1 transcriptional program in MEC-derived progenitors may have regenerative medicine applications for lung diseases.

Funding information:
  • Chief Scientist Office - CAF/10/15(United Kingdom)
  • NHLBI NIH HHS - P01 HL051670()
  • NIDDK NIH HHS - P30 DK054759()

Preoptic leptin signaling modulates energy balance independent of body temperature regulation.

  • Yu S
  • Elife
  • 2018 May 15

Literature context:


Abstract:

The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight.

Funding information:
  • ADA Foundation - ADA1-17-PDF-138()
  • American Heart Association - AHA053298N; AHA17GRNT32960003()
  • Intramural NIH HHS - ZIA AR041155-05(United States)
  • National Institute of Diabetes and Digestive and Kidney Diseases - 1DK117281()
  • National Institute of Diabetes and Digestive and Kidney Diseases - 1HL122829()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK047348()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK099598()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK101379()
  • National Institute of Diabetes and Digestive and Kidney Diseases - DK105032()
  • National Institute of Diabetes and Digestive and Kidney Diseases - P20GM103528()
  • National Institute of Diabetes and Digestive and Kidney Diseases - P30DK072476()
  • National Institute of Diabetes and Digestive and Kidney Diseases - R01DK092587()
  • U.S. Department of Agriculture - USDA/CRIS3092-5-001-059()

Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

  • Haimon Z
  • Nat. Immunol.
  • 2018 May 20

Literature context:


Abstract:

Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.

Funding information:
  • NIBIB NIH HHS - EB003537(United States)

Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection.

  • Zhai Z
  • Immunity
  • 2018 May 15

Literature context:


Abstract:

Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding.

Funding information:
  • NIA NIH HHS - R01 AG31675(United States)

Hippo signaling determines the number of venous pole cells that originate from the anterior lateral plate mesoderm in zebrafish.

  • Fukui H
  • Elife
  • 2018 May 29

Literature context:


Abstract:

The differentiation of the lateral plate mesoderm cells into heart field cells constitutes a critical step in the development of cardiac tissue and the genesis of functional cardiomyocytes. Hippo signaling controls cardiomyocyte proliferation, but the role of Hippo signaling during early cardiogenesis remains unclear. Here, we show that Hippo signaling regulates atrial cell number by specifying the developmental potential of cells within the anterior lateral plate mesoderm (ALPM), which are incorporated into the venous pole of the heart tube and ultimately into the atrium of the heart. We demonstrate that Hippo signaling acts through large tumor suppressor kinase 1/2 to modulate BMP signaling and the expression of hand2, a key transcription factor that is involved in the differentiation of atrial cardiomyocytes. Collectively, these results demonstrate that Hippo signaling defines venous pole cardiomyocyte number by modulating both the number and the identity of the ALPM cells that will populate the atrium of the heart.

Funding information:
  • Japan Agency for Medical Research and Development - 13414779()
  • Japan Society for the Promotion of Science - 16H02618()
  • Ministry of Education, Culture, Sports, Science, and Technology - 15H01221()
  • NICHD NIH HHS - R00 HD055030-03(United States)

Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

  • Youssef M
  • Hippocampus
  • 2018 May 9

Literature context:


Abstract:

Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved.

Funding information:
  • Intramural NIH HHS - (United States)
  • NIMH NIH HHS - F30 MH111209()
  • NIMH NIH HHS - R01 MH091844()
  • NIMH NIH HHS - R56 MH106809()

Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo.

  • Manning SA
  • Curr. Biol.
  • 2018 May 21

Literature context:


Abstract:

The Hippo pathway is an evolutionarily conserved signaling network that integrates diverse cues to control organ size and cell fate. The central downstream pathway protein in Drosophila is the transcriptional co-activator Yorkie (YAP and TAZ in humans), which regulates gene expression with the Scalloped/TEA domain family member (TEAD) transcription factors [1-8]. A central regulatory step in the Hippo pathway is phosphorylation of Yorkie by the NDR family kinase Warts, which promotes Yorkie cytoplasmic localization by stimulating association with 14-3-3 proteins [9-12]. Numerous reports have purported a static model of Hippo signaling whereby, upon Hippo activation, Yorkie/YAP/TAZ become cytoplasmic and therefore inactive, and upon Hippo repression, Yorkie/YAP/TAZ transit to the nucleus and are active. However, we have little appreciation for the dynamics of Yorkie/YAP/TAZ subcellular localization because most studies have been performed in fixed cells and tissues. To address this, we used live multiphoton microscopy to investigate the dynamics of an endogenously tagged Yorkie-Venus protein in growing epithelial organs. We found that the majority of Yorkie rapidly traffics between the cytoplasm and nucleus, rather than being statically localized in either compartment. In addition, discrete cell populations within the same organ display different rates of Yorkie nucleo-cytoplasmic shuttling. By assessing Yorkie dynamics in warts mutant tissue, we found that the Hippo pathway regulates Yorkie subcellular distribution by regulating its rate of nuclear import. Furthermore, Yorkie's localization fluctuates dramatically throughout the cell cycle, being predominantly cytoplasmic during interphase and, unexpectedly, chromatin enriched during mitosis. Yorkie's association with mitotic chromatin is Scalloped dependent, suggesting a potential role in mitotic bookmarking.

Funding information:
  • Wellcome Trust - 090532(United Kingdom)

RNP-Granule Assembly via Ataxin-2 Disordered Domains Is Required for Long-Term Memory and Neurodegeneration.

  • Bakthavachalu B
  • Neuron
  • 2018 May 16

Literature context:


Abstract:

Human Ataxin-2 is implicated in the cause and progression of amyotrophic lateral sclerosis (ALS) and type 2 spinocerebellar ataxia (SCA-2). In Drosophila, a conserved atx2 gene is essential for animal survival as well as for normal RNP-granule assembly, translational control, and long-term habituation. Like its human homolog, Drosophila Ataxin-2 (Atx2) contains polyQ repeats and additional intrinsically disordered regions (IDRs). We demonstrate that Atx2 IDRs, which are capable of mediating liquid-liquid phase transitions in vitro, are essential for efficient formation of neuronal mRNP assemblies in vivo. Remarkably, ΔIDR mutants that lack neuronal RNP granules show normal animal development, survival, and fertility. However, they show defects in long-term memory formation/consolidation as well as in C9ORF72 dipeptide repeat or FUS-induced neurodegeneration. Together, our findings demonstrate (1) that higher-order mRNP assemblies contribute to long-term neuronal plasticity and memory, and (2) that a targeted reduction in RNP-granule formation efficiency can alleviate specific forms of neurodegeneration.

Funding information:
  • NCI NIH HHS - 5K12 CA 076931(United States)

Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits.

  • Wang D
  • Neuron
  • 2018 Apr 4

Literature context:


Abstract:

Cellular interactions between delta and mu opioid receptors (DORs and MORs), including heteromerization, are thought to regulate opioid analgesia. However, the identity of the nociceptive neurons in which such interactions could occur in vivo remains elusive. Here we show that DOR-MOR co-expression is limited to small populations of excitatory interneurons and projection neurons in the spinal cord dorsal horn and unexpectedly predominates in ventral horn motor circuits. Similarly, DOR-MOR co-expression is rare in parabrachial, amygdalar, and cortical brain regions processing nociceptive information. We further demonstrate that in the discrete DOR-MOR co-expressing nociceptive neurons, the two receptors internalize and function independently. Finally, conditional knockout experiments revealed that DORs selectively regulate mechanical pain by controlling the excitability of somatostatin-positive dorsal horn interneurons. Collectively, our results illuminate the functional organization of DORs and MORs in CNS pain circuits and reappraise the importance of DOR-MOR cellular interactions for developing novel opioid analgesics.

Funding information:
  • NCI NIH HHS - P30 CA042014(United States)

Role for Wnt Signaling in Retinal Neuropil Development: Analysis via RNA-Seq and In Vivo Somatic CRISPR Mutagenesis.

  • Sarin S
  • Neuron
  • 2018 Apr 4

Literature context:


Abstract:

Screens for genes that orchestrate neural circuit formation in mammals have been hindered by practical constraints of germline mutagenesis. To overcome these limitations, we combined RNA-seq with somatic CRISPR mutagenesis to study synapse development in the mouse retina. Here synapses occur between cellular layers, forming two multilayered neuropils. The outer neuropil, the outer plexiform layer (OPL), contains synapses made by rod and cone photoreceptor axons on rod and cone bipolar dendrites, respectively. We used RNA-seq to identify selectively expressed genes encoding cell surface and secreted proteins and CRISPR-Cas9 electroporation with cell-specific promoters to assess their roles in OPL development. Among the genes identified in this way are Wnt5a and Wnt5b. They are produced by rod bipolars and activate a non-canonical signaling pathway in rods to regulate early OPL patterning. The approach we use here can be applied to other parts of the brain.

Funding information:
  • NHGRI NIH HHS - NIH T32 HG002536(United States)

An Optical Neuron-Astrocyte Proximity Assay at Synaptic Distance Scales.

  • Octeau JC
  • Neuron
  • 2018 Apr 4

Literature context:


Abstract:

Astrocytes are complex bushy cells that serve important functions through close contacts between their processes and synapses. However, the spatial interactions and dynamics of astrocyte processes relative to synapses have proven problematic to study in adult living brain tissue. Here, we report a genetically targeted neuron-astrocyte proximity assay (NAPA) to measure astrocyte-synapse spatial interactions within intact brain preparations and at synaptic distance scales. The method exploits resonance energy transfer between extracellularly displayed fluorescent proteins targeted to synapses and astrocyte processes. We validated the method in the striatal microcircuitry following in vivo expression. We determined the proximity of striatal astrocyte processes to distinct neuronal input pathways, to D1 and D2 medium spiny neuron synapses, and we evaluated how astrocyte-to-excitatory synapse proximity changed following cortical afferent stimulation, during ischemia and in a model of Huntington's disease. NAPA provides a simple approach to measure astrocyte-synapse spatial interactions in a variety of experimental scenarios. VIDEO ABSTRACT.

Funding information:
  • NCI NIH HHS - R01 CA104926(United States)

Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron.

  • Galliano E
  • Elife
  • 2018 Apr 20

Literature context:


Abstract:

Most neurogenesis in the mammalian brain is completed embryonically, but in certain areas the production of neurons continues throughout postnatal life. The functional properties of mature postnatally generated neurons often match those of their embryonically produced counterparts. However, we show here that in the olfactory bulb (OB), embryonic and postnatal neurogenesis produce functionally distinct subpopulations of dopaminergic (DA) neurons. We define two subclasses of OB DA neuron by the presence or absence of a key subcellular specialisation: the axon initial segment (AIS). Large AIS-positive axon-bearing DA neurons are exclusively produced during early embryonic stages, leaving small anaxonic AIS-negative cells as the only DA subtype generated via adult neurogenesis. These populations are functionally distinct: large DA cells are more excitable, yet display weaker and - for certain long-latency or inhibitory events - more broadly tuned responses to odorant stimuli. Embryonic and postnatal neurogenesis can therefore generate distinct neuronal subclasses, placing important constraints on the functional roles of adult-born neurons in sensory processing.

Funding information:
  • European Research Council - 725729 FUNCOPLAN()
  • Medical Research Council - MR/M501645/1()
  • National Institutes of Health - DC013329()
  • NHGRI NIH HHS - R01 HG003562(United States)
  • Wellcome - 103044()
  • Wellcome - 88301()

Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms.

  • Tan KL
  • Dev. Cell
  • 2018 Apr 23

Literature context:


Abstract:

Nuclei are actively positioned and anchored to the cytoskeleton via the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. We identified mutations in the Parkin-like E3 ubiquitin ligase Ariadne-1 (Ari-1) that affect the localization and distribution of LINC complex members in Drosophila. ari-1 mutants exhibit nuclear clustering and morphology defects in larval muscles. We show that Ari-1 mono-ubiquitinates the core LINC complex member Koi. Surprisingly, we discovered functional redundancy between Parkin and Ari-1: increasing Parkin expression rescues ari-1 mutant phenotypes and vice versa. We further show that rare variants in the human homolog of ari-1 (ARIH1) are associated with thoracic aortic aneurysms and dissections, conditions resulting from smooth muscle cell (SMC) dysfunction. Human ARIH1 rescues fly ari-1 mutant phenotypes, whereas human variants found in patients fail to do so. In addition, SMCs obtained from patients display aberrant nuclear morphology. Hence, ARIH1 is critical in anchoring myonuclei to the cytoskeleton.

Funding information:
  • Intramural NIH HHS - (United States)

The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread.

  • Procter DJ
  • Dev. Cell
  • 2018 Apr 9

Literature context:


Abstract:

Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.

Funding information:
  • NCI NIH HHS - R01 CA188427()
  • NHLBI NIH HHS - R01 HL103922()
  • NHLBI NIH HHS - T32 HL094290(United States)
  • NIAID NIH HHS - P30 AI117943()
  • NIAID NIH HHS - R01 AI101080()
  • NIGMS NIH HHS - P01 GM105536()

Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection.

  • Hernández-Santos N
  • Cell Host Microbe
  • 2018 Apr 11

Literature context:


Abstract:

Lung epithelial cells (LECs) are strategically positioned in the airway mucosa to provide barrier defense. LECs also express pattern recognition receptors and a myriad of immune genes, but their role in immunity is often concealed by the activities of "professional" immune cells, particularly in the context of fungal infection. Here, we demonstrate that NF-κB signaling in LECs is essential for immunity against the pulmonary fungal pathogen Blastomyces dermatitidis. LECs orchestrate innate antifungal immunity by augmenting the numbers of interleukin-17A (IL-17A)- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing innate lymphocytes, specifically "natural" Th17 (nTh17) cells. Innate lymphocyte-derived IL-17A and GM-CSF in turn enable phagocyte-driven fungal killing. LECs regulate the numbers of nTh17 cells via the production of chemokines such as CCL20, a process dependent on IL-1α-IL-1 receptor (IL-1R) signaling on LECs. Therefore, LECs orchestrate IL-17A- and GM-CSF-mediated immunity in an IL-1R-dependent manner and represent an essential component of innate immunity to pulmonary fungal pathogens.

Funding information:
  • NIAID NIH HHS - R01 AI035681()
  • NIAID NIH HHS - R01 AI040996()
  • NIAID NIH HHS - T32 AI055397()
  • NIH HHS - 7 DP2 OD004711-02(United States)

Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

  • Hara Y
  • Dev. Biol.
  • 2018 Apr 1

Literature context:


Abstract:

Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers. These results indicate that cell death is required for elimination of the precursor cells composing the proliferation centers. This study substantiates an essential role of early neural cell death for ensuring normal development of the central nervous system.

Funding information:
  • NHGRI NIH HHS - U01 HG006500(United States)

Active Protection: Learning-Activated Raf/MAPK Activity Protects Labile Memory from Rac1-Independent Forgetting.

  • Zhang X
  • Neuron
  • 2018 Apr 4

Literature context:


Abstract:

Active forgetting explains the intrinsic instability of a labile memory lasting for hours. However, how such memory maintains stability against unwanted disruption is not completely understood. Here, we report a learning-activated active protection mechanism that enables labile memory to resist disruptive sensory experiences in Drosophila. Aversive olfactory conditioning activates mitogen-activated protein kinase (MAPK) transiently in the mushroom-body γ lobe, where labile-aversive memory is stored. This increased MAPK activity significantly prolongs labile memory retention and enhances its resistance to disruption induced by heat shock, electric shock, or odor reactivation. Such experience-induced forgetting cannot be prevented by inhibition of Rac1 activity. Instead, protection of Rac1-independent forgetting correlates with non-muscle myosin II activity and persistence of learning-induced presynaptic structural changes. Increased Raf/MAPK activity, together with suppressed Rac1 activity, completely blocks labile memory decay. Thus, learning not only leads to memory formation, but also activates active protection and active forgetting to regulate the formed memory.

Funding information:
  • NCI NIH HHS - R01 CA107349-03(United States)

Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila.

  • Burgos A
  • Elife
  • 2018 Mar 12

Literature context:


Abstract:

Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior.

Funding information:
  • Howard Hughes Medical Institute - (United States)
  • Japan Society for the Promotion of Science - KAKENHI 26890025()
  • National Institutes of Health - GM086458()
  • National Institutes of Health - NS061908()
  • National Institutes of Health - NS086564()
  • National Institutes of Health - NS090909-01()
  • National Science Foundation - Graduate Research Fellowship()
  • Thompson Family Foundation - Innovation Award()

Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus.

  • Chew KS
  • J. Biol. Rhythms
  • 2018 Mar 2

Literature context:


Abstract:

Many biochemical, physiological, and behavioral processes such as glucose metabolism, body temperature, and sleep-wake cycles show regular daily rhythms. These circadian rhythms are adjusted to the environmental light-dark cycle by a central pacemaker located in the suprachiasmatic nucleus (SCN) in order for the processes to occur at appropriate times of day. Here, we investigated the expression and function of a synaptic organizing protein, C1QL3, in the SCN. We found that C1ql3 is robustly expressed in the SCN. C1ql3 knockout mice have a reduced density of excitatory synapses in the SCN. In addition, these mice exhibited less consolidated activity to the active portions of the day and period lengthening following a 15-minute phase-delaying light pulse. These data identify C1QL3 as a signaling molecule that is highly expressed in SCN neurons, where it contributes to the formation and/or maintenance of glutamatergic synapses and plays a role in circadian behaviors, which may include circadian aftereffects.

Funding information:
  • Medical Research Council - G0800914(United Kingdom)
  • NIDA NIH HHS - F32 DA031654(United States)
  • NIDCD NIH HHS - R01 DC007395(United States)
  • NIGMS NIH HHS - R01 GM076430(United States)
  • NIGMS NIH HHS - T32 GM007231(United States)
  • NIMH NIH HHS - P50 MH086403(United States)
  • NIMH NIH HHS - R37 MH052804(United States)

Drosophila Fezf coordinates laminar-specific connectivity through cell-intrinsic and cell-extrinsic mechanisms.

  • Peng J
  • Elife
  • 2018 Mar 7

Literature context:


Abstract:

Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.

Funding information:
  • Howard Hughes Medical Institute - Gilliam Fellowship for Advanced Study()
  • NIAID NIH HHS - R21 AI073587(United States)

Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret.

  • Parmhans N
  • J. Comp. Neurol.
  • 2018 Mar 1

Literature context:


Abstract:

We report the retinal expression pattern of Ret, a receptor tyrosine kinase for the glial derived neurotrophic factor (GDNF) family ligands (GFLs), during development and in the adult mouse. Ret is initially expressed in retinal ganglion cells (RGCs), followed by horizontal cells (HCs) and amacrine cells (ACs), beginning with the early stages of postmitotic development. Ret expression persists in all three classes of neurons in the adult. Using RNA sequencing, immunostaining and random sparse recombination, we show that Ret is expressed in at least three distinct types of ACs, and ten types of RGCs. Using intersectional genetics, we describe the dendritic arbor morphologies of RGC types expressing Ret in combination with each of the three members of the POU4f/Brn3 family of transcription factors. Ret expression overlaps with Brn3a in 4 RGC types, with Brn3b in 5 RGC types, and with Brn3c in one RGC type, respectively. Ret+ RGCs project to the lateral geniculate nucleus (LGN), pretectal area (PTA) and superior colliculus (SC), and avoid the suprachiasmatic nucleus and accessory optic system. Brn3a+ Ret+ and Brn3c+ Ret+ RGCs project preferentially to contralateral retinorecipient areas, while Brn3b+ Ret+ RGCs shows minor ipsilateral projections to the olivary pretectal nucleus and the LGN. Our findings establish intersectional genetic approaches for the anatomic and developmental characterization of individual Ret+ RGC types. In addition, they provide necessary information for addressing the potential interplay between GDNF neurotrophic signaling and transcriptional regulation in RGC type specification.

Funding information:
  • NCI NIH HHS - P50 CA127003(United States)

Temporal Layering of Signaling Effectors Drives Chromatin Remodeling during Hair Follicle Stem Cell Lineage Progression.

  • Adam RC
  • Cell Stem Cell
  • 2018 Mar 1

Literature context:


Abstract:

Tissue regeneration relies on resident stem cells (SCs), whose activity and lineage choices are influenced by the microenvironment. Exploiting the synchronized, cyclical bouts of tissue regeneration in hair follicles (HFs), we investigate how microenvironment dynamics shape the emergence of stem cell lineages. Employing epigenetic and ChIP-seq profiling, we uncover how signal-dependent transcription factors couple spatiotemporal cues to chromatin dynamics, thereby choreographing stem cell lineages. Using enhancer-driven reporters, mutagenesis, and genetics, we show that simultaneous BMP-inhibitory and WNT signals set the stage for lineage choices by establishing chromatin platforms permissive for diversification. Mechanistically, when binding of BMP effector pSMAD1 is relieved, enhancers driving HF-stem cell master regulators are silenced. Concomitantly, multipotent, lineage-fated enhancers silent in HF-stem cells become activated by exchanging WNT effectors TCF3/4 for LEF1. Throughout regeneration, lineage enhancers continue reliance upon LEF1 but then achieve specificity by accommodating additional incoming signaling effectors. Barriers to progenitor plasticity increase when diverse, signal-sensitive transcription factors shape LEF1-regulated enhancer dynamics.

Funding information:
  • Ministry of Science and Technology of the People's Republic of China - 2014CB964601(United States)

Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain.

  • Dave JM
  • Dev. Cell
  • 2018 Mar 26

Literature context:


Abstract:

The murine embryonic blood-brain barrier (BBB) consists of endothelial cells (ECs), pericytes (PCs), and basement membrane. Although PCs are critical for inducing vascular stability, signaling pathways in PCs that regulate EC morphogenesis during BBB development remain unexplored. Herein, we find that murine embryos lacking the transforming growth factor β (TGF-β) receptor activin receptor-like kinase 5 (Alk5) in brain PCs (mutants) develop gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH). The germinal matrix (GM) is a highly vascularized structure rich in neuronal and glial precursors. We show that GM microvessels of mutants display abnormal dilation, reduced PC coverage, EC hyperproliferation, reduced basement membrane collagen, and enhanced perivascular matrix metalloproteinase activity. Furthermore, ALK5-depleted PCs downregulate tissue inhibitor of matrix metalloproteinase 3 (TIMP3), and TIMP3 administration to mutants improves endothelial morphogenesis and attenuates GMH-IVH. Overall, our findings reveal a key role for PC ALK5 in regulating brain endothelial morphogenesis and a substantial therapeutic potential for TIMP3 during GMH-IVH.

Funding information:
  • NHLBI NIH HHS - R01 HL125815()
  • NHLBI NIH HHS - R01 HL133016()
  • NIAID NIH HHS - AI49371(United States)
  • NINDS NIH HHS - R21 NS088854()

Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior.

  • Tsao CH
  • Elife
  • 2018 Mar 16

Literature context:


Abstract:

The fruit fly can evaluate its energy state and decide whether to pursue food-related cues. Here, we reveal that the mushroom body (MB) integrates hunger and satiety signals to control food-seeking behavior. We have discovered five pathways in the MB essential for hungry flies to locate and approach food. Blocking the MB-intrinsic Kenyon cells (KCs) and the MB output neurons (MBONs) in these pathways impairs food-seeking behavior. Starvation bi-directionally modulates MBON responses to a food odor, suggesting that hunger and satiety controls occur at the KC-to-MBON synapses. These controls are mediated by six types of dopaminergic neurons (DANs). By manipulating these DANs, we could inhibit food-seeking behavior in hungry flies or promote food seeking in fed flies. Finally, we show that the DANs potentially receive multiple inputs of hunger and satiety signals. This work demonstrates an information-rich central circuit in the fly brain that controls hunger-driven food-seeking behavior.

Funding information:
  • Ministry of Science and Technology, Taiwan - 105-2628-B-001-005-MY3()
  • NIGMS NIH HHS - R01 GM59507(United States)

Spatial-Temporal Lineage Restrictions of Embryonic p63+ Progenitors Establish Distinct Stem Cell Pools in Adult Airways.

  • Yang Y
  • Dev. Cell
  • 2018 Mar 26

Literature context:


Abstract:

Basal cells (BCs) are p63-expressing multipotent progenitors of skin, tracheoesophageal and urinary tracts. p63 is abundant in developing airways; however, it remains largely unclear how embryonic p63+ cells contribute to the developing and postnatal respiratory tract epithelium, and ultimately how they relate to adult BCs. Using lineage-tracing and functional approaches in vivo, we show that p63+ cells arising from the lung primordium are initially multipotent progenitors of airway and alveolar lineages but later become restricted proximally to generate the tracheal adult stem cell pool. In intrapulmonary airways, these cells are maintained immature to adulthood in bronchi, establishing a rare p63+Krt5- progenitor cell population that responds to H1N1 virus-induced severe injury. Intriguingly, this pool includes a CC10 lineage-labeled p63+Krt5- cell subpopulation required for a full H1N1-response. These data elucidate key aspects in the establishment of regionally distinct adult stem cell pools in the respiratory system, potentially with relevance to other organs.

Funding information:
  • Intramural NIH HHS - ZIA HL006151-02(United States)
  • NCI NIH HHS - R01 CA112403()
  • NCI NIH HHS - R01 CA193455()
  • NHLBI NIH HHS - R35 HL135834()
  • NIAID NIH HHS - HHSN272201400008C()

Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex.

  • Florio M
  • Elife
  • 2018 Mar 21

Literature context:


Abstract:

Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution.

Funding information:
  • Deutsche Forschungsgemeinschaft - SFB655 A2()
  • European Research Council - 250197()
  • Medical Research Council - G0900901(United Kingdom)

APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.

  • Saito-Diaz K
  • Dev. Cell
  • 2018 Mar 12

Literature context:


Abstract:

Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway.

Funding information:
  • BLRD VA - I01 BX001426()
  • NCATS NIH HHS - UL1 TR000445()
  • NCATS NIH HHS - UL1 TR002243()
  • NCI NIH HHS - P30 CA068485()
  • NCI NIH HHS - P50 CA095103()
  • NCI NIH HHS - R01 CA069457()
  • NCI NIH HHS - R01 CA105038()
  • NIDDK NIH HHS - F30 DK111107()
  • NIDDK NIH HHS - R01 DK099204()
  • NIGMS NIH HHS - R01 GM081635()
  • NIGMS NIH HHS - R01 GM103926()
  • NIGMS NIH HHS - R01 GM106720()
  • NIGMS NIH HHS - R01 GM121421()
  • NIGMS NIH HHS - R01 GM122222()
  • NIGMS NIH HHS - R35 GM122516()
  • NIGMS NIH HHS - T32 GM007347()
  • NIH HHS - OD008466(United States)
  • NIH HHS - P40 OD018537()

Identification of a Single Pair of Interneurons for Bitter Taste Processing in the Drosophila Brain.

  • Bohra AA
  • Curr. Biol.
  • 2018 Mar 19

Literature context:


Abstract:

Drosophila has become an excellent model system for investigating the organization and function of the gustatory system due to the relatively simple neuroanatomical organization of its brain and the availability of powerful genetic and transgenic technology. Thus, at the molecular and cellular levels, a great deal of insight into the peripheral detection and coding of gustatory information has already been attained. In contrast, much less is known about the central neural circuits that process this information and induce behaviorally appropriate motor output. Here, we combine functional behavioral tests with targeted transgene expression through specific driver lines to identify a single bilaterally homologous pair of bitter-sensitive interneurons that are located in the subesophageal zone of the brain. Anatomical and functional data indicate that these interneurons receive specific synaptic input from bitter-sensitive gustatory receptor neurons. Targeted transgenic activation and inactivation experiments show that these bitter-sensitive interneurons can largely suppress the proboscis extension reflex to appetitive stimuli, such as sugar and water. These functional experiments, together with calcium-imaging studies and calcium-modulated photoactivatable ratiometric integrator (CaMPARI) labeling, indicate that these first-order local interneurons play an important role in the inhibition of the proboscis extension reflex that occurs in response to bitter tastants. Taken together, our studies present a cellular identification and functional characterization of a key gustatory interneuron in the bitter-sensitive gustatory circuitry of the adult fly.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

The asymmetrically segregating lncRNA cherub is required for transforming stem cells into malignant cells.

  • Landskron L
  • Elife
  • 2018 Mar 27

Literature context:


Abstract:

Tumor cells display features that are not found in healthy cells. How they become immortal and how their specific features can be exploited to combat tumorigenesis are key questions in tumor biology. Here we describe the long non-coding RNA cherub that is critically required for the development of brain tumors in Drosophila but is dispensable for normal development. In mitotic Drosophila neural stem cells, cherub localizes to the cell periphery and segregates into the differentiating daughter cell. During tumorigenesis, de-differentiation of cherub-high cells leads to the formation of tumorigenic stem cells that accumulate abnormally high cherub levels. We show that cherub establishes a molecular link between the RNA-binding proteins Staufen and Syncrip. As Syncrip is part of the molecular machinery specifying temporal identity in neural stem cells, we propose that tumor cells proliferate indefinitely, because cherub accumulation no longer allows them to complete their temporal neurogenesis program.

Funding information:
  • Austrian Science Fund - Z_153_B09()
  • NINDS NIH HHS - R01 NS023868(United States)

Analysis of the distribution of spinal NOP receptors in a chronic pain model using NOP-eGFP knock-in mice.

  • Ozawa A
  • Br. J. Pharmacol.
  • 2018 Mar 28

Literature context:


Abstract:

BACKGROUND AND PURPOSE: The nociceptin/orphanin FQ opioid peptide (NOP) receptor system plays a significant role in the regulation of pain. This system functions differently in the spinal cord and brain. The mechanism by which the NOP receptor agonists regulate pain transmission in these regions is not clearly understood. Here, we investigate the peripheral and spinal NOP receptor distribution and antinociceptive effects of intrathecal nociceptin/orphanin FQ (N/OFQ) in chronic neuropathic pain. EXPERIMENTAL APPROACH: We used immunohistochemistry to determine changes in NOP receptor distribution triggered by spinal nerve ligation (SNL) using NOP-eGFP knock-in mice. Antinociceptive effects of intrathecal N/OFQ on SNL-mediated allodynia and heat/cold hyperalgesia were assessed in wild-type mice. KEY RESULTS: NOP-eGFP immunoreactivity was decreased by SNL in the spinal laminae I and II outer, regions that mediate noxious heat stimuli. In contrast, immunoreactivity of NOP-eGFP was unchanged in the ventral border of lamina II inner, which is an important region for the development of allodynia. NOP-eGFP expression was also decreased in a large number of primary afferents in the L4 dorsal root ganglion (DRG) of SNL mice. However, SNL mice showed increased sensitivity, compared to sham animals to the effects of i.t administered N/OFQ with respect to mechanical as well as thermal stimuli. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that the spinal NOP receptor system attenuates injury-induced hyperalgesia by direct inhibition of the projection neurons in the spinal cord that send nociceptive signals to the brain and not by inhibiting presynaptic terminals of DRG neurons in the superficial lamina.

Funding information:
  • NIDA NIH HHS - R01 DA023281()
  • Wellcome Trust - 089457/Z/09/Z(United Kingdom)

The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra.

  • Davis MI
  • PLoS ONE
  • 2018 Mar 13

Literature context:


Abstract:

Presynaptic cannabinoid-1 receptors (CB1-R) bind endogenous and exogenous cannabinoids to modulate neurotransmitter release. CB1-Rs are expressed throughout the basal ganglia, including striatum and substantia nigra, where they play a role in learning and control of motivated actions. However, the pattern of CB1-R expression across different striatal compartments, microcircuits and efferent targets, and the contribution of different CB1-R-expressing neurons to this pattern, are unclear. We use a combination of conventional techniques and novel genetic models to evaluate CB1-R expression in striosome (patch) and matrix compartments of the striatum, and in nigral targets of striatal medium spiny projection neurons (MSNs). CB1-R protein and mRNA follow a descending dorsolateral-to-ventromedial intensity gradient in the caudal striatum, with elevated expression in striosomes relative to the surrounding matrix. The lateral predominance of striosome CB1-Rs contrasts with that of the classical striosomal marker, the mu opioid receptor (MOR), which is expressed most prominently in rostromedial striosomes. The dorsolateral-to-ventromedial CB1-R gradient is similar to Drd2 dopamine receptor immunoreactivity and opposite to Substance P. This topology of CB1-R expression is maintained downstream in the globus pallidus and substantia nigra. Dense CB1-R-expressing striatonigral fibers extend dorsally within the substantia nigra pars reticulata, and colocalize with bundles of ventrally extending, striosome-targeted, dendrites of dopamine-containing neurons in the substantia nigra pars compacta (striosome-dendron bouquets). Within striatum, CB1-Rs colocalize with fluorescently labeled MSN collaterals within the striosomes. Cre recombinase-mediated deletion of CB1-Rs from cortical projection neurons or MSNs, and MSN-selective reintroduction of CB1-Rs in knockout mice, demonstrate that the principal source of CB1-Rs in dorsolateral striosomes is local MSN collaterals. These data suggest a role for CB1-Rs in caudal dorsolateral striosome collaterals and striosome-dendron bouquet projections to lateral substantia nigra, where they are anatomically poised to mediate presynaptic disinhibition of both striosomal MSNs and midbrain dopamine neurons in response to endocannabinoids and cannabinomimetics.

Funding information:
  • NIAMS NIH HHS - R01-AR04239(United States)

Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability.

  • Dawes JM
  • Neuron
  • 2018 Feb 21

Literature context:


Abstract:

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.

Funding information:
  • NINDS NIH HHS - NS18400(United States)

Molecular barcoding of viral vectors enables mapping and optimization of mRNA trans-splicing.

  • Davidsson M
  • RNA
  • 2018 Feb 2

Literature context:


Abstract:

Genome editing has proven to be highly potent in the generation of functional gene knockouts in dividing cells. In the CNS however, efficient technologies to repair sequences are yet to materialize. Reprogramming on the mRNA level is an attractive alternative as it provides means to perform in situ editing of coding sequences without nuclease dependency. Furthermore, de novo sequences can be inserted without the requirement of homologous recombination. Such reprogramming would enable efficient editing in quiescent cells (e.g., neurons) with an attractive safety profile for translational therapies. In this study, we applied a novel molecular-barcoded screening assay to investigate RNA trans-splicing in mammalian neurons. Through three alternative screening systems in cell culture and in vivo, we demonstrate that factors determining trans-splicing are reproducible regardless of the screening system. With this screening, we have located the most permissive trans-splicing sequences targeting an intron in the Synapsin I gene. Using viral vectors, we were able to splice full-length fluorophores into the mRNA while retaining very low off-target expression. Furthermore, this approach also showed evidence of functionality in the mouse striatum. However, in its current form, the trans-splicing events are stochastic and the overall activity lower than would be required for therapies targeting loss-of-function mutations. Nevertheless, the herein described barcode-based screening assay provides a unique possibility to screen and map large libraries in single animals or cell assays with very high precision.

Funding information:
  • NIDDK NIH HHS - P60 DK020595(United States)
  • NIMH NIH HHS - R00 MH081927(United States)

A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures.

  • Gennarino VA
  • Cell
  • 2018 Feb 22

Literature context:


Abstract:

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.

Funding information:
  • NEI NIH HHS - R01 EY013315(United States)
  • NICHD NIH HHS - U54 HD083092()
  • NIGMS NIH HHS - R01 GM066099()
  • NIGMS NIH HHS - R01 GM079656()
  • NINDS NIH HHS - K08 NS091381()
  • NINDS NIH HHS - R37 NS027699()

Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex.

  • Nigro MJ
  • J. Neurosci.
  • 2018 Feb 14

Literature context:


Abstract:

Inhibitory interneurons represent 10-15% of the neurons in the somatosensory cortex, and their activity powerfully shapes sensory processing. Three major groups of GABAergic interneurons have been defined according to developmental, molecular, morphological, electrophysiological, and synaptic features. Dendritic-targeting somatostatin-expressing interneurons (SST-INs) have been shown to display diverse morphological, electrophysiological, and molecular properties and activity patterns in vivo However, the correlation between these properties and SST-IN subtype is unclear. In this study, we aimed to correlate the morphological diversity of layer 5 (L5) SST-INs with their electrophysiological and molecular diversity in mice of either sex. Our morphological analysis demonstrated the existence of three subtypes of L5 SST-INs with distinct electrophysiological properties: T-shaped Martinotti cells innervate L1, and are low-threshold spiking; fanning-out Martinotti cells innervate L2/3 and the lower half of L1, and show adapting firing patterns; non-Martinotti cells innervate L4, and show a quasi-fast spiking firing pattern. We estimated the proportion of each subtype in L5 and found that T-shaped Martinotti, fanning-out Martinotti, and Non-Martinotti cells represent ∼10, ∼50, and ∼40% of L5 SST-INs, respectively. Last, we examined the connectivity between the three SST-IN subtypes and L5 pyramidal cells (PCs). We found that L5 T-shaped Martinotti cells inhibit the L1 apical tuft of nearby PCs; L5 fanning-out Martinotti cells also inhibit nearby PCs but they target the dendrite mainly in L2/3. On the other hand, non-Martinotti cells inhibit the dendrites of L4 neurons while avoiding L5 PCs. Our data suggest that morphologically distinct SST-INs gate different excitatory inputs in the barrel cortex.SIGNIFICANCE STATEMENT Morphologically diverse layer 5 SST-INs show different patterns of activity in behaving animals. However, little is known about the abundance and connectivity of each morphological type and the correlation between morphological subtype and spiking properties. We demonstrate a correlation between the morphological and electrophysiological diversity of layer 5 SST-INs. Based on these findings we built a classifier to infer the abundance of each morphological subtype. Last, using paired recordings combined with morphological analysis, we investigated the connectivity of each morphological subtype. Our data suggest that, by targeting different cell types and cellular compartments, morphologically diverse SST-INs might gate different excitatory inputs in the mouse barrel cortex.

Funding information:
  • NHLBI NIH HHS - HL 072903(United States)

The Strength of Mechanical Forces Determines the Differentiation of Alveolar Epithelial Cells.

  • Li J
  • Dev. Cell
  • 2018 Feb 5

Literature context:


Abstract:

The differentiation of alveolar epithelial type I (AT1) and type II (AT2) cells is essential for the lung gas exchange function. Disruption of this process results in neonatal death or in severe lung diseases that last into adulthood. We developed live imaging techniques to characterize the mechanisms that control alveolar epithelial cell differentiation. We discovered that mechanical forces generated from the inhalation of amniotic fluid by fetal breathing movements are essential for AT1 cell differentiation. We found that a large subset of alveolar progenitor cells is able to protrude from the airway epithelium toward the mesenchyme in an FGF10/FGFR2 signaling-dependent manner. The cell protrusion process results in enrichment of myosin in the apical region of protruded cells; this myosin prevents these cells from being flattened by mechanical forces, thereby ensuring their AT2 cell fate. Our study demonstrates that mechanical forces and local growth factors synergistically control alveolar epithelial cell differentiation.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Identification of Neurotensin Receptor Expressing Cells in the Ventral Tegmental Area across the Lifespan.

  • Woodworth HL
  • eNeuro
  • 2018 Feb 22

Literature context:


Abstract:

Neurotensin (Nts) promotes activation of dopamine (DA) neurons in the ventral tegmental area (VTA) via incompletely understood mechanisms. Nts can signal via the G protein-coupled Nts receptors 1 and 2 (NtsR1 and NtsR2), but the lack of methods to detect NtsR1- and NtsR2-expressing cells has limited mechanistic understanding of Nts action. To overcome this challenge, we generated dual recombinase mice that express FlpO-dependent Cre recombinase in NtsR1 or NtsR2 cells. This strategy permitted temporal control over recombination, such that we could identify NtsR1- or NtsR2-expressing cells and determine whether their distributions differed between the developing and adult brain. Using this system, we found that NtsR1 is transiently expressed in nearly all DA neurons and in many non-DA neurons in the VTA during development. However, NtsR1 expression is more restricted within the adult brain, where only two thirds of VTA DA neurons expressed NtsR1. By contrast, NtsR2 expression remains constant throughout lifespan, but it is predominantly expressed within glia. Anterograde tract tracing revealed that NtsR1 is expressed by mesolimbic, not mesocortical DA neurons, suggesting that VTA NtsR1 neurons may represent a functionally unique subset of VTA DA neurons. Collectively, this work reveals a cellular mechanism by which Nts can directly engage NtsR1-expressing DA neurons to modify DA signaling. Going forward, the dual recombinase strategy developed here will be useful to selectively modulate NtsR1- and NtsR2-expressing cells and to parse their contributions to Nts-mediated behaviors.

Funding information:
  • NIAID NIH HHS - R01 AI087528(United States)
  • NIDDK NIH HHS - F30 DK107163()
  • NIDDK NIH HHS - R01 DK103808()
  • NIGMS NIH HHS - T32 GM092715()

Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential.

  • Judson RN
  • Cell Stem Cell
  • 2018 Feb 1

Literature context:


Abstract:

The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.

Funding information:
  • BLRD VA - I01 BX002324()
  • NCI NIH HHS - R01 CA073808(United States)
  • NIA NIH HHS - P01 AG036695()
  • NIAMS NIH HHS - R21 AR071039()
  • RRD VA - I01 RX001222()

A Metabolic Basis for Endothelial-to-Mesenchymal Transition.

  • Xiong J
  • Mol. Cell
  • 2018 Feb 15

Literature context:


Abstract:

Endothelial-to-mesenchymal transition (EndoMT) is a cellular process often initiated by the transforming growth factor β (TGF-β) family of ligands. Although required for normal heart valve development, deregulated EndoMT is linked to a wide range of pathological conditions. Here, we demonstrate that endothelial fatty acid oxidation (FAO) is a critical in vitro and in vivo regulator of EndoMT. We further show that this FAO-dependent metabolic regulation of EndoMT occurs through alterations in intracellular acetyl-CoA levels. Disruption of FAO via conditional deletion of endothelial carnitine palmitoyltransferase II (Cpt2E-KO) augments the magnitude of embryonic EndoMT, resulting in thickening of cardiac valves. Consistent with the known pathological effects of EndoMT, adult Cpt2E-KO mice demonstrate increased permeability in multiple vascular beds. Taken together, these results demonstrate that endothelial FAO is required to maintain endothelial cell fate and that therapeutic manipulation of endothelial metabolism could provide the basis for treating a growing number of EndoMT-linked pathological conditions.

Funding information:
  • Intramural NIH HHS - Z01 HL005012-11()
  • NHLBI NIH HHS - K08 HL121174()
  • NIA NIH HHS - P30 AG024827()
  • NIDDK NIH HHS - T32 DK007052()
  • NIGMS NIH HHS - GM084445(United States)
  • NINDS NIH HHS - R01 NS072241()

Excitation of Cortical nNOS/NK1R Neurons by Hypocretin 1 is Independent of Sleep Homeostasis.

  • Williams RH
  • Cereb. Cortex
  • 2018 Feb 16

Literature context:


Abstract:

We have proposed that cortical nNOS/NK1R interneurons have a role in sleep homeostasis. The hypocretins (orexins) are wake-promoting neuropeptides and hypocretin/orexin (Hcrt) neurons project to the cortex. Hcrt peptides affect deep layer cortical neurons, and Hcrt receptor 1 (Hcrtr1; Ox1r) mRNA is expressed in cortical nNOS/NK1R cells. Therefore, we investigated whether Hcrt neuron stimulation affects cingulate cortex nNOS/NK1R neurons. Bath application of HCRT1/orexin-A evoked an inward current and membrane depolarization in most nNOS/NK1R cells which persisted in tetrodotoxin; optogenetic stimulation of Hcrt terminals expressing channelrhodopsin-2 confirmed these results, and pharmacological studies determined that HCRTR1 mediated these responses. Single-cell RT-PCR found Hcrtr1 mRNA in 31% of nNOS/NK1R cells without any Hcrtr2 mRNA expression; immunohistochemical studies of Hcrtr1-EGFP mice confirmed that a minority of nNOS/NK1R cells express HCRTR1. When Hcrt neurons degenerated in orexin-tTA;TetO DTA mice, the increased EEG delta power during NREM sleep produced in response to 4 h sleep deprivation and c-FOS expression in cortical nNOS/NK1R cells during recovery sleep were indistinguishable from that of controls. We conclude that Hcrt excitatory input to these deep layer cells is mediated through HCRTR1 but is unlikely to be involved in the putative role of cortical nNOS/NK1R neurons in sleep homeostasis.

Funding information:
  • NHLBI NIH HHS - R01 HL059658()
  • NINDS NIH HHS - R01 NS077408()
  • NINDS NIH HHS - R01 NS098813()
  • Wellcome Trust - (United Kingdom)

Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

  • Tang Z
  • Dev. Cell
  • 2018 Feb 5

Literature context:


Abstract:

Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis.

Sonic Hedgehog and WNT Signaling Promote Adrenal Gland Regeneration in Male Mice.

  • Finco I
  • Endocrinology
  • 2018 Feb 1

Literature context:


Abstract:

The atrophy and hypofunction of the adrenal cortex following long-term pharmacologic glucocorticoid therapy is a major health problem necessitating chronic glucocorticoid replacement that often prolongs the ultimate return of endogenous adrenocortical function. Underlying this functional recovery is anatomic regeneration, the cellular and molecular mechanisms of which are poorly understood. Investigating the lineage contribution of cortical Sonic hedgehog (Shh)+ progenitor cells and the SHH-responsive capsular Gli1+ cells to the regenerating adrenal cortex, we observed a spatially and temporally bimodal contribution of both cell types to adrenocortical regeneration following cessation of glucocorticoid treatment. First, an early repopulation of the cortex is defined by a marked delamination and expansion of capsular Gli1+ cells, recapitulating the establishment of the capsular-cortical homeostatic niche during embryonic development. This rapid repopulation is promptly cleared from the cortical compartment only to be supplanted by repopulating cortical cells derived from the resident long-term-retained zona glomerulosa Shh+ progenitors. Pharmacologic and genetic dissection of SHH signaling further defines an SHH-dependent activation of WNT signaling that supports regeneration of the cortex following long-term glucocorticoid therapy. We define the signaling and lineage relationships that underlie the regeneration process.

Funding information:
  • NIDDK NIH HHS - R01 DK062027()
  • Wellcome Trust - (United Kingdom)

A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates Neuronal Specification.

  • Zahr SK
  • Neuron
  • 2018 Feb 7

Literature context:


Abstract:

The mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA, but not protein, for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 (Pum2) and the 4E-T protein. Disruption of these repressive complexes in RPs mid-neurogenesis by knocking down 4E-T or Pum2 causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial layer neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a Pum2/4E-T complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.

Funding information:
  • Canadian Institutes of Health Research - MOP-111003(Canada)

Long-term, dynamic synaptic reorganization after GABAergic precursor cell transplantation into adult mouse spinal cord.

  • Llewellyn-Smith IJ
  • J. Comp. Neurol.
  • 2018 Feb 15

Literature context:


Abstract:

Transplanting embryonic precursors of GABAergic neurons from the medial ganglionic eminence (MGE) into adult mouse spinal cord ameliorates mechanical and thermal hypersensitivity in peripheral nerve injury models of neuropathic pain. Although Fos and transneuronal tracing studies strongly suggest that integration of MGE-derived neurons into host spinal cord circuits underlies recovery of function, the extent to which there is synaptic integration of the transplanted cells has not been established. Here, we used electron microscopic immunocytochemistry to assess directly integration of GFP-expressing MGE-derived neuronal precursors into dorsal horn circuitry in intact, adult mice with short- (5-6 weeks) or long-term (4-6 months) transplants. We detected GFP with pre-embedding avidin-biotin-peroxidase and GABA with post-embedding immunogold labeling. At short and long times post-transplant, we found host-derived synapses on GFP-immunoreactive MGE cells bodies and dendrites. The proportion of dendrites with synaptic input increased from 50% to 80% by 6 months. In all mice, MGE-derived terminals formed synapses with GFP-negative (host) cell bodies and dendrites and, unexpectedly, with some GFP-positive (i.e., MGE-derived) dendrites, possibly reflecting autoapses or cross talk among transplanted neurons. We also observed axoaxonic appositions between MGE and host terminals. Immunogold labeling for GABA confirmed that the transplanted cells were GABAergic and that some transplanted cells received an inhibitory GABAergic input. We conclude that transplanted MGE neurons retain their GABAergic phenotype and integrate dynamically into host-transplant synaptic circuits. Taken together with our previous electrophysiological analyses, we conclude that MGE cells are not GABA pumps, but alleviate pain and itch through synaptic release of GABA.

Funding information:
  • NCI NIH HHS - P50 CA127001(United States)

Recurrent Circuitry for Balancing Sleep Need and Sleep.

  • Donlea JM
  • Neuron
  • 2018 Jan 17

Literature context:


Abstract:

Sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila are integral to sleep homeostasis, but how these cells impose sleep on the organism is unknown. We report that dFB neurons communicate via inhibitory transmitters, including allatostatin-A (AstA), with interneurons connecting the superior arch with the ellipsoid body of the central complex. These "helicon cells" express the galanin receptor homolog AstA-R1, respond to visual input, gate locomotion, and are inhibited by AstA, suggesting that dFB neurons promote rest by suppressing visually guided movement. Sleep changes caused by enhanced or diminished allatostatinergic transmission from dFB neurons and by inhibition or optogenetic stimulation of helicon cells support this notion. Helicon cells provide excitation to R2 neurons of the ellipsoid body, whose activity-dependent plasticity signals rising sleep pressure to the dFB. By virtue of this autoregulatory loop, dFB-mediated inhibition interrupts processes that incur a sleep debt, allowing restorative sleep to rebalance the books. VIDEO ABSTRACT.

Funding information:
  • Intramural NIH HHS - ZIA BC010301-16(United States)
  • NIDA NIH HHS - R01 NS096290()
  • Wellcome Trust - 090309()
  • Wellcome Trust - R01 DA030601()

The Dynamic Landscape of Open Chromatin during Human Cortical Neurogenesis.

  • de la Torre-Ubieta L
  • Cell
  • 2018 Jan 11

Literature context:


Abstract:

Non-coding regions comprise most of the human genome and harbor a significant fraction of risk alleles for neuropsychiatric diseases, yet their functions remain poorly defined. We created a high-resolution map of non-coding elements involved in human cortical neurogenesis by contrasting chromatin accessibility and gene expression in the germinal zone and cortical plate of the developing cerebral cortex. We link distal regulatory elements (DREs) to their cognate gene(s) together with chromatin interaction data and show that target genes of human-gained enhancers (HGEs) regulate cortical neurogenesis and are enriched in outer radial glia, a cell type linked to human cortical evolution. We experimentally validate the regulatory effects of predicted enhancers for FGFR2 and EOMES. We observe that common genetic variants associated with educational attainment, risk for neuropsychiatric disease, and intracranial volume are enriched within regulatory elements involved in cortical neurogenesis, demonstrating the importance of this early developmental process for adult human cognitive function.

Funding information:
  • NIGMS NIH HHS - R01 GM079719(United States)
  • NIMH NIH HHS - R00 MH102357()
  • NIMH NIH HHS - R01 MH110927()

Sonic Hedgehog Is a Remotely Produced Cue that Controls Axon Guidance Trans-axonally at a Midline Choice Point.

  • Peng J
  • Neuron
  • 2018 Jan 17

Literature context:


Abstract:

At the optic chiasm choice point, ipsilateral retinal ganglion cells (RGCs) are repelled away from the midline by guidance cues, including Ephrin-B2 and Sonic Hedgehog (Shh). Although guidance cues are normally produced by cells residing at the choice point, the mRNA for Shh is not found at the optic chiasm. Here we show that Shh protein is instead produced by contralateral RGCs at the retina, transported anterogradely along the axon, and accumulates at the optic chiasm to repel ipsilateral RGCs. In vitro, contralateral RGC axons, which secrete Shh, repel ipsilateral RGCs in a Boc- and Smo-dependent manner. Finally, knockdown of Shh in the contralateral retina causes a decrease in the proportion of ipsilateral RGCs in a non-cell-autonomous manner. These findings reveal a role for axon-axon interactions in ipsilateral RGC guidance, and they establish that remotely produced cues can act at axon guidance midline choice points.

Abrogated Freud-1/Cc2d1a Repression of 5-HT1A Autoreceptors Induces Fluoxetine-Resistant Anxiety/Depression-Like Behavior.

  • Vahid-Ansari F
  • J. Neurosci.
  • 2017 Dec 6

Literature context:


Abstract:

Freud-1/Cc2d1a represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo, we generated mice with adulthood conditional knock-out of Freud-1 in 5-HT neurons (cF1ko). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knock-out (cF1/1A dko) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behavior was seen upon knock-out of Freud-1 on the 5-HT1A autoreceptor-negative background; rather, a reduction in depression-like behavior emerged. These studies implicate transcriptional dysregulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors, such as Freud-1, to restore transcriptional balance may augment response to antidepressant treatment.SIGNIFICANCE STATEMENT Altered regulation of the 5-HT1A autoreceptor has been implicated in human anxiety, major depression, suicide, and resistance to antidepressants. This study uniquely identifies a single transcription factor, Freud-1, as crucial for 5-HT1A autoreceptor expression in vivo Disruption of Freud-1 in serotonin neurons in mice links upregulation of 5-HT1A autoreceptors to anxiety/depression-like behavior and provides a new model of antidepressant resistance. Treatment strategies to reestablish transcriptional regulation of 5-HT1A autoreceptors could provide a more robust and sustained antidepressant response.

Funding information:
  • NCI NIH HHS - 5P20CA90578(United States)

Zebrafish Regulatory T Cells Mediate Organ-Specific Regenerative Programs.

  • Hui SP
  • Dev. Cell
  • 2017 Dec 18

Literature context:


Abstract:

The attenuation of ancestral pro-regenerative pathways may explain why humans do not efficiently regenerate damaged organs. Vertebrate lineages that exhibit robust regeneration, including the teleost zebrafish, provide insights into the maintenance of adult regenerative capacity. Using established models of spinal cord, heart, and retina regeneration, we discovered that zebrafish Treg-like (zTreg) cells rapidly homed to damaged organs. Conditional ablation of zTreg cells blocked organ regeneration by impairing precursor cell proliferation. In addition to modulating inflammation, infiltrating zTreg cells stimulated regeneration through interleukin-10-independent secretion of organ-specific regenerative factors (Ntf3: spinal cord; Nrg1: heart; Igf1: retina). Recombinant regeneration factors rescued the regeneration defects associated with zTreg cell depletion, whereas Foxp3a-deficient zTreg cells infiltrated damaged organs but failed to express regenerative factors. Our data delineate organ-specific roles for Treg cells in maintaining pro-regenerative capacity that could potentially be harnessed for diverse regenerative therapies.

Funding information:
  • NIEHS NIH HHS - ES016005(United States)

Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop.

  • Chen X
  • Cell Stem Cell
  • 2017 Dec 7

Literature context:


Abstract:

Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via lipopolysaccharide (LPS) treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically primed MB-HSCs to enforce homeostasis.

Funding information:
  • NCI NIH HHS - P30 CA013696()
  • NCI NIH HHS - R35 CA197745()
  • NCRR NIH HHS - S10 RR027050()
  • NHLBI NIH HHS - R01 HL115145()
  • NIDDK NIH HHS - R01 DK048077()
  • NIGMS NIH HHS - GM087476(United States)
  • NIH HHS - S10 OD012351()
  • NIH HHS - S10 OD020056()
  • NIH HHS - S10 OD021764()

Distinct projection targets define subpopulations of mouse brainstem vagal neurons that express the autism-associated MET receptor tyrosine kinase.

  • Kamitakahara A
  • J. Comp. Neurol.
  • 2017 Dec 15

Literature context:


Abstract:

Detailed anatomical tracing and mapping of the viscerotopic organization of the vagal motor nuclei has provided insight into autonomic function in health and disease. To further define specific cellular identities, we paired information based on visceral connectivity with a cell-type specific marker of a subpopulation of neurons in the dorsal motor nucleus of the vagus (DMV) and nucleus ambiguus (nAmb) that express the autism-associated MET receptor tyrosine kinase. As gastrointestinal disturbances are common in children with autism spectrum disorder (ASD), we sought to define the relationship between MET-expressing (MET+) neurons in the DMV and nAmb, and the gastrointestinal tract. Using wholemount tissue staining and clearing, or retrograde tracing in a METEGFP transgenic mouse, we identify three novel subpopulations of EGFP+ vagal brainstem neurons: (a) EGFP+ neurons in the nAmb projecting to the esophagus or laryngeal muscles, (b) EGFP+ neurons in the medial DMV projecting to the stomach, and (b) EGFP+ neurons in the lateral DMV projecting to the cecum and/or proximal colon. Expression of the MET ligand, hepatocyte growth factor (HGF), by tissues innervated by vagal motor neurons during fetal development reveal potential sites of HGF-MET interaction. Furthermore, similar cellular expression patterns of MET in the brainstem of both the mouse and nonhuman primate suggests that MET expression at these sites is evolutionarily conserved. Together, the data suggest that MET+ neurons in the brainstem vagal motor nuclei are anatomically positioned to regulate distinct portions of the gastrointestinal tract, with implications for the pathophysiology of gastrointestinal comorbidities of ASD.

Nigrotectal Stimulation Stops Interval Timing in Mice.

  • Toda K
  • Curr. Biol.
  • 2017 Dec 18

Literature context:


Abstract:

Considerable evidence implicates the basal ganglia in interval timing, yet the underlying mechanisms remain poorly understood. Using a novel behavioral task, we demonstrate that head-fixed mice can be trained to show the key features of timing behavior within a few sessions. Single-trial analysis of licking behavior reveals stepping dynamics with variable onset times, which is responsible for the canonical Gaussian distribution of timing behavior. Moreover, the duration of licking bouts decreased as mice became sated, showing a strong motivational modulation of licking bout initiation and termination. Using optogenetics, we examined the role of the basal ganglia output in interval timing. We stimulated a pathway important for licking behavior, the GABAergic output projections from the substantia nigra pars reticulata to the deep layers of the superior colliculus. We found that stimulation of this pathway not only cancelled licking but also delayed the initiation of anticipatory licking for the next interval in a frequency-dependent manner. By combining quantitative behavioral analysis with optogenetics in the head-fixed setup, we established a new approach for studying the neural basis of interval timing.

Funding information:
  • Intramural NIH HHS - Z01 ES70065,(United States)

mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance.

  • Haller S
  • Cell Stem Cell
  • 2017 Dec 7

Literature context:


Abstract:

The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.

Funding information:
  • BLRD VA - I01 BX002324()
  • NCRR NIH HHS - UL1 RR024989(United States)
  • NHLBI NIH HHS - R01 HL132996()
  • NIA NIH HHS - K99 AG041764()
  • NIA NIH HHS - P01 AG036695()
  • NIA NIH HHS - R00 AG041764()
  • NIA NIH HHS - R01 AG047497()
  • NIA NIH HHS - R01 AG047820()
  • NIA NIH HHS - R37 AG023806()
  • NIDDK NIH HHS - R01 DK100342()
  • NIDDK NIH HHS - R01 DK113144()

Therapeutic Antibody Targeting Tumor- and Osteoblastic Niche-Derived Jagged1 Sensitizes Bone Metastasis to Chemotherapy.

  • Zheng H
  • Cancer Cell
  • 2017 Dec 11

Literature context:


Abstract:

Bone metastasis is a major health threat to breast cancer patients. Tumor-derived Jagged1 represents a central node in mediating tumor-stromal interactions that promote osteolytic bone metastasis. Here, we report the development of a highly effective fully human monoclonal antibody against Jagged1 (clone 15D11). In addition to its inhibitory effect on bone metastasis of Jagged1-expressing tumor cells, 15D11 dramatically sensitizes bone metastasis to chemotherapy, which induces Jagged1 expression in osteoblasts to provide a survival niche for cancer cells. We further confirm the bone metastasis-promoting function of osteoblast-derived Jagged1 using osteoblast-specific Jagged1 transgenic mouse model. These findings establish 15D11 as a potential therapeutic agent for the prevention or treatment of bone metastasis.

Funding information:
  • NCI NIH HHS - P30 CA072720()
  • NCI NIH HHS - R01 CA134519()
  • NCI NIH HHS - R01 CA141062()
  • NCI NIH HHS - R01 CA212410()
  • NIGMS NIH HHS - R29 GM053989(United States)

Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins.

  • Smith KR
  • J. Neurosci.
  • 2017 Nov 15

Literature context:


Abstract:

Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions.SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism.

Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium.

  • Coleman JH
  • J. Comp. Neurol.
  • 2017 Nov 1

Literature context:


Abstract:

Neurons in the olfactory epithelium (OE) each express a single dominant olfactory receptor (OR) allele from among roughly 1,000 different OR genes. While monogenic and monoallelic OR expression has been appreciated for over two decades, regulators of this process are still being described; most recently, epigenetic modifiers have been of high interest as silent OR genes are decorated with transcriptionally repressive trimethylated histone 3 lysine 9 (H3K9me3) whereas active OR genes are decorated with transcriptionally activating trimethylated histone 3 lysine 4 (H3K4me3). The lysine specific demethylase 1 (LSD1) demethylates at both of these lysine residues and has been shown to disrupt neuronal maturation and OR expression in the developing embryonic OE. Despite the growing literature on LSD1 expression in the OE, a complete characterization of the timing of LSD1 expression relative to neuronal maturation and of the function of LSD1 in the adult OE have yet to be reported. To fill this gap, the present study determined that LSD1 (1) is expressed in early dividing cells before OR expression and neuronal maturation and decreases at the time of OR stabilization; (2) colocalizes with the repressor CoREST (also known as RCOR1) and histone deacetylase 2 in these early dividing cells; and (3) is required for neuronal maturation during a distinct time window between activating reserve stem cells (horizontal basal cells) and Neurogenin1 (+) immediate neuronal precursors. Thus, this study clarifies the role of LSD1 in olfactory neuronal maturation.

Myotome adaptability confers developmental robustness to somitic myogenesis in response to fibre number alteration.

  • Roy SD
  • Dev. Biol.
  • 2017 Nov 15

Literature context:


Abstract:

Balancing the number of stem cells and their progeny is crucial for tissue development and repair. Here we examine how cell numbers and overall muscle size are tightly regulated during zebrafish somitic muscle development. Muscle stem/precursor cell (MPCs) expressing Pax7 are initially located in the dermomyotome (DM) external cell layer, adopt a highly stereotypical distribution and thereafter a proportion of MPCs migrate into the myotome. Regional variations in the proliferation and terminal differentiation of MPCs contribute to growth of the myotome. To probe the robustness of muscle size control and spatiotemporal regulation of MPCs, we compared the behaviour of wild type (wt) MPCs with those in mutant zebrafish that lack the muscle regulatory factor Myod. Myodfh261 mutants form one third fewer multinucleate fast muscle fibres than wt and show a significant expansion of the Pax7+ MPC population in the DM. Subsequently, myodfh261 mutant fibres generate more cytoplasm per nucleus, leading to recovery of muscle bulk. In addition, relative to wt siblings, there is an increased number of MPCs in myodfh261 mutants and these migrate prematurely into the myotome, differentiate and contribute to the hypertrophy of existing fibres. Thus, homeostatic reduction of the excess MPCs returns their number to normal levels, but fibre numbers remain low. The GSK3 antagonist BIO prevents MPC migration into the deep myotome, suggesting that canonical Wnt pathway activation maintains the DM in zebrafish, as in amniotes. BIO does not, however, block recovery of the myodfh261 mutant myotome, indicating that homeostasis acts on fibre intrinsic growth to maintain muscle bulk. The findings suggest the existence of a critical window for early fast fibre formation followed by a period in which homeostatic mechanisms regulate myotome growth by controlling fibre size. The feedback controls we reveal in muscle help explain the extremely precise grading of myotome size along the body axis irrespective of fish size, nutrition and genetic variation and may form a paradigm for wider matching of organ size.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/K010115/1()
  • Biotechnology and Biological Sciences Research Council - BB/I025883/1()
  • Medical Research Council - G1001029()
  • Medical Research Council - MR/N021231/1()
  • Wellcome Trust - 101529/Z/13/Z()

Notch Signaling Controls Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury.

  • Yao E
  • Stem Cells
  • 2017 Nov 18

Literature context:


Abstract:

Production of an appropriate number of distinct cell types in precise locations during embryonic development is critical for proper tissue function. Homeostatic renewal or repair of damaged tissues in adults also requires cell expansion and transdifferentiation to replenish lost cells. However, the responses of diverse cell types to tissue injury are not fully elucidated. Moreover, the molecular mechanisms underlying transdifferentiation remain poorly understood. This knowledge is essential for harnessing the regenerative potential of individual cell types. This study investigated the fate of pulmonary neuroendocrine cells (PNECs) following lung damage to understand their plasticity and potential. PNECs are proposed to carry out diverse physiological functions in the lung and can also be the cells of origin of human small cell lung cancer. We found that Notch signaling is activated in proliferating PNECs in response to epithelial injury. Forced induction of high levels of Notch signaling in PNECs in conjunction with lung injury results in extensive proliferation and transdifferentiation of PNECs toward the fate of club cells, ciliated cells and goblet cells. Conversely, inactivating Notch signaling in PNECs abolishes their ability to switch cell fate following lung insult. We also established a connection between PNEC transdifferentiation and epigenetic modification mediated by the polycomb repressive complex 2 and inflammatory responses that involve the IL6-STAT3 pathway. These studies not only reveal a major pathway that controls PNEC fate change following lung injury but also provide tools to uncover the molecular basis of cell proliferation and fate determination in response to lung injury. Stem Cells 2018;36:377-391.

Funding information:
  • NIAID NIH HHS - R01 AI083450-04(United States)

Melanocyte Stem Cell Activation and Translocation Initiate Cutaneous Melanoma in Response to UV Exposure.

  • Moon H
  • Cell Stem Cell
  • 2017 Nov 2

Literature context:


Abstract:

Melanoma is one of the deadliest cancers, yet the cells of origin and mechanisms of tumor initiation remain unclear. The majority of melanomas emerge from clear skin without a precursor lesion, but it is unknown whether these melanomas can arise from melanocyte stem cells (MCSCs). Here we employ mouse models to define the role of MCSCs as melanoma cells of origin, demonstrate that MCSC quiescence acts as a tumor suppressor, and identify the extrinsic environmental and molecular factors required for the critical early steps of melanoma initiation. Specifically, melanomas originate from melanoma-competent MCSCs upon stimulation by UVB, which induces MCSC activation and translocation via an inflammation-dependent process. Moreover, the chromatin-remodeling factor Hmga2 in the skin plays a critical role in UVB-mediated melanomagenesis. These findings delineate melanoma formation from melanoma-competent MCSCs following extrinsic stimuli, and they suggest that abrogation of Hmga2 function in the microenvironment can suppress MCSC-originating cutaneous melanomas.

Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus.

  • Liu J
  • Neuron
  • 2017 Nov 15

Literature context:


Abstract:

Glucagon-like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA)-dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. VIDEO ABSTRACT.

Myosin II Controls Junction Fluctuations to Guide Epithelial Tissue Ordering.

  • Curran S
  • Dev. Cell
  • 2017 Nov 20

Literature context:


Abstract:

Under conditions of homeostasis, dynamic changes in the length of individual adherens junctions (AJs) provide epithelia with the fluidity required to maintain tissue integrity in the face of intrinsic and extrinsic forces. While the contribution of AJ remodeling to developmental morphogenesis has been intensively studied, less is known about AJ dynamics in other circumstances. Here, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order, without concomitant large-scale changes in tissue size or shape. We find that neighbor exchange events are driven by stochastic fluctuations in junction length, regulated in part by junctional actomyosin. In this context, the developmental increase of isotropic junctional actomyosin reduces the rate of neighbor exchange, contributing to tissue order. We propose a model in which the local variance in tension between junctions determines whether actomyosin-based forces will inhibit or drive the topological transitions that either refine or deform a tissue.

Funding information:
  • NCRR NIH HHS - P51RR165(United States)

Jak2-mediated phosphorylation of Atoh1 is critical for medulloblastoma growth.

  • Klisch TJ
  • Elife
  • 2017 Nov 23

Literature context:


Abstract:

Treatment for medulloblastoma, the most common malignant brain tumor in children, remains limited to surgical resection, radiation, and traditional chemotherapy; with long-term survival as low as 50-60% for Sonic Hedgehog (Shh)-type medulloblastoma. We have shown that the transcription factor Atonal homologue 1 (Atoh1) is required for Shh-type medulloblastoma development in mice. To determine whether reducing either Atoh1 levels or activity in tumors after their development is beneficial, we studied Atoh1 dosage and modifications in Shh-type medulloblastoma. Heterozygosity of Atoh1 reduced tumor occurrence and prolonged survival. We discovered tyrosine 78 of Atoh1 is phosphorylated by a Jak2-mediated pathway only in tumor-initiating cells and in human SHH-type medulloblastoma. Phosphorylation of tyrosine 78 stabilizes Atoh1, increases Atoh1's transcriptional activity, and is independent of canonical Jak2 signaling. Importantly, inhibition of Jak2 impairs tyrosine 78 phosphorylation and tumor growth in vivo. Taken together, inhibiting Jak2-mediated tyrosine 78 phosphorylation could provide a viable therapy for medulloblastoma.

Asymmetry of an Intracellular Scaffold at Vertebrate Electrical Synapses.

  • Marsh AJ
  • Curr. Biol.
  • 2017 Nov 20

Literature context:


Abstract:

Neuronal synaptic connections are either chemical or electrical, and these two types of synapses work together to dynamically define neural circuit function [1]. Although we know a great deal about the molecules that support chemical synapse formation and function, we know little about the macromolecular complexes that regulate electrical synapses. Electrical synapses are created by gap junction (GJ) channels that provide direct ionic communication between neurons [2]. Although they are often molecularly and functionally symmetric, recent work has found that pre- and postsynaptic neurons can contribute different GJ-forming proteins, creating molecularly asymmetric channels that are correlated with functional asymmetry at the synapse [3, 4]. Associated with the GJs are structures observed by electron microscopy termed the electrical synapse density (ESD) [5]. The ESD has been suggested to be critical for the formation and function of the electrical synapse, yet the biochemical makeup of these structures is poorly understood. Here we find that electrical synapse formation in vivo requires an intracellular scaffold called Tight Junction Protein 1b (Tjp1b). Tjp1b is localized to the electrical synapse, where it is required for the stabilization of the GJs and for electrical synapse function. Strikingly, we find that Tjp1b protein localizes and functions asymmetrically, exclusively on the postsynaptic side of the synapse. Our findings support a novel model of electrical synapse molecular asymmetry at the level of an intracellular scaffold that is required for building the electrical synapse. We propose that such ESD asymmetries could be used by all nervous systems to support molecular and functional asymmetries at electrical synapses.

Funding information:
  • European Research Council - (International)
  • NINDS NIH HHS - R00 NS085035()

H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas.

  • Pathania M
  • Cancer Cell
  • 2017 Nov 13

Literature context:


Abstract:

Gain-of-function mutations in histone 3 (H3) variants are found in a substantial proportion of pediatric high-grade gliomas (pHGG), often in association with TP53 loss and platelet-derived growth factor receptor alpha (PDGFRA) amplification. Here, we describe a somatic mouse model wherein H3.3K27M and Trp53 loss alone are sufficient for neoplastic transformation if introduced in utero. H3.3K27M-driven lesions are clonal, H3K27me3 depleted, Olig2 positive, highly proliferative, and diffusely spreading, thus recapitulating hallmark molecular and histopathological features of pHGG. Addition of wild-type PDGFRA decreases latency and increases tumor invasion, while ATRX knockdown is associated with more circumscribed tumors. H3.3K27M-tumor cells serially engraft in recipient mice, and preliminary drug screening reveals mutation-specific vulnerabilities. Overall, we provide a faithful H3.3K27M-pHGG model which enables insights into oncohistone pathogenesis and investigation of future therapies.

Funding information:
  • NCI NIH HHS - P01 CA196539()

Deprivation-Induced Homeostatic Spine Scaling In Vivo Is Localized to Dendritic Branches that Have Undergone Recent Spine Loss.

  • Barnes SJ
  • Neuron
  • 2017 Nov 15

Literature context:


Abstract:

Synaptic scaling is a key homeostatic plasticity mechanism and is thought to be involved in the regulation of cortical activity levels. Here we investigated the spatial scale of homeostatic changes in spine size following sensory deprivation in a subset of inhibitory (layer 2/3 GAD65-positive) and excitatory (layer 5 Thy1-positive) neurons in mouse visual cortex. Using repeated in vivo two-photon imaging, we find that increases in spine size are tumor necrosis factor alpha (TNF-α) dependent and thus are likely associated with synaptic scaling. Rather than occurring at all spines, the observed increases in spine size are spatially localized to a subset of dendritic branches and are correlated with the degree of recent local spine loss within that branch. Using simulations, we show that such a compartmentalized form of synaptic scaling has computational benefits over cell-wide scaling for information processing within the cell.

Funding information:
  • NIDA NIH HHS - R21 DA034195(United States)

NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex.

  • Zhang X
  • Front Neural Circuits
  • 2017 Oct 23

Literature context:


Abstract:

The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC). To investigate how NCAM deletion affects the spatial organization of inhibitory inputs to pyramidal cells, we used laser scanning photostimulation in brain slices of VGAT-ChR2-EYFP transgenic mice crossed to either NCAM-null or wild type (WT) mice. Laser scanning photostimulation revealed that NCAM deletion increased the strength of close-in inhibitory connections to layer 2/3 pyramidal cells of the ACC. In addition, in NCAM-null mice, the intrinsic excitability of pyramidal cells increased, whereas the intrinsic excitability of GABAergic interneurons did not change. The increase in inhibitory tone onto pyramidal cells, and the increased pyramidal cell excitability in NCAM-null mice will alter the delicate coordination of excitation and inhibition (E/I coordination) in the ACC, and may be a factor contributing to circuit dysfunction in diseases such as schizophrenia and bipolar disorder, in which NCAM has been implicated.

Funding information:
  • NIDCD NIH HHS - R01 DC009809()
  • NIMH NIH HHS - F32 MH111189()

Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats.

  • Hirschberg S
  • Elife
  • 2017 Oct 13

Literature context:


Abstract:

The locus coeruleus (LC) projects throughout the brain and spinal cord and is the major source of central noradrenaline. It remains unclear whether the LC acts functionally as a single global effector or as discrete modules. Specifically, while spinal-projections from LC neurons can exert analgesic actions, it is not known whether they can act independently of ascending LC projections. Using viral vectors taken up at axon terminals, we expressed chemogenetic actuators selectively in LC neurons with spinal (LC:SC) or prefrontal cortex (LC:PFC) projections. Activation of the LC:SC module produced robust, lateralised anti-nociception while activation of LC:PFC produced aversion. In a neuropathic pain model, LC:SC activation reduced hind-limb sensitisation and induced conditioned place preference. By contrast, activation of LC:PFC exacerbated spontaneous pain, produced aversion and increased anxiety-like behaviour. This independent, contrasting modulation of pain-related behaviours mediated by distinct noradrenergic neuronal populations provides evidence for a modular functional organisation of the LC.

Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

  • Chachlaki K
  • J. Comp. Neurol.
  • 2017 Oct 15

Literature context:


Abstract:

Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFPVglut2 , EYFPVgat , and GFPGad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes.

Lack of CaBP1/Caldendrin or CaBP2 Leads to Altered Ganglion Cell Responses.

  • Sinha R
  • eNeuro
  • 2017 Oct 31

Literature context:


Abstract:

Calcium-binding proteins (CaBPs) form a subfamily of calmodulin-like proteins that were cloned from the retina. CaBP4 and CaBP5 have been shown to be important for normal visual function. Although CaBP1/caldendrin and CaBP2 have been shown to modulate various targets in vitro, it is not known whether they contribute to the transmission of light responses through the retina. Therefore, we generated mice that lack CaBP2 or CaBP1/caldendrin (Cabp2-/- and Cabp1-/- ) to test whether these CaBPs are essential for normal retinal function. By immunohistochemistry, the overall morphology of Cabp1-/- and Cabp2-/- retinas and the number of synaptic ribbons appear normal; transmission electron microscopy shows normal tethered ribbon synapses and synaptic vesicles as in wild-type retinas. However, whole-cell patch clamp recordings showed that light responses of retinal ganglion cells of Cabp2-/- and Cabp1-/- mice differ in amplitude and kinetics from those of wild-type mice. We conclude that CaBP1/caldendrin and CaBP2 are not required for normal gross retinal and synapse morphology but are necessary for the proper transmission of light responses through the retina; like other CaBPs, CaBP1/caldendrin and CaBP2 likely act by modulating presynaptic Ca2+-dependent signaling mechanisms.

Funding information:
  • NIDDK NIH HHS - U01 DK062453(United States)

Dorsal Raphe Serotonergic Neurons Control Intertemporal Choice under Trade-off.

  • Xu S
  • Curr. Biol.
  • 2017 Oct 23

Literature context:


Abstract:

Appropriate choice about delayed reward is fundamental to the survival of animals. Although animals tend to prefer immediate reward, delaying gratification is often advantageous. The dorsal raphe (DR) serotonergic neurons have long been implicated in the processing of delayed reward, but it has been unclear whether or when their activity causally directs choice. Here, we transiently augmented or reduced the activity of DR serotonergic neurons, while mice decided between differently delayed rewards as they performed a novel odor-guided intertemporal choice task. We found that these manipulations, precisely targeted at the decision point, were sufficient to bidirectionally influence impulsive choice. The manipulation specifically affected choices with more difficult trade-off. Similar effects were observed when we manipulated the serotonergic projections to the nucleus accumbens (NAc). We propose that DR serotonergic neurons preempt reward delays at the decision point and play a critical role in suppressing impulsive choice by regulating decision trade-off.

Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning.

  • Kupferschmidt DA
  • Neuron
  • 2017 Oct 11

Literature context:


Abstract:

Changes in cortical and striatal function underlie the transition from novel actions to refined motor skills. How discrete, anatomically defined corticostriatal projections function in vivo to encode skill learning remains unclear. Using novel fiber photometry approaches to assess real-time activity of associative inputs from medial prefrontal cortex to dorsomedial striatum and sensorimotor inputs from motor cortex to dorsolateral striatum, we show that associative and sensorimotor inputs co-engage early in action learning and disengage in a dissociable manner as actions are refined. Disengagement of associative, but not sensorimotor, inputs predicts individual differences in subsequent skill learning. Divergent somatic and presynaptic engagement in both projections during early action learning suggests potential learning-related in vivo modulation of presynaptic corticostriatal function. These findings reveal parallel processing within associative and sensorimotor circuits that challenges and refines existing views of corticostriatal function and expose neuronal projection- and compartment-specific activity dynamics that encode and predict action learning.

Identification and functional characterization of muscle satellite cells in Drosophila.

  • Chaturvedi D
  • Elife
  • 2017 Oct 26

Literature context:


Abstract:

Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly, however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study, we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta-dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells.

Single-Cell Reconstruction of Oxytocinergic Neurons Reveals Separate Hypophysiotropic and Encephalotropic Subtypes in Larval Zebrafish.

  • Herget U
  • eNeuro
  • 2017 Oct 31

Literature context:


Abstract:

Oxytocin regulates a diverse set of processes including stress, analgesia, metabolism, and social behavior. How such diverse functions are mediated by a single hormonal system is not well understood. Different functions of oxytocin could be mediated by distinct cell groups, yet it is currently unknown whether different oxytocinergic cell types exist that specifically mediate peripheral neuroendocrine or various central neuromodulatory processes via dedicated pathways. Using the Brainbow technique to map the morphology and projections of individual oxytocinergic cells in the larval zebrafish brain, we report here the existence of two main types of oxytocinergic cells: those that innervate the pituitary and those that innervate diverse brain regions. Similar to the situation in the adult rat and the adult midshipman, but in contrast to the situation in the adult trout, these two cell types are mutually exclusive and can be distinguished based on morphological and anatomical criteria. Further, our results reveal that complex oxytocinergic innervation patterns are already established in the larval zebrafish brain.

Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills.

  • Wang X
  • Cell
  • 2017 Oct 5

Literature context:


Abstract:

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.

Parvalbumin and Somatostatin Interneurons Control Different Space-Coding Networks in the Medial Entorhinal Cortex.

  • Miao C
  • Cell
  • 2017 Oct 19

Literature context:


Abstract:

The medial entorhinal cortex (MEC) contains several discrete classes of GABAergic interneurons, but their specific contributions to spatial pattern formation in this area remain elusive. We employed a pharmacogenetic approach to silence either parvalbumin (PV)- or somatostatin (SOM)-expressing interneurons while MEC cells were recorded in freely moving mice. PV-cell silencing antagonized the hexagonally patterned spatial selectivity of grid cells, especially in layer II of MEC. The impairment was accompanied by reduced speed modulation in colocalized speed cells. Silencing SOM cells, in contrast, had no impact on grid cells or speed cells but instead decreased the spatial selectivity of cells with discrete aperiodic firing fields. Border cells and head direction cells were not affected by either intervention. The findings point to distinct roles for PV and SOM interneurons in the local dynamics underlying periodic and aperiodic firing in spatially modulated cells of the MEC. VIDEO ABSTRACT.

Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila.

  • Qian Y
  • Elife
  • 2017 Oct 6

Literature context:


Abstract:

Our understanding of the molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of, probably a single pair of, neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for the regulation of sleep homeostasis.

A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages.

  • Tchieu J
  • Cell Stem Cell
  • 2017 Sep 7

Literature context:


Abstract:

Directing the fate of human pluripotent stem cells (hPSCs) into different lineages requires variable starting conditions and components with undefined activities, introducing inconsistencies that confound reproducibility and assessment of specific perturbations. Here we introduce a simple, modular protocol for deriving the four main ectodermal lineages from hPSCs. By precisely varying FGF, BMP, WNT, and TGFβ pathway activity in a minimal, chemically defined medium, we show parallel, robust, and reproducible derivation of neuroectoderm, neural crest (NC), cranial placode (CP), and non-neural ectoderm in multiple hPSC lines, on different substrates independently of cell density. We highlight the utility of this system by interrogating the role of TFAP2 transcription factors in ectodermal differentiation, revealing the importance of TFAP2A in NC and CP specification, and performing a small-molecule screen that identified compounds that further enhance CP differentiation. This platform provides a simple stage for systematic derivation of the entire range of ectodermal cell types.

Funding information:
  • NINDS NIH HHS - R01 NS072381()

Anatomically and Functionally Distinct Lung Mesenchymal Populations Marked by Lgr5 and Lgr6.

  • Lee JH
  • Cell
  • 2017 Sep 7

Literature context:


Abstract:

The diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.

Funding information:
  • NCI NIH HHS - K99 CA187317()
  • NCI NIH HHS - P30 CA014051()
  • NCI NIH HHS - U24 CA180922()
  • NHLBI NIH HHS - R01 HL090136()
  • NHLBI NIH HHS - R01 HL125821()
  • NHLBI NIH HHS - U01 HL100402()
  • Wellcome Trust - R01 HL132266()

A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions.

  • Leinweber M
  • Neuron
  • 2017 Sep 13

Literature context:


Abstract:

The cortex is organized as a hierarchical processing structure. Feedback from higher levels of the hierarchy, known as top-down signals, have been shown to be involved in attentional and contextual modulation of sensory responses. Here we argue that top-down input to the primary visual cortex (V1) from A24b and the adjacent secondary motor cortex (M2) signals a prediction of visual flow based on motor output. A24b/M2 sends a dense and topographically organized projection to V1 that targets most neurons in layer 2/3. By imaging the activity of A24b/M2 axons in V1 of mice learning to navigate a 2D virtual environment, we found that their activity was strongly correlated with locomotion and resulting visual flow feedback in an experience-dependent manner. When mice were trained to navigate a left-right inverted virtual environment, correlations of neural activity with behavior reversed to match visual flow. These findings are consistent with a predictive coding interpretation of visual processing.

Open Chromatin Profiling in hiPSC-Derived Neurons Prioritizes Functional Noncoding Psychiatric Risk Variants and Highlights Neurodevelopmental Loci.

  • Forrest MP
  • Cell Stem Cell
  • 2017 Sep 7

Literature context:


Abstract:

Most disease variants lie within noncoding genomic regions, making their functional interpretation challenging. Because chromatin openness strongly influences transcriptional activity, we hypothesized that cell-type-specific open chromatin regions (OCRs) might highlight disease-relevant noncoding sequences. To investigate, we mapped global OCRs in neurons differentiating from hiPSCs, a cellular model for studying neurodevelopmental disorders such as schizophrenia (SZ). We found that the OCRs are highly dynamic and can stratify GWAS-implicated SZ risk variants. Of the more than 3,500 SZ-associated variants analyzed, we prioritized ∼100 putatively functional ones located in neuronal OCRs, including rs1198588, at a leading risk locus flanking MIR137. Excitatory neurons derived from hiPSCs with CRISPR/Cas9-edited rs1198588 or a rare proximally located SZ risk variant showed altered MIR137 expression, dendrite arborization, and synapse maturation. Our study shows that noncoding disease variants in OCRs can affect neurodevelopment, and that analysis of open chromatin regions can help prioritize functionally relevant noncoding variants identified by GWAS.

Funding information:
  • NIMH NIH HHS - R01 MH097216()
  • NIMH NIH HHS - R01 MH106575()
  • NIMH NIH HHS - R21 MH102685()
  • NINDS NIH HHS - R01 NS100785()

Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.

  • Assinck P
  • J. Neurosci.
  • 2017 Sep 6

Literature context:


Abstract:

Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.

Funding information:
  • NIDDK NIH HHS - DK072473(United States)

Satb1 Regulates Contactin 5 to Pattern Dendrites of a Mammalian Retinal Ganglion Cell.

  • Peng YR
  • Neuron
  • 2017 Aug 16

Literature context:


Abstract:

The size and shape of dendritic arbors are prime determinants of neuronal connectivity and function. We asked how ON-OFF direction-selective ganglion cells (ooDSGCs) in mouse retina acquire their bistratified dendrites, in which responses to light onset and light offset are segregated to distinct strata. We found that the transcriptional regulator Satb1 is selectively expressed by ooDSGCs. In Satb1 mutant mice, ooDSGC dendrites lack ON arbors, and the cells selectively lose ON responses. Satb1 regulates expression of a homophilic adhesion molecule, Contactin 5 (Cntn5). Both Cntn5 and its co-receptor Caspr4 are expressed not only by ooDSGCs, but also by interneurons that form a scaffold on which ooDSGC ON dendrites fasciculate. Removing Cntn5 from either ooDSGCs or interneurons partially phenocopies Satb1 mutants, demonstrating that Satb1-dependent Cntn5 expression in ooDSGCs leads to branch-specific homophilic interactions with interneurons. Thus, Satb1 directs formation of a morphologically and functionally specialized compartment within a complex dendritic arbor.

Funding information:
  • NEI NIH HHS - R01 EY022073()
  • NINDS NIH HHS - R37 NS029169()

Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

  • Aguilar JI
  • Neuron
  • 2017 Aug 30

Literature context:


Abstract:

The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content.

A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions.

  • Liu Y
  • Neuron
  • 2017 Aug 16

Literature context:


Abstract:

A major hurdle for functional recovery after both spinal cord injury and cortical stroke is the limited regrowth of the axons in the corticospinal tract (CST) that originate in the motor cortex and innervate the spinal cord. Despite recent advances in engaging the intrinsic mechanisms that control CST regrowth, it remains to be tested whether such methods can promote functional recovery in translatable settings. Here we show that post-lesional AAV-assisted co-expression of two soluble proteins, namely insulin-like growth factor 1 (IGF1) and osteopontin (OPN), in cortical neurons leads to robust CST regrowth and the recovery of CST-dependent behavioral performance after both T10 lateral spinal hemisection and a unilateral cortical stroke. In these mice, a compound able to increase axon conduction, 4-aminopyridine-3-methanol, promotes further improvement in CST-dependent behavioral tasks. Thus, our results demonstrate a potentially translatable strategy for restoring cortical dependent function after injury in the adult.

Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence.

  • Chai H
  • Neuron
  • 2017 Aug 2

Literature context:


Abstract:

Astrocytes are ubiquitous in the brain and are widely held to be largely identical. However, this view has not been fully tested, and the possibility that astrocytes are neural circuit specialized remains largely unexplored. Here, we used multiple integrated approaches, including RNA sequencing (RNA-seq), mass spectrometry, electrophysiology, immunohistochemistry, serial block-face-scanning electron microscopy, morphological reconstructions, pharmacogenetics, and diffusible dye, calcium, and glutamate imaging, to directly compare adult striatal and hippocampal astrocytes under identical conditions. We found significant differences in electrophysiological properties, Ca2+ signaling, morphology, and astrocyte-synapse proximity between striatal and hippocampal astrocytes. Unbiased evaluation of actively translated RNA and proteomic data confirmed significant astrocyte diversity between hippocampal and striatal circuits. We thus report core astrocyte properties, reveal evidence for specialized astrocytes within neural circuits, and provide new, integrated database resources and approaches to explore astrocyte diversity and function throughout the adult brain. VIDEO ABSTRACT.

Proximodistal Heterogeneity of Hippocampal CA3 Pyramidal Neuron Intrinsic Properties, Connectivity, and Reactivation during Memory Recall.

  • Sun Q
  • Neuron
  • 2017 Aug 2

Literature context:


Abstract:

The hippocampal CA3 region is classically viewed as a homogeneous autoassociative network critical for associative memory and pattern completion. However, recent evidence has demonstrated a striking heterogeneity along the transverse, or proximodistal, axis of CA3 in spatial encoding and memory. Here we report the presence of striking proximodistal gradients in intrinsic membrane properties and synaptic connectivity for dorsal CA3. A decreasing gradient of mossy fiber synaptic strength along the proximodistal axis is mirrored by an increasing gradient of direct synaptic excitation from entorhinal cortex. Furthermore, we uncovered a nonuniform pattern of reactivation of fear memory traces, with the most robust reactivation during memory retrieval occurring in mid-CA3 (CA3b), the region showing the strongest net recurrent excitation. Our results suggest that heterogeneity in both intrinsic properties and synaptic connectivity may contribute to the distinct spatial encoding and behavioral role of CA3 subregions along the proximodistal axis.

Funding information:
  • NIMH NIH HHS - R01 MH104602()
  • NIMH NIH HHS - R01 MH106629()

Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice.

  • Chen KS
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context:


Abstract:

The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.

The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release.

  • Rau AR
  • J. Neurosci.
  • 2017 Aug 2

Literature context:


Abstract:

Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation.SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these cells remains poorly understood. To provide clarity to this circuit, we made electrophysiological recordings from mouse brain slices and found that AgRP neurons do not contribute spontaneously released GABA onto POMC neurons, although when activated with channelrhodopsin AgRP neurons inhibit POMC neurons through GABA-mediated transmission. These findings indicate that the relevance of AgRP to POMC neuron GABA connectivity depends on the state of AgRP neuron activity and suggest that different types of transmitter release should be considered when circuit mapping.

Funding information:
  • NIDA NIH HHS - R01 DA032562()
  • NIDDK NIH HHS - R01 DK078749()

Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity.

  • Guo J
  • Dev. Cell
  • 2017 Aug 7

Literature context:


Abstract:

Appropriate growth and synaptic integration of GABAergic inhibitory interneurons are essential for functional neural circuits in the brain. Here, we demonstrate that disruption of primary cilia function following the selective loss of ciliary GTPase Arl13b in interneurons impairs interneuronal morphology and synaptic connectivity, leading to altered excitatory/inhibitory activity balance. The altered morphology and connectivity of cilia mutant interneurons and the functional deficits are rescued by either chemogenetic activation of ciliary G-protein-coupled receptor (GPCR) signaling or the selective induction of Sstr3, a ciliary GPCR, in Arl13b-deficient cilia. Our results thus define a specific requirement for primary cilia-mediated GPCR signaling in interneuronal connectivity and inhibitory circuit formation.

Funding information:
  • NIDDK NIH HHS - P30 DK074038()
  • NIMH NIH HHS - R01 MH060929()
  • NINDS NIH HHS - P30 NS045892()
  • NINDS NIH HHS - R01 NS090029()
  • NINDS NIH HHS - R56 NS090029()

A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding.

  • Dodd GT
  • Cell Metab.
  • 2017 Aug 1

Literature context:


Abstract:

Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance.

Funding information:
  • NEI NIH HHS - R01 EY017097(United States)

Early Integration of Temperature and Humidity Stimuli in the Drosophila Brain.

  • Frank DD
  • Curr. Biol.
  • 2017 Aug 7

Literature context:


Abstract:

The Drosophila antenna contains receptor neurons for mechanical, olfactory, thermal, and humidity stimuli. Neurons expressing the ionotropic receptor IR40a have been implicated in the selection of an appropriate humidity range [1, 2], but although previous work indicates that insect hygroreceptors may be made up by a "triad" of neurons (with a dry-, a cold-, and a humid-air-responding cell [3]), IR40a expression included only cold- and dry-air cells. Here, we report the identification of the humid-responding neuron that completes the hygrosensory triad in the Drosophila antenna. This cell type expresses the Ir68a gene, and Ir68a mutation perturbs humidity preference. Next, we follow the projections of Ir68a neurons to the brain and show that they form a distinct glomerulus in the posterior antennal lobe (PAL). In the PAL, a simple sensory map represents related features of the external environment with adjacent "hot," "cold," "dry," and "humid" glomeruli-an organization that allows for both unique and combinatorial sampling by central relay neurons. Indeed, flies avoided dry heat more robustly than humid heat, and this modulation was abolished by silencing of dry-air receptors. Consistently, at least one projection neuron type received direct synaptic input from both temperature and dry-air glomeruli. Our results further our understanding of humidity sensing in the Drosophila antenna, uncover a neuronal substrate for early sensory integration of temperature and humidity in the brain, and illustrate the logic of how ethologically relevant combinations of sensory cues can be processed together to produce adaptive behavioral responses.

Experience-Dependent Plasticity in Accessory Olfactory Bulb Interneurons following Male-Male Social Interaction.

  • Cansler HL
  • J. Neurosci.
  • 2017 Jul 26

Literature context:


Abstract:

Chemosensory information processing in the mouse accessory olfactory system guides the expression of social behavior. After salient chemosensory encounters, the accessory olfactory bulb (AOB) experiences changes in the balance of excitation and inhibition at reciprocal synapses between mitral cells (MCs) and local interneurons. The mechanisms underlying these changes remain controversial. Moreover, it remains unclear whether MC-interneuron plasticity is unique to specific behaviors, such as mating, or whether it is a more general feature of the AOB circuit. Here, we describe targeted electrophysiological studies of AOB inhibitory internal granule cells (IGCs), many of which upregulate the immediate-early gene Arc after male-male social experience. Following the resident-intruder paradigm, Arc-expressing IGCs in acute AOB slices from resident males displayed stronger excitation than nonexpressing neighbors when sensory inputs were stimulated. The increased excitability of Arc-expressing IGCs was not correlated with changes in the strength or number of excitatory synapses with MCs but was instead associated with increased intrinsic excitability and decreased HCN channel-mediated IH currents. Consistent with increased inhibition by IGCs, MCs responded to sensory input stimulation with decreased depolarization and spiking following resident-intruder encounters. These results reveal that nonmating behaviors drive AOB inhibitory plasticity and indicate that increased MC inhibition involves intrinsic excitability changes in Arc-expressing interneurons.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is a site of experience-dependent plasticity between excitatory mitral cells (MCs) and inhibitory internal granule cells (IGCs), but the physiological mechanisms and behavioral conditions driving this plasticity remain unclear. Here, we report studies of AOB neuronal plasticity following male-male social chemosensory encounters. We show that the plasticity-associated immediate-early gene Arc is selectively expressed in IGCs from resident males following the resident-intruder assay. After behavior, Arc-expressing IGCs are more strongly excited by sensory input stimulation and MC activation is suppressed. Arc-expressing IGCs do not show increased excitatory synaptic drive but instead show increased intrinsic excitability. These data indicate that MC-IGC plasticity is induced after male-male social chemosensory encounters, resulting in enhanced MC suppression by Arc-expressing IGCs.

Funding information:
  • NCI NIH HHS - P30 CA016672(United States)
  • NIDA NIH HHS - T32 DA007290()
  • NIDCD NIH HHS - R00 DC011780()
  • NIDCD NIH HHS - R01 DC015784()

Directing visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice.

  • Hepler C
  • Elife
  • 2017 Jul 19

Literature context:


Abstract:

Visceral adiposity confers significant risk for developing metabolic disease in obesity whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE adipocytes (termed 'browning'). In this study, we investigated the physiological consequences of browning murine visceral WAT by selective genetic ablation of Zfp423, a transcriptional suppressor of the adipocyte thermogenic program. Zfp423 deletion in fetal visceral adipose precursors (Zfp423loxP/loxP; Wt1-Cre), or adult visceral white adipose precursors (PdgfrbrtTA; TRE-Cre; Zfp423loxP/loxP), results in the accumulation of beige-like thermogenic adipocytes within multiple visceral adipose depots. Thermogenic visceral WAT improves cold tolerance and prevents and reverses insulin resistance in obesity. These data indicate that beneficial visceral WAT browning can be engineered by directing visceral white adipocyte precursors to a thermogenic adipocyte fate, and suggest a novel strategy to combat insulin resistance in obesity.

Funding information:
  • NIDDK NIH HHS - F30 DK100095()
  • NIDDK NIH HHS - F31 DK113696()
  • NIDDK NIH HHS - R00 DK094973()
  • NIDDK NIH HHS - R01 DK104789()
  • NIGMS NIH HHS - T32 GM008203()

Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N.

  • Tsankova A
  • Dev. Cell
  • 2017 Jul 24

Literature context:


Abstract:

Cell and tissue morphogenesis depends on the correct regulation of non-muscle Myosin II, but how this motor protein is spatiotemporally controlled is incompletely understood. Here, we show that in asymmetrically dividing Drosophila neural stem cells, cell intrinsic polarity cues provide spatial and temporal information to regulate biased Myosin activity. Using live cell imaging and a genetically encoded Myosin activity sensor, we found that Drosophila Rho kinase (Rok) enriches for activated Myosin on the neuroblast cortex prior to nuclear envelope breakdown (NEB). After NEB, the conserved polarity protein Partner of Inscuteable (Pins) sequentially enriches Rok and Protein Kinase N (Pkn) on the apical neuroblast cortex. Our data suggest that apical Rok first increases phospho-Myosin, followed by Pkn-mediated Myosin downregulation, possibly through Rok inhibition. We propose that polarity-induced spatiotemporal control of Rok and Pkn is important for unequal cortical expansion, ensuring correct cleavage furrow positioning and the establishment of physical asymmetry.

Funding information:
  • Worldwide Cancer Research - 14-0236()

An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice.

  • Hu JK
  • Cell Stem Cell
  • 2017 Jul 6

Literature context:


Abstract:

Tissue homeostasis requires the production of newly differentiated cells from resident adult stem cells. Central to this process is the expansion of undifferentiated intermediates known as transit-amplifying (TA) cells, but how stem cells are triggered to enter this proliferative TA state remains an important open question. Using the continuously growing mouse incisor as a model of stem cell-based tissue renewal, we found that the transcriptional cofactors YAP and TAZ are required both to maintain TA cell proliferation and to inhibit differentiation. Specifically, we identified a pathway involving activation of integrin α3 in TA cells that signals through an LATS-independent FAK/CDC42/PP1A cascade to control YAP-S397 phosphorylation and nuclear localization. This leads to Rheb expression and potentiates mTOR signaling to drive the proliferation of TA cells. These findings thus reveal a YAP/TAZ signaling mechanism that coordinates stem cell expansion and differentiation during organ renewal.

Funding information:
  • NIDCR NIH HHS - F32 DE023705()
  • NIDCR NIH HHS - K99 DE025874()
  • NIDCR NIH HHS - R01 DE024988()
  • NIDCR NIH HHS - R35 DE026602()

A Central Catecholaminergic Circuit Controls Blood Glucose Levels during Stress.

  • Zhao Z
  • Neuron
  • 2017 Jul 5

Literature context:


Abstract:

Stress-induced hyperglycemia is a fundamental adaptive response that mobilizes energy stores in response to threats. Here, our examination of the contributions of the central catecholaminergic (CA) neuronal system to this adaptive response revealed that CA neurons in the ventrolateral medulla (VLM) control stress-induced hyperglycemia. Ablation of VLM CA neurons abolished the hyperglycemic response to both physical and psychological stress, whereas chemogenetic activation of these neurons was sufficient to induce hyperglycemia. We further found that CA neurons in the rostral VLM, but not those in the caudal VLM, cause hyperglycemia via descending projections to the spinal cord. Monosynaptic tracing experiments showed that VLM CA neurons receive direct inputs from multiple stress-responsive brain areas. Optogenetic studies identified an excitatory PVN-VLM circuit that induces hyperglycemia. This study establishes the central role of VLM CA neurons in stress-induced hyperglycemia and substantially expands our understanding of the central mechanism that controls glucose metabolism.

Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum.

  • El-Shamayleh Y
  • Neuron
  • 2017 Jul 5

Literature context:


Abstract:

Purkinje cells of the primate cerebellum play critical but poorly understood roles in the execution of coordinated, accurate movements. Elucidating these roles has been hampered by a lack of techniques for manipulating spiking activity in these cells selectively-a problem common to most cell types in non-transgenic animals. To overcome this obstacle, we constructed AAV vectors carrying the channelrhodopsin-2 (ChR2) gene under the control of a 1 kb L7/Pcp2 promoter. We injected these vectors into the cerebellar cortex of rhesus macaques and tested vector efficacy in three ways. Immunohistochemical analyses confirmed selective ChR2 expression in Purkinje cells. Neurophysiological recordings confirmed robust optogenetic activation. Optical stimulation of the oculomotor vermis caused saccade dysmetria. Our results demonstrate the utility of AAV-L7-ChR2 for revealing the contributions of Purkinje cells to circuit function and behavior, and they attest to the feasibility of promoter-based, targeted, genetic manipulations in primates.

Funding information:
  • NEI NIH HHS - R21 EY024362()

Identification of a Brainstem Circuit Controlling Feeding.

  • Nectow AR
  • Cell
  • 2017 Jul 27

Literature context:


Abstract:

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.

Exosome RNA Unshielding Couples Stromal Activation to Pattern Recognition Receptor Signaling in Cancer.

  • Nabet BY
  • Cell
  • 2017 Jul 13

Literature context:


Abstract:

Interactions between stromal fibroblasts and cancer cells generate signals for cancer progression, therapy resistance, and inflammatory responses. Although endogenous RNAs acting as damage-associated molecular patterns (DAMPs) for pattern recognition receptors (PRRs) may represent one such signal, these RNAs must remain unrecognized under non-pathological conditions. We show that triggering of stromal NOTCH-MYC by breast cancer cells results in a POL3-driven increase in RN7SL1, an endogenous RNA normally shielded by RNA binding proteins SRP9/14. This increase in RN7SL1 alters its stoichiometry with SRP9/14 and generates unshielded RN7SL1 in stromal exosomes. After exosome transfer to immune cells, unshielded RN7SL1 drives an inflammatory response. Upon transfer to breast cancer cells, unshielded RN7SL1 activates the PRR RIG-I to enhance tumor growth, metastasis, and therapy resistance. Corroborated by evidence from patient tumors and blood, these results demonstrate that regulation of RNA unshielding couples stromal activation with deployment of RNA DAMPs that promote aggressive features of cancer. VIDEO ABSTRACT.

Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function.

  • Takata K
  • Immunity
  • 2017 Jul 18

Literature context:


Abstract:

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.

Physiological and pathophysiological control of synaptic GluN2B-NMDA receptors by the C-terminal domain of amyloid precursor protein.

  • Pousinha PA
  • Elife
  • 2017 Jul 6

Literature context:


Abstract:

The amyloid precursor protein (APP) harbors physiological roles at synapses and is central to Alzheimer's disease (AD) pathogenesis. Evidence suggests that APP intracellular domain (AICD) could regulate synapse function, but the underlying molecular mechanisms remain unknown. We addressed AICD actions at synapses, per se, combining in vivo AICD expression, ex vivo AICD delivery or APP knock-down by in utero electroporation of shRNAs with whole-cell electrophysiology. We report a critical physiological role of AICD in controlling GluN2B-containing NMDA receptors (NMDARs) at immature excitatory synapses, via a transcription-dependent mechanism. We further show that AICD increase in mature neurons, as reported in AD, alters synaptic NMDAR composition to an immature-like GluN2B-rich profile. This disrupts synaptic signal integration, via over-activation of SK channels, and synapse plasticity, phenotypes rescued by GluN2B antagonism. We provide a new physiological role for AICD, which becomes pathological upon AICD increase in mature neurons. Thus, AICD could contribute to AD synaptic failure.

Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others.

  • Norsworthy MW
  • Neuron
  • 2017 Jun 21

Literature context:


Abstract:

At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types.

Funding information:
  • NEI NIH HHS - P30 EY012196()
  • NEI NIH HHS - R01 EY021342()
  • NEI NIH HHS - R01 EY021526()
  • NEI NIH HHS - R01 EY026939()
  • NHLBI NIH HHS - T32 HL007901()
  • NICHD NIH HHS - P30 HD018655()
  • NINDS NIH HHS - P30 NS062691()

Heterogeneity of Calcium Responses to Secretagogues in Corticotrophs From Male Rats.

  • Romanò N
  • Endocrinology
  • 2017 Jun 1

Literature context:


Abstract:

Heterogeneity in homotypic cellular responses is an important feature of many biological systems, and it has been shown to be prominent in most anterior pituitary hormonal cell types. In this study, we analyze heterogeneity in the responses to hypothalamic secretagogues in the corticotroph cell population of adult male rats. Using the genetically encoded calcium indicator GCaMP6s, we determined the intracellular calcium responses of these cells to corticotropin-releasing hormone and arginine-vasopressin. Our experiments revealed marked population heterogeneity in the response to these peptides, in terms of amplitude and dynamics of the responses, as well as the sensitivity to different concentrations and duration of stimuli. However, repeated stimuli to the same cell produced remarkably consistent responses, indicating that these are deterministic on a cell-by-cell level. We also describe similar heterogeneity in the sensitivity of cells to inhibition by corticosterone. In summary, our results highlight a large degree of heterogeneity in the cellular mechanisms that govern corticotroph responses to their physiological stimuli; this could provide a mechanism to extend the dynamic range of the responses at the population level to allow adaptation to different physiological challenges.

RPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health.

  • Feeney L
  • Mol. Cell
  • 2017 Jun 1

Literature context:


Abstract:

Defects in the repair of DNA interstrand crosslinks (ICLs) are associated with the genome instability syndrome Fanconi anemia (FA). Here we report that cells with mutations in RFWD3, an E3 ubiquitin ligase that interacts with and ubiquitylates replication protein A (RPA), show profound defects in ICL repair. An amino acid substitution in the WD40 repeats of RFWD3 (I639K) found in a new FA subtype abolishes interaction of RFWD3 with RPA, thereby preventing RFWD3 recruitment to sites of ICL-induced replication fork stalling. Moreover, single point mutations in the RPA32 subunit of RPA that abolish interaction with RFWD3 also inhibit ICL repair, demonstrating that RPA-mediated RFWD3 recruitment to stalled replication forks is important for ICL repair. We also report that unloading of RPA from sites of ICL induction is perturbed in RFWD3-deficient cells. These data reveal important roles for RFWD3 localization in protecting genome stability and preserving human health.

CCDC141 Mutation Identified in Anosmic Hypogonadotropic Hypogonadism (Kallmann Syndrome) Alters GnRH Neuronal Migration.

  • Hutchins BI
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

The first mutation in a gene associated with a neuronal migration disorder was identified in patients with Kallmann Syndrome, characterized by hypogonadotropic hypogonadism and anosmia. This pathophysiological association results from a defect in the development of the GnRH and the olfactory system. A recent genetic screening of Kallmann Syndrome patients revealed a novel mutation in CCDC141. Little is known about CCDC141, which encodes a coiled-coil domain containing protein. Here, we show that Ccdc141 is expressed in GnRH neurons and olfactory fibers and that knockdown of Ccdc141 reduces GnRH neuronal migration. Our findings in human patients and mouse models predict that CCDC141 takes part in embryonic migration of GnRH neurons enabling them to form a hypothalamic neuronal network to initiate pulsatile GnRH secretion and reproductive function.

Funding information:
  • NIMH NIH HHS - R00 MH081927(United States)

Immune-Induced Fever Is Dependent on Local But Not Generalized Prostaglandin E2 Synthesis in the Brain.

  • Eskilsson A
  • J. Neurosci.
  • 2017 May 10

Literature context:


Abstract:

Fever occurs upon binding of prostaglandin E2 (PGE2) to EP3 receptors in the median preoptic nucleus of the hypothalamus, but the origin of the pyrogenic PGE2 has not been clearly determined. Here, using mice of both sexes, we examined the role of local versus generalized PGE2 production in the brain for the febrile response. In wild-type mice and in mice with genetic deletion of the prostaglandin synthesizing enzyme cyclooxygenase-2 in the brain endothelium, generated with an inducible CreERT2 under the Slco1c1 promoter, PGE2 levels in the CSF were only weakly related to the magnitude of the febrile response, whereas the PGE2 synthesizing capacity in the hypothalamus, as reflected in the levels of cyclooxygenase-2 mRNA, showed strong correlation with the immune-induced fever. Histological analysis showed that the deletion of cyclooxygenase-2 in brain endothelial cells occurred preferentially in small- and medium-sized vessels deep in the brain parenchyma, such as in the hypothalamus, whereas larger vessels, and particularly those close to the neocortical surface and in the meninges, were left unaffected, hence leaving PGE2 synthesis largely intact in major parts of the brain while significantly reducing it in the region critical for the febrile response. Furthermore, injection of a virus vector expressing microsomal prostaglandin E synthase-1 (mPGES-1) into the median preoptic nucleus of fever-refractive mPGES-1 knock-out mice, resulted in a temperature elevation in response to LPS. We conclude that the febrile response is dependent on local release of PGE2 onto its target neurons and not on the overall PGE2 production in the brain.SIGNIFICANCE STATEMENT By using mice with selective deletion of prostaglandin synthesis in brain endothelial cells, we demonstrate that local prostaglandin E2 (PGE2) production in deep brain areas, such as the hypothalamus, which is the site of thermoregulatory neurons, is critical for the febrile response to peripheral inflammation. In contrast, PGE2 production in other brain areas and the overall PGE2 level in the brain do not influence the febrile response. Furthermore, partly restoring the PGE2 synthesizing capacity in the anterior hypothalamus of mice lacking such capacity with a lentiviral vector resulted in a temperature elevation in response to LPS. These data imply that the febrile response is dependent on the local release of PGE2 onto its target neurons, possibly by a paracrine mechanism.

Skilled Movements Require Non-apoptotic Bax/Bak Pathway-Mediated Corticospinal Circuit Reorganization.

  • Gu Z
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements.

Funding information:
  • NINDS NIH HHS - R01 NS079569()
  • NINDS NIH HHS - R01 NS093002()

Amitosis of Polyploid Cells Regenerates Functional Stem Cells in the Drosophila Intestine.

  • Lucchetta EM
  • Cell Stem Cell
  • 2017 May 4

Literature context:


Abstract:

Organ fitness depends on appropriate maintenance of stem cell populations, and aberrations in functional stem cell numbers are associated with malignancies and aging. Symmetrical division is the best characterized mechanism of stem cell replacement, but other mechanisms could also be deployed, particularly in situations of high stress. Here, we show that after severe depletion, intestinal stem cells (ISCs) in the Drosophila midgut are replaced by spindle-independent ploidy reduction of cells in the enterocyte lineage through a process known as amitosis. Amitosis is also induced by the functional loss of ISCs coupled with tissue demand and in aging flies, underscoring the generality of this mechanism. However, we also found that random homologous chromosome segregation during ploidy reduction can expose deleterious mutations through loss of heterozygosity. Together, our results highlight amitosis as an unappreciated mechanism for restoring stem cell homeostasis, but one with some associated risk in animals carrying mutations.

Funding information:
  • NICHD NIH HHS - T32 HD055165()
  • NIDDK NIH HHS - R01 DK107702()

Loss of Action via Neurotensin-Leptin Receptor Neurons Disrupts Leptin and Ghrelin-Mediated Control of Energy Balance.

  • Brown JA
  • Endocrinology
  • 2017 May 1

Literature context:


Abstract:

The hormones ghrelin and leptin act via the lateral hypothalamic area (LHA) to modify energy balance, but the underlying neural mechanisms remain unclear. We investigated how leptin and ghrelin engage LHA neurons to modify energy balance behaviors and whether there is any crosstalk between leptin and ghrelin-responsive circuits. We demonstrate that ghrelin activates LHA neurons expressing hypocretin/orexin (OX) to increase food intake. Leptin mediates anorectic actions via separate neurons expressing the long form of the leptin receptor (LepRb), many of which coexpress the neuropeptide neurotensin (Nts); we refer to these as NtsLepRb neurons. Because NtsLepRb neurons inhibit OX neurons, we hypothesized that disruption of the NtsLepRb neuronal circuit would impair both NtsLepRb and OX neurons from responding to their respective hormonal cues, thus compromising adaptive energy balance. Indeed, mice with developmental deletion of LepRb specifically from NtsLepRb neurons exhibit blunted adaptive responses to leptin and ghrelin that discoordinate the mesolimbic dopamine system and ingestive and locomotor behaviors, leading to weight gain. Collectively, these data reveal a crucial role for LepRb in the proper formation of LHA circuits, and that NtsLepRb neurons are important neuronal hubs within the LHA for hormone-mediated control of ingestive and locomotor behaviors.

Funding information:
  • NIDDK NIH HHS - F30 DK107163()
  • NIDDK NIH HHS - F31 DK107081()
  • NIDDK NIH HHS - P30 DK034933()
  • NIDDK NIH HHS - R00 DK090101()
  • NIDDK NIH HHS - R01 DK103808()

Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation.

  • Zeng C
  • Cell Metab.
  • 2017 May 2

Literature context:


Abstract:

Pancreatic β cell mass for appropriate blood glucose control is established during early postnatal life. β cell proliferative capacity declines postnatally, but the extrinsic cues and intracellular signals that cause this decline remain unknown. To obtain a high-resolution map of β cell transcriptome dynamics after birth, we generated single-cell RNA-seq data of β cells from multiple postnatal time points and ordered cells based on transcriptional similarity using a new analytical tool. This analysis captured signatures of immature, proliferative β cells and established high expression of amino acid metabolic, mitochondrial, and Srf/Jun/Fos transcription factor genes as their hallmark feature. Experimental validation revealed high metabolic activity in immature β cells and a role for reactive oxygen species and Srf/Jun/Fos transcription factors in driving postnatal β cell proliferation and mass expansion. Our work provides the first high-resolution molecular characterization of state changes in postnatal β cells and paves the way for the identification of novel therapeutic targets to stimulate β cell regeneration.

Funding information:
  • NIDDK NIH HHS - P30 DK063491()
  • NIDDK NIH HHS - R01 DK064391()
  • NIDDK NIH HHS - R01 DK068471()
  • NIDDK NIH HHS - R01 DK078803()

Multi-site Neurogenin3 Phosphorylation Controls Pancreatic Endocrine Differentiation.

  • Azzarelli R
  • Dev. Cell
  • 2017 May 8

Literature context:


Abstract:

The proneural transcription factor Neurogenin3 (Ngn3) plays a critical role in pancreatic endocrine cell differentiation, although regulation of Ngn3 protein is largely unexplored. Here we demonstrate that Ngn3 protein undergoes cyclin-dependent kinase (Cdk)-mediated phosphorylation on multiple serine-proline sites. Replacing wild-type protein with a phosphomutant form of Ngn3 increases α cell generation, the earliest endocrine cell type to be formed in the developing pancreas. Moreover, un(der)phosphorylated Ngn3 maintains insulin expression in adult β cells in the presence of elevated c-Myc and enhances endocrine specification during ductal reprogramming. Mechanistically, preventing multi-site phosphorylation enhances both Ngn3 stability and DNA binding, promoting the increased expression of target genes that drive differentiation. Therefore, multi-site phosphorylation of Ngn3 controls its ability to promote pancreatic endocrine differentiation and to maintain β cell function in the presence of pro-proliferation cues and could be manipulated to promote and maintain endocrine differentiation in vitro and in vivo.

Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain.

  • Voronova A
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.

Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness.

  • Galani IE
  • Immunity
  • 2017 May 16

Literature context:


Abstract:

Lambda interferons (IFNλs) or type III IFNs share homology, expression patterns, signaling cascades, and antiviral functions with type I IFNs. This has complicated the unwinding of their unique non-redundant roles. Through the systematic study of influenza virus infection in mice, we herein show that IFNλs are the first IFNs produced that act at the epithelial barrier to suppress initial viral spread without activating inflammation. If infection progresses, type I IFNs come into play to enhance viral resistance and induce pro-inflammatory responses essential for confronting infection but causing immunopathology. Central to this are neutrophils which respond to both cytokines to upregulate antimicrobial functions but exhibit pro-inflammatory activation only to type I IFNs. Accordingly, Ifnlr1-/- mice display enhanced type I IFN production, neutrophilia, lung injury, and lethality, while therapeutic administration of PEG-IFNλ potently suppresses these effects. IFNλs therefore constitute the front line of antiviral defense in the lung without compromising host fitness.

Funding information:
  • NINDS NIH HHS - T32 NS063391(United States)

A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells.

  • Nagarkar-Jaiswal S
  • Elife
  • 2017 May 31

Literature context:


Abstract:

Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila. Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase-dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ, encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail.

Funding information:
  • NICHD NIH HHS - U54 HD083092()
  • NIGMS NIH HHS - R01 GM067858()
  • NIH HHS - P40 OD018537()

USP5/Leon deubiquitinase confines postsynaptic growth by maintaining ubiquitin homeostasis through Ubiquilin.

  • Wang CH
  • Elife
  • 2017 May 10

Literature context:


Abstract:

Synapse formation and growth are tightly controlled processes. How synaptic growth is terminated after reaching proper size remains unclear. Here, we show that Leon, the Drosophila USP5 deubiquitinase, controls postsynaptic growth. In leon mutants, postsynaptic specializations of neuromuscular junctions are dramatically expanded, including the subsynaptic reticulum, the postsynaptic density, and the glutamate receptor cluster. Expansion of these postsynaptic features is caused by a disruption of ubiquitin homeostasis with accumulation of free ubiquitin chains and ubiquitinated substrates in the leon mutant. Accumulation of Ubiquilin (Ubqn), the ubiquitin receptor whose human homolog ubiquilin 2 is associated with familial amyotrophic lateral sclerosis, also contributes to defects in postsynaptic growth and ubiquitin homeostasis. Importantly, accumulations of postsynaptic proteins cause different aspects of postsynaptic overgrowth in leon mutants. Thus, the deubiquitinase Leon maintains ubiquitin homeostasis and proper Ubqn levels, preventing postsynaptic proteins from accumulation to confine postsynaptic growth.

Stem Cell Lineage Infidelity Drives Wound Repair and Cancer.

  • Ge Y
  • Cell
  • 2017 May 4

Literature context:


Abstract:

Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.

Funding information:
  • NIAMS NIH HHS - R01 AR027883()
  • NIAMS NIH HHS - R01 AR031737()
  • NIAMS NIH HHS - R37 AR027883()

Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis.

  • Dumitru I
  • Neuron
  • 2017 Apr 5

Literature context:


Abstract:

Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.

Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry.

  • Pomeranz LE
  • J. Neurosci.
  • 2017 Apr 12

Literature context:


Abstract:

The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.

Funding information:
  • NHLBI NIH HHS - R01 HL50569(United States)
  • NIAID NIH HHS - R01 AI056346()
  • NIDA NIH HHS - R01 DA018799()
  • NIH HHS - P40 OD010996()
  • NINDS NIH HHS - R01 NS060699()

Respiratory Network Stability and Modulatory Response to Substance P Require Nalcn.

  • Yeh SY
  • Neuron
  • 2017 Apr 19

Literature context:


Abstract:

Respiration is a rhythmic activity as well as one that requires responsiveness to internal and external circumstances; both the rhythm and neuromodulatory responses of breathing are controlled by brainstem neurons in the preBötzinger complex (preBötC) and the retrotrapezoid nucleus (RTN), but the specific ion channels essential to these activities remain to be identified. Because deficiency of sodium leak channel, non-selective (Nalcn) causes lethal apnea in humans and mice, we investigated Nalcn function in these neuronal groups. We found that one-third of mice lacking Nalcn in excitatory preBötC neurons died soon after birth; surviving mice developed apneas in adulthood. Interestingly, in both preBötC and RTN neurons, the Nalcn current influences the resting membrane potential, contributes to maintenance of stable network activity, and mediates modulatory responses to the neuropeptide substance P. These findings reveal Nalcn's specific role in both rhythmic stability and responsiveness to neuropeptides within the respiratory network.

Funding information:
  • NINDS NIH HHS - R01 NS055293()
  • NINDS NIH HHS - R01 NS100893()

Macrophages Facilitate Electrical Conduction in the Heart.

  • Hulsmans M
  • Cell
  • 2017 Apr 20

Literature context:


Abstract:

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.

Funding information:
  • NHLBI NIH HHS - K24 HL105780()
  • NHLBI NIH HHS - R01 HL092577()
  • NHLBI NIH HHS - R01 HL096576()
  • NHLBI NIH HHS - R01 HL114477()
  • NHLBI NIH HHS - R01 HL117829()
  • NHLBI NIH HHS - R01 HL125428()
  • NHLBI NIH HHS - R01 HL128264()
  • NHLBI NIH HHS - R01 HL131495()
  • NICHD NIH HHS - R01 HD069623()
  • NIDDK NIH HHS - P30 DK043351()
  • NIDDK NIH HHS - P30 DK057521()
  • NINDS NIH HHS - R01 NS084863()

Synaptotagmin2 (Syt2) Drives Fast Release Redundantly with Syt1 at the Output Synapses of Parvalbumin-Expressing Inhibitory Neurons.

  • Bouhours B
  • J. Neurosci.
  • 2017 Apr 26

Literature context:


Abstract:

Parvalbumin-expressing inhibitory neurons in the mammalian CNS are specialized for fast transmitter release at their output synapses. However, the Ca2+ sensor(s) used by identified inhibitory synapses, including the output synapses of parvalbumin-expressing inhibitory neurons, have only recently started to be addressed. Here, we investigated the roles of Syt1 and Syt2 at two types of fast-releasing inhibitory connections in the mammalian CNS: the medial nucleus of the trapezoid body to lateral superior olive glycinergic synapse, and the basket/stellate cell-Purkinje GABAergic synapse in the cerebellum. We used conditional and conventional knock-out (KO) mouse lines, with viral expression of Cre-recombinase and a light-activated ion channel for optical stimulation of the transduced fibers, to produce Syt1-Syt2 double KO synapses in vivo Surprisingly, we found that KO of Syt2 alone had only minor effects on evoked transmitter release, despite the clear presence of the protein in inhibitory nerve terminals revealed by immunohistochemistry. We show that Syt1 is weakly coexpressed at these inhibitory synapses and must be genetically inactivated together with Syt2 to achieve a significant reduction and desynchronization of fast release. Thus, our work identifies the functionally relevant Ca2+ sensor(s) at fast-releasing inhibitory synapses and shows that two major Syt isoforms can cooperate to mediate release at a given synaptic connection.SIGNIFICANCE STATEMENT During synaptic transmission, the influx of Ca2+ into the presynaptic nerve terminal activates a Ca2+ sensor for vesicle fusion, a crucial step in the activity-dependent release of neurotransmitter. Synaptotagmin (Syt) proteins, and especially Syt1 and Syt2, have been identified as the Ca2+ sensor at excitatory synapses, but the Ca2+ sensor(s) at inhibitory synapses in native brain tissue are not well known. We found that both Syt1 and Syt2 need to be genetically inactivated to cause a significant reduction of activity-evoked release at two types of fast inhibitory synapses in mouse brain. Thus, we identify Syt2 as a functionally important Ca2+ sensor at fast-releasing inhibitory synapses, and show that Syt1 and Syt2 can redundantly control transmitter release at specific brain synapses.

Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry.

  • Pratelli M
  • eNeuro
  • 2017 Apr 24

Literature context:


Abstract:

Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2fl°x conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.

Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum.

  • Hagimoto K
  • J. Comp. Neurol.
  • 2017 Mar 1

Literature context:


Abstract:

The striatum, the largest nucleus of the basal ganglia controlling motor and cognitive functions, can be characterized by a labyrinthine mosaic organization of striosome/matrix compartments. It is unclear how striosome/matrix mosaic formation is spatially and temporally controlled at the cellular level during striatal development. Here, by combining in vivo electroporation and brain slice cultures, we set up a prospective experimental system in which we differentially labeled striosome and matrix cells from the time of birth and followed their distributions and migratory behaviors. Our results showed that, at an initial stage of striosome/matrix mosaic formation, striosome cells were mostly stationary, whereas matrix cells actively migrated in multiple directions regardless of the presence of striosome cells. The mostly stationary striosome cells were still able to associate to form patchy clusters via attractive interactions. Our results suggest that the restricted migratory capability of striosome cells may allow them to cluster together only when they happen to be located in close proximity to each other and are not separated by actively migrating matrix cells. The way in which the mutidirectionally migrating matrix cells intermingle with the mostly stationary striosome cells may therefore determine the topographic features of striosomes. At later stages, the actively migrating matrix cells began to repulse the patchy clusters of striosomes, presumably enhancing the striosome cluster formation and the segregation and eventual formation of dichotomous homogeneous striosome/matrix compartments. Overall, our study reveals temporally distinct migratory behaviors of striosome/matrix cells, which may underlie the sequential steps of mosaic formation in the developing striatum. J. Comp. Neurol. 525:794-817, 2017. © 2016 Wiley Periodicals, Inc.

Uncoupling apical constriction from tissue invagination.

  • Chung S
  • Elife
  • 2017 Mar 6

Literature context:


Abstract:

Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG.

Funding information:
  • NIDCR NIH HHS - R01 DE013899()

Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain.

  • Milosevic A
  • J. Comp. Neurol.
  • 2017 Mar 1

Literature context:


Abstract:

P11 (S100a10), a member of the S100 family of proteins, has widespread distribution in the vertebrate body, including in the brain, where it has a key role in membrane trafficking, vesicle secretion, and endocytosis. Recently, our laboratory has shown that a constitutive knockout of p11 (p11-KO) in mice results in a depressive-like phenotype. Furthermore, p11 has been implicated in major depressive disorder (MDD) and in the actions of antidepressants. Since depression affects multiple brain regions, and the role of p11 has only been determined in a few of these areas, a detailed analysis of p11 expression in the brain is warranted. Here we demonstrate that, although widespread in the brain, p11 expression is restricted to distinct regions, and specific neuronal and nonneuronal cell types. Furthermore, we provide comprehensive mapping of p11 expression using in situ hybridization, immunocytochemistry, and whole-tissue volume imaging. Overall, expression spans multiple brain regions, structures, and cell types, suggesting a complex role of p11 in depression. J. Comp. Neurol. 525:955-975, 2017. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NINDS NIH HHS - R01 NS085232(United States)

Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo.

  • Guimarães-Camboa N
  • Cell Stem Cell
  • 2017 Mar 2

Literature context:


Abstract:

Pericytes are widely believed to function as mesenchymal stem cells (MSCs), multipotent tissue-resident progenitors with great potential for regenerative medicine. Cultured pericytes isolated from distinct tissues can differentiate into multiple cell types in vitro or following transplantation in vivo. However, the cell fate plasticity of endogenous pericytes in vivo remains unclear. Here, we show that the transcription factor Tbx18 selectively marks pericytes and vascular smooth muscle cells in multiple organs of adult mouse. Fluorescence-activated cell sorting (FACS)-purified Tbx18-expressing cells behaved as MSCs in vitro. However, lineage-tracing experiments using an inducible Tbx18-CreERT2 line revealed that pericytes and vascular smooth muscle cells maintained their identity in aging and diverse pathological settings and did not significantly contribute to other cell lineages. These results challenge the current view of endogenous pericytes as multipotent tissue-resident progenitors and suggest that the plasticity observed in vitro or following transplantation in vivo arises from artificial cell manipulations ex vivo.

Funding information:
  • NCI NIH HHS - R01 CA095287()
  • NHLBI NIH HHS - DP1 HL117649()
  • NHLBI NIH HHS - R01 HL070867()
  • NHLBI NIH HHS - R01 HL119967()
  • NHLBI NIH HHS - R01 HL123747()
  • NHLBI NIH HHS - R01 HL130452()
  • NIH HHS - DP1 OD006428()
  • NINDS NIH HHS - P30 NS047101()

Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning.

  • Lee K
  • Neuron
  • 2017 Mar 22

Literature context:


Abstract:

The prevailing view is that striatal parvalbumin (PV)-positive interneurons primarily function to downregulate medium spiny projection neuron (MSN) activity via monosynaptic inhibitory signaling. Here, by combining in vivo neural recordings and optogenetics, we unexpectedly find that both suppressing and over-activating PV cells attenuates spontaneous MSN activity. To account for this, we find that, in addition to monosynaptic coupling, PV-MSN interactions are mediated by a competing disynaptic inhibitory circuit involving a variety of neuropeptide Y-expressing interneurons. Next we use optogenetic and chemogenetic approaches to show that dorsolateral striatal PV interneurons influence the initial expression of reward-conditioned responses but that their contribution to performance declines with experience. Consistent with this, we observe with large-scale recordings in behaving animals that the relative contribution of PV cells on MSN activity diminishes with training. Together, this work provides a possible mechanism by which PV interneurons modulate striatal output and selectively enhance performance early in learning.

Funding information:
  • NICHD NIH HHS - U54 HD087101()
  • NIDA NIH HHS - R01 DA034178()
  • NINDS NIH HHS - R01 NS041574()
  • NINDS NIH HHS - R01 NS100050()

Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle.

  • Chiche A
  • Cell Stem Cell
  • 2017 Mar 2

Literature context:


Abstract:

In vivo reprogramming is a promising approach for tissue regeneration in response to injury. Several examples of in vivo reprogramming have been reported in a variety of lineages, but some including skeletal muscle have so far proven refractory. Here, we show that acute and chronic injury enables transcription-factor-mediated reprogramming in skeletal muscle. Lineage tracing indicates that this response frequently originates from Pax7+ muscle stem cells. Injury is associated with accumulation of senescent cells, and advanced aging or local irradiation further enhanced in vivo reprogramming, while selective elimination of senescent cells reduced reprogramming efficiency. The effect of senescence appears to be, at least in part, due to the release of interleukin 6 (IL-6), suggesting a potential link with the senescence-associated secretory phenotype. Collectively, our findings highlight a beneficial paracrine effect of injury-induced senescence on cellular plasticity, which will be important for devising strategies for reprogramming-based tissue repair.

Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.

  • Ziminski JJ
  • J. Neurosci.
  • 2017 Mar 22

Literature context:


Abstract:

Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, then animals may adapt accordingly by inhibiting food-seeking responses. Sparsely activated sets of neurons, coined "neuronal ensembles," have been shown to encode the strength of reward-cue associations. Although alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice, which express green fluorescent protein (GFP) in activated neurons, after appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. After extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell.SIGNIFICANCE STATEMENT Sparsely distributed sets of neurons called "neuronal ensembles" encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that occur specifically on neuronal ensembles that encode appetitive associations. Here, we reveal that sucrose cue exposure recruited a more excitable ensemble in the nucleus accumbens, but not orbitofrontal cortex, compared with their surrounding neurons. This excitability difference was not observed when the cue's salience was diminished after extinction learning. These novel data provide evidence that the intrinsic excitability of appetitive memory-encoding ensembles is regulated differentially across brain areas and adapts dynamically to changes in associative strength.

Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.

  • Espuny-Camacho I
  • Neuron
  • 2017 Mar 8

Literature context:


Abstract:

Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.

SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System.

  • Kuwajima T
  • Neuron
  • 2017 Mar 8

Literature context:


Abstract:

Transcription factors control cell identity by regulating diverse developmental steps such as differentiation and axon guidance. The mammalian binocular visual circuit is comprised of projections of retinal ganglion cells (RGCs) to ipsilateral and contralateral targets in the brain. A transcriptional code for ipsilateral RGC identity has been identified, but less is known about the transcriptional regulation of contralateral RGC development. Here we demonstrate that SoxC genes (Sox4, 11, and 12) act on the progenitor-to-postmitotic transition to implement contralateral, but not ipsilateral, RGC differentiation, by binding to Hes5 and thus repressing Notch signaling. When SoxC genes are deleted in postmitotic RGCs, contralateral RGC axons grow poorly on chiasm cells in vitro and project ipsilaterally at the chiasm midline in vivo, and Plexin-A1 and Nr-CAM expression in RGCs is downregulated. These data implicate SoxC transcription factors in the regulation of contralateral RGC differentiation and axon guidance.

Funding information:
  • NEI NIH HHS - R01 EY012736()
  • NEI NIH HHS - R01 EY015290()
  • NIAMS NIH HHS - R01 AR046249()
  • NIAMS NIH HHS - R01 AR060016()

The Super Elongation Complex Drives Neural Stem Cell Fate Commitment.

  • Liu K
  • Dev. Cell
  • 2017 Mar 27

Literature context:


Abstract:

Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.

MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos.

  • Kasper DM
  • Dev. Cell
  • 2017 Mar 27

Literature context:


Abstract:

Proper functioning of an organism requires cells and tissues to behave in uniform, well-organized ways. How this optimum of phenotypes is achieved during the development of vertebrates is unclear. Here, we carried out a multi-faceted and single-cell resolution screen of zebrafish embryonic blood vessels upon mutagenesis of single and multi-gene microRNA (miRNA) families. We found that embryos lacking particular miRNA-dependent signaling pathways develop a vascular trait similar to wild-type, but with a profound increase in phenotypic heterogeneity. Aberrant trait variance in miRNA mutant embryos uniquely sensitizes their vascular system to environmental perturbations. We discovered a previously unrecognized role for specific vertebrate miRNAs to protect tissue development against phenotypic variability. This discovery marks an important advance in our comprehension of how miRNAs function in the development of higher organisms.

Funding information:
  • NHLBI NIH HHS - F32 HL132475()
  • NHLBI NIH HHS - R01 HL130246()
  • NHLBI NIH HHS - R56 HL123998()

Genetic Tracing of Cav3.2 T-Type Calcium Channel Expression in the Peripheral Nervous System.

  • Bernal Sierra YA
  • Front Mol Neurosci
  • 2017 Mar 31

Literature context:


Abstract:

Characterizing the distinct functions of the T-type ion channel subunits Cav3.1, 3.2 or 3.3 has proven difficult due to their highly conserved amino-acid sequences and the lack of pharmacological blockers specific for each subunit. To precisely determine the expression pattern of the Cav3.2 channel in the nervous system we generated two knock-in mouse strains that express EGFP or Cre recombinase under the control of the Cav3.2 gene promoter. We show that in the brains of these animals, the Cav3.2 channel is predominantly expressed in the dentate gyrus of the hippocampus. In the peripheral nervous system, the activation of the promoter starts at E9.5 in neural crest cells that will give rise to dorsal root ganglia (DRG) neurons, but not sympathetic neurons. As development progresses the number of DRG cells expressing the Cav3.2 channel reaches around 7% of the DRG at E16.5, and remains constant until E18.5. Characterization of sensory neuron subpopulations at E18.5 showed that EGFP+ cells are a heterogeneous population consisting mainly of TrkB+ and TrkC+ cells, while only a small percentage of DRG cells were TrkA+. Genetic tracing of the sensory nerve end-organ innervation of the skin showed that the activity of the Cav3.2 channel promoter in sensory progenitors marks many mechanoreceptor and nociceptor endings, but spares slowly adapting mechanoreceptors with endings associated with Merkel cells. Our genetic analysis reveals for the first time that progenitors that express the Cav3.2 T-type calcium channel, defines a sensory specific lineage that populates a large proportion of the DRG. Using our Cav3.2-Cre mice together with AAV viruses containing a conditional fluorescent reporter (tdTomato) we could also show that Cre expression is largely restricted to two functionally distinct sensory neuron types in the adult ganglia. Cav3.2 positive neurons innervating the skin were found to only form lanceolate endings on hair follicles and are probably identical to D-hair receptors. A second population of nociceptive sensory neurons expressing the Cav3.2 gene was found to be positive for the calcitonin-gene related peptide but these neurons are deep tissue nociceptors that do not innervate the skin.

Funding information:
  • European Research Council - 294678()

CaMKII Signaling Stimulates Mef2c Activity In Vitro but Only Minimally Affects Murine Long Bone Development in vivo.

  • Amara CS
  • Front Cell Dev Biol
  • 2017 Mar 31

Literature context:


Abstract:

The long bones of vertebrate limbs form by endochondral ossification, whereby mesenchymal cells differentiate into chondrogenic progenitors, which then differentiate into chondrocytes. Chondrocytes undergo further differentiation from proliferating to prehypertrophic, and finally to hypertrophic chondrocytes. Several signaling pathways and transcription factors regulate this process. Previously, we and others have shown in chicken that overexpression of an activated form of Calcium/calmodulin-dependent kinase II (CaMKII) results in ectopic chondrocyte maturation. Here, we show that this is not the case in the mouse. Although, in vitro Mef2c activity was upregulated by about 55-fold in response to expression of an activated form of CaMKII (DACaMKII), transgenic mice that expressed a dominant-active form of CaMKII under the control of the Col2a1 regulatory elements display only a very transient and mild phenotype. Here, only the onset of chondrocyte hypertrophy at E12.5 is accelerated. It is also this early step in chondrocyte differentiation that is temporarily delayed around E13.5 in transgenic mice expressing the peptide inhibitor CaM-KIIN from rat (rKIIN) under the control of the Col2a1 regulatory elements. Yet, ultimately DACaMKII, as well as rKIIN transgenic mice are born with completely normal skeletal elements with regard to their length and growth plate organization. Hence, our in vivo analysis suggests that CaMKII signaling plays a minor role in chondrocyte maturation in mice.

Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.

  • Latil M
  • Cell Stem Cell
  • 2017 Feb 2

Literature context:


Abstract:

Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness, and resistance to therapy. Some tumors undergo EMT while others do not, which may reflect intrinsic properties of their cell of origin. However, this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show that cell-type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from interfollicular epidermis (IFE) are generally well differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed that IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.

Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis.

  • El Agha E
  • Cell Stem Cell
  • 2017 Feb 2

Literature context:


Abstract:

Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.

Funding information:
  • Austrian Science Fund FWF - W 1206(Austria)

p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo.

  • Kannappan R
  • EBioMedicine
  • 2017 Feb 6

Literature context:


Abstract:

p53 is an important modulator of stem cell fate, but its role in cardiac progenitor cells (CPCs) is unknown. Here, we tested the effects of a single extra-copy of p53 on the function of CPCs in the presence of oxidative stress mediated by doxorubicin in vitro and type-1 diabetes in vivo. CPCs were obtained from super-p53 transgenic mice (p53-tg), in which the additional allele is regulated in a manner similar to the endogenous protein. Old CPCs with increased p53 dosage showed a superior ability to sustain oxidative stress, repair DNA damage and restore cell division. With doxorubicin, a larger fraction of CPCs carrying an extra-copy of the p53 allele recruited γH2A.X reestablishing DNA integrity. Enhanced p53 expression resulted in a superior tolerance to oxidative stress in vivo by providing CPCs with defense mechanisms necessary to survive in the milieu of the diabetic heart; they engrafted in regions of tissue injury and in three days acquired the cardiomyocyte phenotype. The biological advantage provided by the increased dosage of p53 in CPCs suggests that this genetic strategy may be translated to humans to increase cellular engraftment and growth, critical determinants of successful cell therapy for the failing heart.

Funding information:
  • NIA NIH HHS - R01 AG026107()
  • NIA NIH HHS - R01 AG037490()

FlpStop, a tool for conditional gene control in Drosophila.

  • Fisher YE
  • Elife
  • 2017 Feb 17

Literature context:


Abstract:

Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation.

Funding information:
  • NEI NIH HHS - R01 EY022638()
  • NIMH NIH HHS - U01 MH109119()

Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus.

  • Goad J
  • Dev. Biol.
  • 2017 Feb 15

Literature context:


Abstract:

In mice, implantation always occurs towards the antimesometrial side of the uterus, while the placenta develops at the mesometrial side. What determines this particular orientation of the implanting blastocyst remains unclear. Uterine glands are critical for implantation and pregnancy. In this study, we showed that uterine gland development and active Wnt signaling activity is limited to the antimesometrial side of the uterus. Dkk2, a known antagonist of Wnt signaling, is only present at the mesometrial side of the uterus. Imaging of whole uterus, thick uterine sections (100-1000µm), and individual glands revealed that uterine glands are simple tubes with branches that are directly connected to the luminal epithelium and are only present towards the antimesometrial side of the uterus. By developing a unique mouse model targeting the uterine epithelium, we demonstrated that Wnt/β-catenin signaling is essential for prepubertal gland formation and normal implantation, but dispensable for postpartum gland development and regeneration. Our results for the first time have provided a probable explanation for the antimesometrial bias for implantation.

Organization of the Claustrum-to-Entorhinal Cortical Connection in Mice.

  • Kitanishi T
  • J. Neurosci.
  • 2017 Jan 11

Literature context:


Abstract:

The claustrum, a subcortical structure situated between the insular cortex and striatum, is reciprocally connected with almost all neocortical regions. Based on this connectivity, the claustrum has been postulated to integrate multisensory information and, in turn, coordinate widespread cortical activity. Although studies have identified how sensory information is mapped onto the claustrum, the function of individual topographically arranged claustro-cortical pathways has been little explored. Here, we investigated the organization and function of identified claustro-cortical pathways in mice using multiple anatomical and optogenetic techniques. Retrograde and anterograde tracing demonstrated that the density of anterior claustrum-to-cortical projection differs substantially depending on the target cortical areas. One of the major targets was the medial entorhinal cortex (MEC) and the MEC-projecting claustral neurons were largely segregated from the neurons projecting to primary cortices M1, S1, or V1. Exposure to a novel environment induced c-Fos expression in a substantial number of MEC-projecting claustral neurons and some M1/S1/V1-projecting claustral neurons. Optogenetic silencing of the MEC-projecting claustral neurons during contextual fear conditioning impaired later memory retrieval without affecting basal locomotor activity or anxiety-related behavior. These results suggest that the dense, anterior claustro-MEC pathway that is largely separated from other claustro-cortical pathways is activated by novel context and modulates the MEC function in contextual memory. SIGNIFICANCE STATEMENT: The claustrum is a poorly understood subcortical structure reciprocally connected with widespread neocortical regions. We investigated the organization and function of identified claustro-cortical projections in mice using pathway-specific approaches. Anatomical tracing showed that the density of anterior claustrum-to-cortical projection is dependent on the target cortical areas and that the medial entorhinal cortex (MEC) is one of the major projection targets. Novel context exposure activated multiple claustro-cortical pathways and a large fraction of the activated neurons projected to the MEC. Optogenetic silencing of the claustro-MEC pathway during contextual fear learning suppressed subsequent memory retrieval. These results suggest that the dense claustro-MEC pathway is activated by novel context and modulates MEC function in contextual memory.

Loss of Plasticity in the D2-Accumbens Pallidal Pathway Promotes Cocaine Seeking.

  • Heinsbroek JA
  • J. Neurosci.
  • 2017 Jan 25

Literature context:


Abstract:

Distinct populations of D1- and D2-dopamine receptor-expressing medium spiny neurons (D1-/D2-MSNs) comprise the nucleus accumbens, and activity in D1-MSNs promotes, whereas activity in D2-MSNs inhibits, motivated behaviors. We used chemogenetics to extend D1-/D2-MSN cell specific regulation to cue-reinstated cocaine seeking in a mouse model of self-administration and relapse, and found that either increasing activity in D1-MSNs or decreasing activity in D2-MSNs augmented cue-induced reinstatement. Both D1- and D2-MSNs provide substantial GABAergic innervation to the ventral pallidum, and chemogenetic inhibition of ventral pallidal neurons blocked the augmented reinstatement elicited by chemogenetic regulation of either D1- or D2-MSNs. Because D1- and D2-MSNs innervate overlapping populations of ventral pallidal neurons, we next used optogenetics to examine whether changes in synaptic plasticity in D1- versus D2-MSN GABAergic synapses in the ventral pallidum could explain the differential regulation of VP activity. In mice trained to self-administer cocaine, GABAergic LTD was abolished in D2-, but not in D1-MSN synapses. A μ opioid receptor antagonist restored GABA currents in D2-, but not D1-MSN synapses of cocaine-trained mice, indicating that increased enkephalin tone on presynaptic μ opioid receptors was responsible for occluding the LTD. These results identify a behavioral function for D1-MSN innervation of the ventral pallidum, and suggest that losing LTDGABA in D2-MSN, but not D1-MSN input to ventral pallidum may promote cue-induced reinstatement of cocaine-seeking. SIGNIFICANCE STATEMENT: More than 90% of ventral striatum is composed of two cell types, those expressing dopamine D1 or D2 receptors, which exert opposing roles on motivated behavior. Both cell types send GABAergic projections to the ventral pallidum and were found to differentially promote cue-induced reinstatement of cocaine seeking via the ventral pallidum. Furthermore, after cocaine self-administration, synaptic plasticity was selectively lost in D2, but not D1 inputs to the ventral pallidum. The selective impairment in D2 afferents may promote the influence of D1 inputs to drive relapse to cocaine seeking.

Funding information:
  • NIDA NIH HHS - P50 DA015369()
  • NIDA NIH HHS - R01 DA003906()
  • NIDA NIH HHS - R37 DA003906()

The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn.

  • Abraira VE
  • Cell
  • 2017 Jan 12

Literature context:


Abstract:

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.

Funding information:
  • NCRR NIH HHS - S10 RR028832()
  • NIDA NIH HHS - P30 DA035756()
  • NIDA NIH HHS - R01 DA034022()
  • NIDA NIH HHS - R21 DA023643()
  • NIDCR NIH HHS - R01 DE022750()
  • NINDS NIH HHS - F32 NS077836()
  • NINDS NIH HHS - P01 NS079419()
  • NINDS NIH HHS - P30 NS072030()
  • NINDS NIH HHS - R35 NS097344()
  • NINDS NIH HHS - T32 NS007292()

Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly.

  • Bloomekatz J
  • Elife
  • 2017 Jan 18

Literature context:


Abstract:

Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis.

Funding information:
  • BLRD VA - I01 BX001407(United States)

The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration.

  • Cartoni R
  • Neuron
  • 2016 Dec 21

Literature context:


Abstract:

Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair.

Funding information:
  • NEI NIH HHS - P30 EY012196()
  • NEI NIH HHS - R01 EY021242()
  • NEI NIH HHS - R01 EY021526()
  • NICHD NIH HHS - P30 HD018655()
  • NICHD NIH HHS - U54 HD090255()
  • NIGMS NIH HHS - R01 GM069808()
  • NINDS NIH HHS - R01 NS077929()

Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins.

  • Tarusawa E
  • BMC Biol.
  • 2016 Dec 2

Literature context:


Abstract:

BACKGROUND: The specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections. RESULTS: We show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity. CONCLUSIONS: Our results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.

Funding information:
  • HHMI - (United States)

Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals.

  • Chen K
  • Elife
  • 2016 Nov 30

Literature context:


Abstract:

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by mutations in Frataxin (FXN). Loss of FXN causes impaired mitochondrial function and iron homeostasis. An elevated production of reactive oxygen species (ROS) was previously proposed to contribute to the pathogenesis of FRDA. We recently showed that loss of frataxin homolog (fh), a Drosophila homolog of FXN, causes a ROS independent neurodegeneration in flies (Chen et al., 2016). In fh mutants, iron accumulation in the nervous system enhances the synthesis of sphingolipids, which in turn activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2) to trigger neurodegeneration of adult photoreceptors. Here, we show that loss of Fxn in the nervous system in mice also activates an iron/sphingolipid/PDK1/Mef2 pathway, indicating that the mechanism is evolutionarily conserved. Furthermore, sphingolipid levels and PDK1 activity are also increased in hearts of FRDA patients, suggesting that a similar pathway is affected in FRDA.

Funding information:
  • NIDDK NIH HHS - U24 DK059637(United States)

Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior.

  • Doan RN
  • Cell
  • 2016 Oct 6

Literature context:


Abstract:

Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.

Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila.

  • Jovanic T
  • Cell
  • 2016 Oct 20

Literature context:


Abstract:

Even a simple sensory stimulus can elicit distinct innate behaviors and sequences. During sensorimotor decisions, competitive interactions among neurons that promote distinct behaviors must ensure the selection and maintenance of one behavior, while suppressing others. The circuit implementation of these competitive interactions is still an open question. By combining comprehensive electron microscopy reconstruction of inhibitory interneuron networks, modeling, electrophysiology, and behavioral studies, we determined the circuit mechanisms that contribute to the Drosophila larval sensorimotor decision to startle, explore, or perform a sequence of the two in response to a mechanosensory stimulus. Together, these studies reveal that, early in sensory processing, (1) reciprocally connected feedforward inhibitory interneurons implement behavioral choice, (2) local feedback disinhibition provides positive feedback that consolidates and maintains the chosen behavior, and (3) lateral disinhibition promotes sequence transitions. The combination of these interconnected circuit motifs can implement both behavior selection and the serial organization of behaviors into a sequence.

Funding information:
  • NIA NIH HHS - R01 AG036040(United States)

Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system.

  • Akin O
  • Elife
  • 2016 Oct 15

Literature context:


Abstract:

Axon guidance is proposed to act through a combination of long- and short-range attractive and repulsive cues. The ligand-receptor pair, Netrin (Net) and Frazzled (Fra) (DCC, Deleted in Colorectal Cancer, in vertebrates), is recognized as the prototypical effector of chemoattraction, with roles in both long- and short-range guidance. In the Drosophila visual system, R8 photoreceptor growth cones were shown to require Net-Fra to reach their target, the peak of a Net gradient. Using live imaging, we show, however, that R8 growth cones reach and recognize their target without Net, Fra, or Trim9, a conserved binding partner of Fra, but do not remain attached to it. Thus, despite the graded ligand distribution along the guidance path, Net-Fra is not used for chemoattraction. Based on findings in other systems, we propose that adhesion to substrate-bound Net underlies both long- and short-range Net-Fra-dependent guidance in vivo, thereby eroding the distinction between them.

Funding information:
  • NIH HHS - R24-OD-011199(United States)

Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy.

  • Hosford BE
  • J. Neurosci.
  • 2016 Oct 26

Literature context:


Abstract:

Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. SIGNIFICANCE STATEMENT: These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently.

Warm-Sensitive Neurons that Control Body Temperature.

  • Tan CL
  • Cell
  • 2016 Sep 22

Literature context:


Abstract:

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/I001042/1(United Kingdom)

Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking.

  • Augur IF
  • J. Neurosci.
  • 2016 Sep 28

Literature context:


Abstract:

The ventromedial prefrontal cortex (vmPFC) has been shown to negatively regulate cocaine-seeking behavior, but the precise conditions by which vmPFC activity can be exploited to reduce cocaine relapse are currently unknown. We used viral-mediated gene transfer of designer receptors (DREADDs) to activate vmPFC neurons and examine the consequences on cocaine seeking in a rat self-administration model of relapse. Activation of vmPFC neurons with the Gq-DREADD reduced reinstatement of cocaine seeking elicited by cocaine-associated cues, but not by cocaine itself. We used a retro-DREADD approach to confine the Gq-DREADD to vmPFC neurons that project to the medial nucleus accumbens shell, confirming that these neurons are responsible for the decreased cue-induced reinstatement of cocaine seeking. The effects of vmPFC activation on cue-induced reinstatement depended on prior extinction training, consistent with the reported role of this structure in extinction memory. These data help define the conditions under which chemogenetic activation of extinction neural circuits can be exploited to reduce relapse triggered by reminder cues. SIGNIFICANCE STATEMENT: The ventromedial prefrontal cortex (vmPFC) projection to the nucleus accumbens shell is important for extinction of cocaine seeking, but its anatomical proximity to the relapse-promoting projection from the dorsomedial prefrontal cortex to the nucleus accumbens core makes it difficult to selectively enhance neuronal activity in one pathway or the other using traditional pharmacotherapy (e.g., systemically administered drugs). Viral-mediated gene delivery of an activating Gq-DREADD to vmPFC and/or vmPFC projections to the nucleus accumbens shell allows the chemogenetic exploitation of this extinction neural circuit to reduce cocaine seeking and was particularly effective against relapse triggered by cocaine reminder cues.

Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques.

  • Stauffer WR
  • Cell
  • 2016 Sep 8

Literature context:


Abstract:

Optogenetic studies in mice have revealed new relationships between well-defined neurons and brain functions. However, there are currently no means to achieve the same cell-type specificity in monkeys, which possess an expanded behavioral repertoire and closer anatomical homology to humans. Here, we present a resource for cell-type-specific channelrhodopsin expression in Rhesus monkeys and apply this technique to modulate dopamine activity and monkey choice behavior. These data show that two viral vectors label dopamine neurons with greater than 95% specificity. Infected neurons were activated by light pulses, indicating functional expression. The addition of optical stimulation to reward outcomes promoted the learning of reward-predicting stimuli at the neuronal and behavioral level. Together, these results demonstrate the feasibility of effective and selective stimulation of dopamine neurons in non-human primates and a resource that could be applied to other cell types in the monkey brain.

Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice.

  • Carmona R
  • Elife
  • 2016 Sep 19

Literature context:


Abstract:

Congenital diaphragmatic hernia (CDH) is a severe birth defect. Wt1-null mouse embryos develop CDH but the mechanisms regulated by WT1 are unknown. We have generated a murine model with conditional deletion of WT1 in the lateral plate mesoderm, using the G2 enhancer of the Gata4 gene as a driver. 80% of G2-Gata4(Cre);Wt1(fl/fl) embryos developed typical Bochdalek-type CDH. We show that the posthepatic mesenchymal plate coelomic epithelium gives rise to a mesenchyme that populates the pleuroperitoneal folds isolating the pleural cavities before the migration of the somitic myoblasts. This process fails when Wt1 is deleted from this area. Mutant embryos show Raldh2 downregulation in the lateral mesoderm, but not in the intermediate mesoderm. The mutant phenotype was partially rescued by retinoic acid treatment of the pregnant females. Replacement of intermediate by lateral mesoderm recapitulates the evolutionary origin of the diaphragm in mammals. CDH might thus be viewed as an evolutionary atavism.

Funding information:
  • NEI NIH HHS - R01 EY012020(United States)

ERα in Tac2 Neurons Regulates Puberty Onset in Female Mice.

  • Greenwald-Yarnell ML
  • Endocrinology
  • 2016 Aug 17

Literature context:


Abstract:

A variety of data suggest that estrogen action on kisspeptin (Kiss1)-containing arcuate nucleus neurons (which coexpress Kiss1, neurokinin B (the product of Tac2) and dynorphin (KNDy) neurons restrains reproductive onset and function, but roles for estrogen action in these Kiss1 neurons relative to a distinct population of rostral hypothalamic Kiss1 neurons (which does not express Tac2 or dynorphin) have not been directly tested. To test the role for estrogen receptor (ER)α in KNDy cells, we thus generated Tac2(Cre) and Kiss1(Cre) knock-in mice and bred them onto the Esr1(flox) background to ablate ERα specifically in Tac2-expressing cells (ERα(Tac2)KO mice) or all Kiss1 cells (ERα(Kiss1)KO mice), respectively. Most ERα-expressing Tac2 neurons represent KNDy cells. Arcuate nucleus Kiss1 expression was elevated in ERα(Tac2)KO and ERα(Kiss1)KO females independent of gonadal hormones, whereas rostral hypothalamic Kiss1 expression was normal in ERα(Tac2)KO but decreased in ERα(Kiss1)KO females; this suggests that ERα in rostral Kiss1 cells is crucial for control of Kiss1 expression in these cells. Both ERα(Kiss1)KO and ERα(Tac2)KO females displayed early vaginal opening, early and persistent vaginal cornification, increased gonadotropins, uterine hypertrophy, and other evidence of estrogen excess. Thus, deletion of ERα in Tac2 neurons suffices to drive precocious gonadal hyperstimulation, demonstrating that ERα in Tac2 neurons typically restrains pubertal onset and hypothalamic reproductive drive.

Funding information:
  • NIDCD NIH HHS - R01 DC006640(United States)

Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.

  • Shekhar K
  • Cell
  • 2016 Aug 25

Literature context:


Abstract:

Patterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class.

Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells.

  • Miraucourt LS
  • Elife
  • 2016 Aug 8

Literature context:


Abstract:

Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl(-) levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl(-) regulation.

DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor.

  • Aldrin-Kirk P
  • Neuron
  • 2016 Jun 1

Literature context:


Abstract:

Transplantation of DA neurons is actively pursued as a restorative therapy in Parkinson's disease (PD). Pioneering clinical trials using transplants of fetal DA neuroblasts have given promising results, although a number of patients have developed graft-induced dyskinesias (GIDs), and the mechanism underlying this troublesome side effect is still unknown. Here we have used a new model where the activity of the transplanted DA neurons can be selectively modulated using a bimodal chemogenetic (DREADD) approach, allowing either enhancement or reduction of the therapeutic effect. We show that exclusive activation of a cAMP-linked (Gs-coupled) DREADD or serotonin 5-HT6 receptor, located on the grafted DA neurons, is sufficient to induce GIDs. These findings establish a mechanistic link between the 5-HT6 receptor, intracellular cAMP, and GIDs in transplanted PD patients. This effect is thought to be mediated through counteraction of the D2 autoreceptor feedback inhibition, resulting in a dysplastic DA release from the transplant.

Funding information:
  • NICHD NIH HHS - T32HD055165(United States)

Dynamic expression of transcription factor Brn3b during mouse cranial nerve development.

  • Sajgo S
  • J. Comp. Neurol.
  • 2016 Apr 1

Literature context:


Abstract:

During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.

Age-dependent changes in amino acid phenotype and the role of glutamate release from hypothalamic proopiomelanocortin neurons.

  • Dennison CS
  • J. Comp. Neurol.
  • 2016 Apr 15

Literature context:


Abstract:

Hypothalamic proopiomelanocortin (POMC) neurons are important regulators of energy balance. Recent studies indicate that in addition to their peptides, POMC neurons can release either the amino acid (AA) transmitter gamma-aminobutyric acid (GABA) or glutamate. A small subset of POMC neurons appears to have a dual AA phenotype based on coexpression of mRNA for the vesicular glutamate transporter (vGlut2) and the GABA synthetic enzyme Gad67. To determine whether the colocalization of GABAergic and glutamatergic markers may be indicative of a switch in AA transmitter phenotype, fluorescent in situ hybridization was used to detect vGlut2 and Gad mRNA in POMC neurons during early postnatal development. The percentage of POMC neurons expressing vGlut2 mRNA in POMC neurons progressively decreased from ∼40% at day 1 to less than 10% by 8 weeks of age, whereas Gad67 was only expressed in ∼10% of POMC neurons at day 1 and increased until ∼45% of POMC neurons coexpressed Gad67 at 8 weeks of age. To determine whether the expression of vGlut2 may play a role in energy balance regulation, genetic deletion of vGlut2 in POMC neurons was accomplished using Cre-lox technology. Male, but not female, mice lacking vGlut2 in POMC neurons were unable to maintain energy balance to the same extent as control mice when fed a high-fat diet. Altogether, the results indicate that POMC neurons are largely glutamatergic early in life and that the release of glutamate from these cells is involved in sex- and diet-specific regulation of energy balance.

Funding information:
  • NIDA NIH HHS - RC2 DA029475(United States)

Isolation and Characterization of Fetal Leydig Progenitor Cells of Male Mice.

  • Inoue M
  • Endocrinology
  • 2016 Mar 27

Literature context:


Abstract:

Fetal and adult Leydig cells develop in mammalian prenatal and postnatal testes, respectively. In mice, fetal Leydig cells (FLCs) emerge in the interstitial space of the testis at embryonic day 12.5 and thereafter increase in number, possibly through differentiation from progenitor cells. However, the progenitor cells have not yet been identified. Previously, we established transgenic mice in which FLCs are labeled strongly with enhanced green fluorescent protein (EGFP). Interestingly, fluorescence-activated cell sorting provided us with weakly EGFP-labeled cells as well as strongly EGFP-labeled FLCs. In vitro reconstruction of fetal testes demonstrated that weakly EGFP-labeled cells contain FLC progenitors. Transcriptome from the 2 cell populations revealed, as expected, marked differences in the expression of genes required for growth factor/receptor signaling and steroidogenesis. In addition, genes for energy metabolisms such as glycolytic pathways and the citrate cycle were activated in strongly EGFP-labeled cells, suggesting that metabolism is activated during FLC differentiation.

Funding information:
  • Canadian Institutes of Health Research - MOP-111003(Canada)

A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program.

  • Chandran V
  • Neuron
  • 2016 Mar 2

Literature context:


Abstract:

The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology.

Mapping chromatic pathways in the Drosophila visual system.

  • Lin TY
  • J. Comp. Neurol.
  • 2016 Feb 1

Literature context:


Abstract:

In Drosophila, color vision and wavelength-selective behaviors are mediated by the compound eye's narrow-spectrum photoreceptors R7 and R8 and their downstream medulla projection (Tm) neurons Tm5a, Tm5b, Tm5c, and Tm20 in the second optic neuropil or medulla. These chromatic Tm neurons project axons to a deeper optic neuropil, the lobula, which in insects has been implicated in processing and relaying color information to the central brain. The synaptic targets of the chromatic Tm neurons in the lobula are not known, however. Using a modified GFP reconstitution across synaptic partners (GRASP) method to probe connections between the chromatic Tm neurons and 28 known and novel types of lobula neurons, we identify anatomically the visual projection neurons LT11 and LC14 and the lobula intrinsic neurons Li3 and Li4 as synaptic targets of the chromatic Tm neurons. Single-cell GRASP analyses reveal that Li4 receives synaptic contacts from over 90% of all four types of chromatic Tm neurons, whereas LT11 is postsynaptic to the chromatic Tm neurons, with only modest selectivity and at a lower frequency and density. To visualize synaptic contacts at the ultrastructural level, we develop and apply a "two-tag" double-labeling method to label LT11's dendrites and the mitochondria in Tm5c's presynaptic terminals. Serial electron microscopic reconstruction confirms that LT11 receives direct contacts from Tm5c. This method would be generally applicable to map the connections of large complex neurons in Drosophila and other animals.

Importance of Adult Dmbx1 in Long-Lasting Orexigenic Effect of Agouti-Related Peptide.

  • Hirono S
  • Endocrinology
  • 2016 Jan 31

Literature context:


Abstract:

Dmbx1 is a brain-specific homeodomain transcription factor expressed primarily during embryogenesis, and its systemic disruption (Dmbx1(-/-)) in the ICR mouse strain resulted in leanness associated with impaired long-lasting orexigenic effect of agouti-related peptide (AgRP). Because spatial and temporal expression patterns of Dmbx1 change dramatically during embryogenesis, it remains unknown when and where Dmbx1 plays a critical role in energy homeostasis. In the present study, the physiological roles of Dmbx1 were examined by its conditional disruption (Dmbx1(loxP/loxP)) in the C57BL/6 mouse strain. Although Dmbx1 disruption in fetal brain resulted in neonatal lethality, its disruption by synapsin promoter-driven Cre recombinase, which eliminated Dmbx1 expression postnatally, exempted the mice (Syn-Cre;Dmbx1(loxP/loxP) mice) from lethality. Syn-Cre;Dmbx1(loxP/loxP) mice show mild leanness and impaired long-lasting orexigenic action of AgRP, demonstrating the physiological relevance of Dmbx1 in the adult. Visualization of Dmbx1-expressing neurons in adult brain using the mice harboring tamoxifen-inducible Cre recombinase in the Dmbx1 locus (Dmbx1(CreERT2/+) mice) revealed Dmbx1 expression in small numbers of neurons in restricted regions, including the lateral parabrachial nucleus (LPB). Notably, c-Fos expression in LPB was increased at 48 hours after AgRP administration in Dmbx1(loxP/loxP) mice but not in Syn-Cre;Dmbx1(loxP/loxP) mice. These c-Fos-positive neurons in LPB did not coincide with neurons expressing Dmbx1 or melanocortin 4 receptor but did coincide with those expressing calcitonin gene-related peptide. Accordingly, Dmbx1 in the adult LPB is required for the long-lasting orexigenic effect of AgRP via the neural circuitry involving calcitonin gene-related peptide neurons.

Funding information:
  • NHLBI NIH HHS - T32 HL083810(United States)
  • NIMH NIH HHS - R01 MH043396(United States)

Expanding the power of recombinase-based labeling to uncover cellular diversity.

  • Plummer NW
  • Development
  • 2015 Dec 15

Literature context:


Abstract:

Investigating the developmental, structural and functional complexity of mammalian tissues and organs depends on identifying and gaining experimental access to diverse cell populations. Here, we describe a set of recombinase-responsive fluorescent indicator alleles in mice that significantly extends our ability to uncover cellular diversity by exploiting the intrinsic genetic signatures that uniquely define cell types. Using a recombinase-based intersectional strategy, these new alleles uniquely permit non-invasive labeling of cells defined by the overlap of up to three distinct gene expression domains. In response to different combinations of Cre, Flp and Dre recombinases, they express eGFP and/or tdTomato to allow the visualization of full cellular morphology. Here, we demonstrate the value of these features through a proof-of-principle analysis of the central noradrenergic system. We label previously inaccessible subpopulations of noradrenergic neurons to reveal details of their three-dimensional architecture and axon projection profiles. These new indicator alleles will provide experimental access to cell populations at unprecedented resolution, facilitating analysis of their developmental origin and anatomical, molecular and physiological properties.

Evaluation of the expression pattern of rAAV2/1, 2/5, 2/7, 2/8, and 2/9 serotypes with different promoters in the mouse visual cortex.

  • Scheyltjens I
  • J. Comp. Neurol.
  • 2015 Oct 1

Literature context:


Abstract:

This study compared the expression pattern, laminar distribution, and cell specificity of several rAAV serotypes (2/1, 2/5, 2/7, 2/8, and 2/9) injected in the primary visual cortex (V1) of adult C57Bl/6J mice. In order to obtain specific expression in certain neuron subtypes, different promoter sequences were evaluated for excitatory cell specificity: a universal cytomegalovirus (CMV) promoter, and two versions of the excitatory neuron-specific Ca(2+) /calmodulin-dependent kinase subunit α (CaMKIIα) promoter, CaMKIIα 0.4 and CaMKIIα 1.3. The spatial distribution as well as the cell type specificity was immunohistochemically verified. Depending on the rAAV serotype used, the transduced volume expressing reporter protein differed substantially (rAAV2/5 ≫ 2/7 ≈ 2/9 ≈ 2/8 ≫ 2/1). Excitatory neuron-specific targeting was promoter-dependent, with a surprising difference between the 1.3 kb and 0.4 kb CaMKIIα promoters. While CaMKIIα 1.3 and CMV carrying vectors were comparable, with 78% of the transduced neurons being excitatory for CMV and 82% for CaMKIIα 1.3, the shorter CaMKIIα 0.4 version resulted in 95% excitatory specificity. This study therefore puts forward the CaMKIIα 0.4 promoter as the best choice to target excitatory neurons with rAAVs. Together, these results can be used as an aid to select the most optimal vector system to deliver transgenes into specific rodent neocortical circuits, allowing further elucidation of their functions.

Funding information:
  • NIA NIH HHS - R21 AG024372(United States)

Dendrodendritic synapses in the mouse olfactory bulb external plexiform layer.

  • Bartel DL
  • J. Comp. Neurol.
  • 2015 Jun 1

Literature context:


Abstract:

Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and was equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites were more prevalent in the outer EPL. In contrast, individual gephyrin-immunoreactive (IR) puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated for by an increase in synaptic density.

Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse.

  • Biezonski DK
  • J. Comp. Neurol.
  • 2015 Jun 1

Literature context:


Abstract:

The striatum is the major input nucleus of the basal ganglia involved in reward processing, goal-directed behaviors, habit learning, and motor control. The striatum projects to the basal ganglia output nuclei via the "direct" and "indirect" pathways, which can be distinguished by their projection fields and their opposing effects on behavior. In adult animals, the functional opposition is modulated by the differential actions of D1 and D2 dopamine receptors (D1R, D2R), the expression of which is largely separated between these pathways. To determine whether a similar degree of separation exists earlier in development, we used dual-label immunohistochemistry to map dorsal-striatal D1R and D2R expression at the promoter level in postnatal day 0 (PD0) Drd1a-tdTomato/Drd2-GFP BAC transgenic mice, and at the receptor level by costaining for native D1R and D2R in wildtype (WT) PD0 animals. To assess for potential molecular interactions between D1R and D2R we also employed a recently developed proximity-ligation assay (PLA). Limited coexpression and colocalization of the D1R and D2R proteins was found in clusters of neurons endemic to the "patch" compartment as identified by costaining with tyrosine hydroxylase, but not outside these clusters. Moreover, in contrast to our recent findings where we failed to detect a D1R-D2R PLA signal in the adult striatum, in PD0 striatum we did identify a clear PLA signal for this pair of receptors. This colocalization at close proximity points to a possible role for D1R/D2R-mediated crosstalk in early striatal ontogeny.

A Cdh1-APC/FMRP Ubiquitin Signaling Link Drives mGluR-Dependent Synaptic Plasticity in the Mammalian Brain.

  • Huang J
  • Neuron
  • 2015 May 6

Literature context:


Abstract:

Deregulation of synaptic plasticity may contribute to the pathogenesis of developmental cognitive disorders. In particular, exaggerated mGluR-dependent LTD is featured in fragile X syndrome, but the mechanisms that regulate mGluR-LTD remain incompletely understood. We report that conditional knockout of Cdh1, the key regulatory subunit of the ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC), profoundly impairs mGluR-LTD in the hippocampus. Mechanistically, we find that Cdh1-APC operates in the cytoplasm to drive mGluR-LTD. We also identify the fragile X syndrome protein FMRP as a substrate of Cdh1-APC. Endogenous Cdh1-APC forms a complex with endogenous FMRP, and knockout of Cdh1 impairs mGluR-induced ubiquitination and degradation of FMRP in the hippocampus. Knockout of FMRP suppresses, and expression of an FMRP mutant protein that fails to interact with Cdh1 phenocopies, the Cdh1 knockout phenotype of impaired mGluR-LTD. These findings define Cdh1-APC and FMRP as components of a novel ubiquitin signaling pathway that regulates mGluR-LTD in the brain.

Divergent innervation of the olfactory bulb by distinct raphe nuclei.

  • Steinfeld R
  • J. Comp. Neurol.
  • 2015 Apr 1

Literature context:


Abstract:

The raphe nuclei provide serotonergic innervation widely in the brain, thought to mediate a variety of neuromodulatory effects. The mammalian olfactory bulb (OB) is a prominent recipient of serotonergic fibers, particularly in the glomerular layer (GL), where they are thought to gate incoming signals from the olfactory nerve. The dorsal raphe nucleus (DRN) and the median raphe nucleus (MRN) are known to densely innervate the OB. The majority of such projections are thought to terminate in the GL, but this has not been explicitly tested. We sought to investigate this using recombinant adeno-associated viruses (rAAV)-mediated expression of green fluorescent protein (GFP)-synaptophysin targeted specifically to neurons of the DRN or the MRN. With DRN injections, labeled fibers were found mostly in the granule cell layer (GCL), not the GL. Conversely, dense labeling in the GL was observed with MRN injections, suggesting that the source of GL innervation is the MRN, not the DRN, as previously thought. The two raphe nuclei thus give dual innervation within the OB, with distinct innervation patterns.

Reelin receptors ApoER2 and VLDLR are expressed in distinct spatiotemporal patterns in developing mouse cerebral cortex.

  • Hirota Y
  • J. Comp. Neurol.
  • 2015 Feb 15

Literature context:


Abstract:

In mammalian developing brain, neuronal migration is regulated by a variety of signaling cascades, including Reelin signaling. Reelin is a glycoprotein that is mainly secreted by Cajal-Retzius neurons in the marginal zone, playing essential roles in the formation of the layered neocortex via its receptors, apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR). However, the precise mechanisms by which Reelin signaling controls the neuronal migration process remain unclear. To gain insight into how Reelin signaling controls individual migrating neurons, we generated monoclonal antibodies against ApoER2 and VLDLR and examined the localization of Reelin receptors in the developing mouse cerebral cortex. Immunohistochemical analyses revealed that VLDLR is localized to the distal portion of leading processes in the marginal zone (MZ), whereas ApoER2 is mainly localized to neuronal processes and the cell membranes of multipolar cells in the multipolar cell accumulation zone (MAZ). These different expression patterns may contribute to the distinct actions of Reelin on migrating neurons during both the early and late migratory stages in the developing cerebral cortex.

Funding information:
  • NINDS NIH HHS - R01 NS092786(United States)

GABAergic and glutamatergic efferents of the mouse ventral tegmental area.

  • Taylor SR
  • J. Comp. Neurol.
  • 2014 Oct 1

Literature context:


Abstract:

The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral-vector-mediated cell-type-specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non-tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non-TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA-independent functions than previously recognized.

Funding information:
  • NCRR NIH HHS - RR 17072(United States)

Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE.

  • Moreno M
  • J. Neurosci.
  • 2014 Jun 11

Literature context:


Abstract:

Current multiple sclerosis (MS) therapies only partially prevent chronically worsening neurological deficits, which are largely attributable to progressive loss of CNS axons. Prior studies of experimental autoimmune encephalomyelitis (EAE) induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide), a model of MS, documented continued axon loss for months after acute CNS inflammatory infiltrates had subsided, and massive astroglial induction of CCL2 (MCP-1), a chemokine for CCR2(+) monocytes. We now report that conditional deletion of astroglial CCL2 significantly decreases CNS accumulation of classically activated (M1) monocyte-derived macrophages and microglial expression of M1 markers during the initial CNS inflammatory phase of MOG peptide EAE, reduces the acute and long-term severity of clinical deficits and slows the progression of spinal cord axon loss. In addition, lack of astroglial-derived CCL2 results in increased accumulation of Th17 cells within the CNS in these mice, but also in greater confinement of CD4(+) lymphocytes to CNS perivascular spaces. These findings suggest that therapies designed to inhibit astroglial CCL2-driven trafficking of monocyte-derived macrophages to the CNS during acute MS exacerbations have the potential to significantly reduce CNS axon loss and slow progression of neurological deficits.

Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice.

  • Hao MM
  • J. Comp. Neurol.
  • 2013 Oct 1

Literature context:


Abstract:

Cholinergic neurons are the major excitatory neurons of the enteric nervous system (ENS), and include intrinsic sensory neurons, interneurons, and excitatory motor neurons. Cholinergic neurons have been detected in the embryonic ENS; however, the development of these neurons has been difficult to study as they are difficult to detect prior to birth using conventional immunohistochemistry. In this study we used ChAT-Cre;R26R-YFP mice to examine the development of cholinergic neurons in the gut of embryonic and postnatal mice. Cholinergic (YFP+) neurons were first detected at embryonic day (E)11.5, and the proportion of cholinergic neurons gradually increased during pre- and postnatal development. At birth, myenteric cholinergic neurons comprised less than half of their adult proportions in the small intestine (25% of myenteric neurons were YFP+ at P0 compared to 62% in adults). The earliest cholinergic neurons appear to mainly project anally. Projections into the presumptive circular muscle were first observed at E14.5. A subpopulation of cholinergic neurons coexpress calbindin through embryonic and postnatal development, but only a small proportion coexpressed neuronal nitric oxide synthase. Our study shows that cholinergic neurons in the ENS develop over a protracted period of time.

Funding information:
  • NIDDK NIH HHS - DK84142(United States)
  • Wellcome Trust - 085532(United Kingdom)

Forebrain GABAergic projections to locus coeruleus in mouse.

  • Dimitrov EL
  • J. Comp. Neurol.
  • 2013 Jul 1

Literature context:


Abstract:

The noradrenergic locus coeruleus (LC) regulates arousal, memory, sympathetic nervous system activity, and pain. Forebrain projections to LC have been characterized in rat, cat, and primates, but not systematically in mouse. We surveyed mouse forebrain LC-projecting neurons by examining retrogradely labeled cells following LC iontophoresis of Fluoro-Gold and anterograde LC labeling after forebrain injection of biotinylated dextran amine or viral tracer. Similar to other species, the central amygdalar nucleus (CAmy), anterior hypothalamus, paraventricular nucleus, and posterior lateral hypothalamic area (PLH) provide major LC inputs. By using mice expressing green fluorescent protein in γ-aminobutyric acid (GABA)ergic neurons, we found that more than one-third of LC-projecting CAmy and PLH neurons are GABAergic. LC colocalization of biotinylated dextran amine, following CAmy or PLH injection, with either green fluorescent protein or glutamic acid decarboxylase (GAD)65/67 immunoreactivity confirmed these GABAergic projections. CAmy injection of adeno-associated virus encoding channelrhodopsin-2-Venus showed similar fiber labeling and association with GAD65/67-immunoreactive (ir) and tyrosine hydroxylase (TH)-ir neurons. CAmy and PLH projections were densest in a pericoerulear zone, but many fibers entered the LC proper. Close apposition between CAmy GABAergic projections and TH-ir processes suggests that CAmy GABAergic neurons may directly inhibit noradrenergic principal neurons. Direct LC neuron targeting was confirmed by anterograde transneuronal labeling of LC TH-ir neurons following CAmy or PLH injection of a herpes virus that expresses red fluorescent protein following activation by Cre recombinase in mice that express Cre recombinase in GABAergic neurons. This description of GABAergic projections from the CAmy and PLH to the LC clarifies important forebrain sources of inhibitory control of central nervous system noradrenergic activity.

Funding information:
  • NLM NIH HHS - RL1LM009833(United States)

Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium.

  • Krolewski RC
  • J. Comp. Neurol.
  • 2013 Mar 1

Literature context:


Abstract:

Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion.

Funding information:
  • NHLBI NIH HHS - U54-HL108460(United States)

Mutation of the BiP/GRP78 gene causes axon outgrowth and fasciculation defects in the thalamocortical connections of the mammalian forebrain.

  • Favero CB
  • J. Comp. Neurol.
  • 2013 Feb 15

Literature context:


Abstract:

Proper development of axonal connections is essential for brain function. A forward genetic screen for mice with defects in thalamocortical development previously isolated a mutant called baffled. Here we describe the axonal defects of baffled in further detail and identify a point mutation in the Hspa5 gene, encoding the endoplasmic reticulum chaperone BiP/GRP78. This hypomorphic mutation of BiP disrupts proper development of the thalamocortical axon projection and other forebrain axon tracts, as well as cortical lamination. In baffled mutant brains, a reduced number of thalamic axons innervate the cortex by the time of birth. Thalamocortical and corticothalamic axons are delayed, overfasciculated, and disorganized along their pathway through the ventral telencephalon. Furthermore, dissociated mutant neurons show reduced axon extension in vitro. Together, these findings demonstrate a sensitive requirement for the endoplasmic reticulum chaperone BiP/GRP78 during axon outgrowth and pathfinding in the developing mammalian brain.

Funding information:
  • NIGMS NIH HHS - R21-GM084008(United States)

Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons.

  • Jarvie BC
  • J. Comp. Neurol.
  • 2012 Dec 1

Literature context:


Abstract:

Hypothalamic proopiomelanocortin (POMC) neurons have traditionally been defined by their peptide transmitters, which are important regulators of energy balance and reward. Recent work shows that POMC neurons can also release the amino acid transmitters γ-aminobutyric acid (GABA) and glutamate, although studying GABAergic and glutamatergic populations of POMC neurons has been hindered by the difficulty in reliably identifying amino acid (AA) transmitter phenotypes. In the present study, fluorescent in situ hybridization and immunohistochemistry were used to identify POMC neurons and to detect the presence of mRNA for the transporters responsible for packaging either GABA (vesicular GABA transporter [vGAT]) or glutamate (vesicular glutamate transporter [vGLUT]) into vesicles, as well as the enzymes responsible for GABA synthesis, glutamic acid decarboxylase (GAD)65 and GAD67. Approximately 7% of POMC neurons expressed vGlut2 and the highest percentage of vGlut2-positive POMC cells were located in the rostral arcuate nucleus. Despite the reports of GABA release from POMC neurons, vGat was not detected in POMC neurons, although Gad65 and Gad67 were present in ~40% of POMC neurons. Approximately half of the vGlut2-expressing POMC cells also expressed Gad65. Markers of neurotransmitter phenotype were better detected by using in situ hybridization techniques rather than transgenic expression of fluorophores under the control of the vGat or Gad67 promoters. It is now clear that the expression of markers of AA phenotype provides a useful means to identify distinct subpopulations of POMC neurons. Additionally, the method described will be useful to explore the possibility that plasticity of AA phenotype is an important aspect of POMC neuron function.

Funding information:
  • NIA NIH HHS - R21AG034264(United States)

Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish.

  • Kuscha V
  • J. Comp. Neurol.
  • 2012 Nov 1

Literature context:


Abstract:

In contrast to mammals, adult zebrafish regenerate neurons in the lesioned spinal cord. For example, motor neurons are generated from an olig2-expressing population of pMN-like ependymoradial glial cells in a ventrolateral position at the central canal. However, the extent of neuronal regeneration is unclear. Here we show, using a transgenic fish in which V2 interneurons are labeled by green fluorescent protein (GFP) under the control of the vsx1 promoter, that after a complete spinal cord transection, large numbers of V2 interneurons are generated in the vicinity of the lesion site. Tg(vsx1:GFP)⁺ cells are not present in the unlesioned spinal cord and label with the proliferation marker bromodeoxyuridine (BrdU) after a lesion. Some mediolaterally elongated Tg(vsx1:GFP)⁺ cells contact the central canal in a medial position. These cells likely arise from a p2-like domain of ependymoradial glial progenitor cells, indicated by coexpression of Pax6 and Nkx6.1, but not DsRed driven by the olig2 promoter in these cells. We also present evidence that Pax2⁺ interneurons are newly generated after a spinal lesion, whereas the generation rate for a dorsal population of parvalbuminergic interneurons is comparatively low. Our results identify the regenerative potential of different interneuron types for the first time and support a model in which different progenitor cell domains in distinct dorsoventral positions around the central canal are activated by a lesion to give rise to diverse neuronal cell types in the adult zebrafish spinal cord.

Funding information:
  • Canadian Institutes of Health Research - (Canada)
  • NIDCD NIH HHS - R21 DC013358(United States)

Visualizing corticotropin-releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele.

  • Kühne C
  • J. Comp. Neurol.
  • 2012 Oct 1

Literature context:


Abstract:

The corticotropin-releasing hormone (CRH) and its type 1 receptor (CRHR1) play a central role in coordinating the endocrine, autonomic, and behavioral responses to stress. A prerequisite to functionally dissect the complexity of the CRH/CRHR1 system is to unravel the identity of CRHR1-expressing neurons and their connectivities. Therefore, we used a knockin approach to genetically label CRHR1-expressing cells with a tau-lacZ (tZ) reporter gene. The distribution of neurons expressing β-galactosidase in the brain and the relative intensity of labeling is in full accordance with previously described Crhr1 mRNA expression. Combining the microtubule-binding properties of TAU with the Cre-loxP system allowed to direct the β-galactosidase to proximal dendrites, and in particular to axons. Thereby, we were able to visualize projections of CRHR1 neurons such as glutamatergic and dopaminergic afferent connections of the striatum and GABAergic CRHR1-expressing neurons located within its patch compartment. In addition, the tZ reporter gene revealed novel details of CRHR1 expression in the spinal cord, skin, and eye. CRHR1 expression in the retina prompted the identification of a new physiological role of CRHR1 related to the visual system. Besides its reporter properties, this novel CRHR1 allele comprises the possibility to conditionally restore or delete CRHR1 via Flp and Cre recombinase, respectively. Finally, the allele is suitable for further manipulations of the CRHR1 locus by recombinase-mediated cassette exchange. Taken together, this novel mouse allele will significantly facilitate the neuroanatomical analysis of CRHR1 circuits and opens up new avenues to address CRHR1 function in more detail.

Funding information:
  • Wellcome Trust - WT085949MA(United Kingdom)

Plasticity of tyrosine hydroxylase and serotonergic systems in the regenerating spinal cord of adult zebrafish.

  • Kuscha V
  • J. Comp. Neurol.
  • 2012 Apr 1

Literature context:


Abstract:

Monoaminergic innervation of the spinal cord has important modulatory functions for locomotion. Here we performed a quantitative study to determine the plastic changes of tyrosine hydroxylase-positive (TH1(+); mainly dopaminergic), and serotonergic (5-HT(+)) terminals and cells during successful spinal cord regeneration in adult zebrafish. TH1(+) innervation in the spinal cord is derived from the brain. After spinal cord transection, TH1(+) immunoreactivity is completely lost from the caudal spinal cord. Terminal varicosities increase in density rostral to the lesion site compared with unlesioned controls and are re-established in the caudal spinal cord at 6 weeks post lesion. Interestingly, axons mostly fail to re-innervate more caudal levels of the spinal cord even after prolonged survival times. However, densities of terminal varicosities correlate with recovery of swimming behavior, which is completely lost again after re-lesion of the spinal cord. Similar observations were made for terminals derived from descending 5-HT(+) axons from the brain. In addition, spinal 5-HT(+) neurons were newly generated after a lesion and transiently increased in number up to fivefold, which depended in part on hedgehog signaling. Overall, TH1(+) and 5-HT(+) innervation is massively altered in the successfully regenerated spinal cord of adult zebrafish. Despite these changes in TH and 5-HT systems, a remarkable recovery of swimming capability is achieved, suggesting significant plasticity of the adult spinal network during regeneration.

Funding information:
  • NIMH NIH HHS - K01 MH109747(United States)

Development and distribution of neuronal cilia in mouse neocortex.

  • Arellano JI
  • J. Comp. Neurol.
  • 2012 Mar 1

Literature context:


Abstract:

Neuronal primary cilia are not generally recognized, but they are considered to extend from most, if not all, neurons in the neocortex. However, when and how cilia develop in neurons are not known. This study used immunohistochemistry for adenylyl cyclase III (ACIII), a marker of primary cilia, and electron microscopic analysis to describe the development and maturation of cilia in mouse neocortical neurons. Our results indicate that ciliogenesis is initiated in late fetal stages after neuroblast migration, when the mother centriole docks with the plasma membrane, becomes a basal body, and grows a cilia bud that we call a procilium. This procilium consists of a membranous protrusion extending from the basal body but lacking axonemal structure and remains undifferentiated until development of the axoneme and cilia elongation starts at about postnatal day 4. Neuronal cilia elongation and final cilia length depend on layer position, and the process extends for a long time, lasting 8-12 weeks. We show that, in addition to pyramidal neurons, inhibitory interneurons also grow cilia of comparable length, suggesting that cilia are indeed present in all neocortical neuron subtypes. Furthermore, the study of mice with defective ciliogenesis suggested that failed elongation of cilia is not essential for proper neuronal migration and laminar organization or establishment of neuronal polarity. Thus, the function of this organelle in neocortical neurons remains elusive.

Funding information:
  • NIDA NIH HHS - R01 DA031833(United States)

Molecular fingerprint of neuropeptide S-producing neurons in the mouse brain.

  • Liu X
  • J. Comp. Neurol.
  • 2011 Jul 1

Literature context:


Abstract:

Neuropeptide S (NPS) has been associated with a number of complex brain functions, including anxiety-like behaviors, arousal, sleep-wakefulness regulation, drug-seeking behaviors, and learning and memory. In order to better understand how NPS influences these functions in a neuronal network context, it is critical to identify transmitter systems that control NPS release and transmitters that are co-released with NPS. For this purpose, we generated several lines of transgenic mice that express enhanced green-fluorescent protein (EGFP) under control of the endogenous NPS precursor promoter. NPS/EGFP-transgenic mice show anatomically correct and overlapping expression of both NPS and EGFP. A total number of ∼500 NPS/EGFP-positive neurons are present in the mouse brain, located in the pericoerulear region and the Kölliker-Fuse nucleus. NPS and transgene expression is first detectable around E14, indicating a potential role for NPS in brain development. EGFP-positive cells were harvested by laser-capture microdissection, and mRNA was extracted for expression profiling by using microarray analysis. NPS was found co-localized with galanin in the Kölliker-Fuse nucleus of the lateral parabrachial area. A dense network of orexin/hypocretin neuronal projections contacting pericoerulear NPS-producing neurons was observed by immunostaining. Expression of a distinct repertoire of metabotropic and ionotropic receptor genes was identified in both NPS neuronal clusters that will allow for detailed investigations of incoming neurotransmission, controlling neuronal activity of NPS-producing neurons. Stress-induced functional activation of NPS-producing neurons was detected by staining for the immediate-early gene c-fos, thus supporting earlier findings that NPS might be part of the brain stress response network.

Funding information:
  • NICHD NIH HHS - R01 HD060726(United States)

Expression of pax6 and sox2 in adult olfactory epithelium.

  • Guo Z
  • J. Comp. Neurol.
  • 2010 Nov 1

Literature context:


Abstract:

The olfactory epithelium maintains stem and progenitor cells that support the neuroepithelium's life-long capacity to reconstitute after injury. However, the identity of the stem cells--and their regulation--remain poorly defined. The transcription factors Pax6 and Sox2 are characteristic of stem cells in many tissues, including the brain. Therefore, we assessed the expression of Pax6 and Sox2 in normal olfactory epithelium and during epithelial regeneration after methyl bromide lesion or olfactory bulbectomy. Sox2 is found in multiple kinds of cells in normal epithelium, including sustentacular cells, horizontal basal cells, and some globose basal cells. Pax6 is co-expressed with Sox2 in all these, but is also found in duct/gland cells as well as olfactory neurons that innervate necklace glomeruli. Most of the Sox2/Pax6-positive globose basal cells are actively cycling, but some express the cyclin-dependent kinase inhibitor p27(Kip1), and are presumably mitotically quiescent. Among globose basal cells, Sox2 and Pax6 are co-expressed by putatively multipotent progenitors (labeled by neither anti-Mash1 nor anti-Neurog1) and neuron-committed transit amplifying cells (which express Mash1). However, Sox2 and Pax6 are expressed by only a minority of immediate neuronal precursors (Neurog1- and NeuroD1-expressing). The assignment of Sox2 and Pax6 to these categories of globose basal cells is confirmed by a temporal analysis of transcription factor expression during the recovery of the epithelium from methyl bromide-induced injury. Each of the Sox2/Pax6-colabeled cell types is at a remove from the birth of neurons; thus, suppressing their differentiation may be among the roles of Sox2/Pax6 in the olfactory epithelium.

Funding information:
  • NIGMS NIH HHS - R01GM080646-04S2(United States)

Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain.

  • Tseng YY
  • J. Comp. Neurol.
  • 2010 Aug 15

Literature context:


Abstract:

Previous studies showed that Tctex-1 immunoreactivity is selectively enriched in the germinal zones of adult brain. In this report we identify a regulatory region of the Tctex-1 gene that is capable of directing transgenic expression of green fluorescent protein (GFP) reporter that recapitulates the spatial and temporal expression pattern of endogenous Tctex-1. This construct specifically targeted expression to the nestin(+)/Pax6(+)/GLAST(+) radial glial cells and Tbr2(+) intermediate progenitors when the reporter construct was delivered to developing mouse neocortex via in utero electroporation. Characterization of mice transgenically expressing GFP under the same regulatory element showed that the GFP expression is faithful to endogenous Tctex-1 at the subgranular zone (SGZ) of dentate gyrus, ventricular/subventricular zone of lateral ventricles, and ependymal layer of 3rd ventricle of adult brains. Immunolocalization and bromodeoxyuridine incorporation studies of adult SGZ in four independent mouse lines showed that Tctex-1:GFP reporter selectively marks nestin(+)/GFAP(+)/Sox2(+) neural stem-like cells in two mouse lines (4 and 13). In two other mouse lines (17 and 18), Tctex-1:GFP is selectively expressed in Type-2 and Type-3 transient amplifying progenitors and a small subset of young neuronal progeny. The P/E-Tctex-1 reporter mouse studies independently confirmed the specific enrichment of Tctex-1 at adult SGZ stem/progenitor cells. Furthermore, these studies supported the notion that an analogous transcriptional program may be used to regulate neurogenesis in embryonic cerebral cortex and adult hippocampus. Finally, the genomic sequences and the reporter mouse lines described here provide useful experimental tools to advance adult neural stem cell research.

Funding information:
  • Intramural NIH HHS - U54 HG003273(United States)

Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as markers for fast motor neurons and partition cells.

  • Enjin A
  • J. Comp. Neurol.
  • 2010 Jun 15

Literature context:


Abstract:

Spinal cholinergic neurons are critical for motor function in both the autonomic and somatic nervous systems and are affected in spinal cord injury and in diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy. Using two screening approaches and in situ hybridization, we identified 159 genes expressed in typical cholinergic patterns in the spinal cord. These include two general cholinergic neuron markers, one gene exclusively expressed in motor neurons, and nine genes expressed in unknown subtypes of somatic motor neurons. Further, we present evidence that chondrolectin (Chodl) is expressed by fast motor neurons and that estrogen-related receptor beta (ERRbeta) is a candidate marker for slow motor neurons. In addition, we suggest paired-like homeodomain transcription factor 2 (Pitx2) as a marker for cholinergic partition cells.

Funding information:
  • NHGRI NIH HHS - P01 HG004120(United States)

Drosophila serotonergic varicosities are not distributed in a regular manner.

  • Chen J
  • J. Comp. Neurol.
  • 2009 Aug 1

Literature context:


Abstract:

Neurons of the brain form complex tree-like structures that are critical for function. Here we examine the spatial pattern of serotonergic varicosities, the synaptic sites of serotonin release in the central nervous system (CNS). These varicosities are thought to form largely nonjunctional-type connections that partition in a grid-like manner in order to distribute evenly the neuromodulatory neurotransmitter serotonin. We describe the neuropil distribution of serotonergic varicosities in the brain and ventral nerve cord (VNC) of the larval Drosophila CNS. In the brain, we find evidence for avoidance between varicosities at distances lower than 1.75 microm. However, in the VNC, we find a clustered distribution. A similar clustered pattern is found in the Xenopus brain. This pattern produces many varicosities that are clustered together but also includes some varicosities that are very isolated. These isolated varicosities are not found along particular topological sections of the neurite tree or in particular locations in the CNS. In addition, the pattern breaks down when serotonergic branches of adjacent segments invade each other's territory. The pattern is similar to those described by a power law.

Relationship of presympathetic-premotor neurons to the serotonergic transmitter system in the rat brainstem.

  • Kerman IA
  • J. Comp. Neurol.
  • 2006 Dec 20

Literature context:


Abstract:

Numerous physiological conditions and emotionally motivated behaviors require concomitant activation of somatomotor and sympathetic efferents. Using a virally mediated retrograde transsynaptic tract-tracing approach, we have previously determined locations of presympathetic-premotor neurons (PSPMNs) in the rat brainstem. These putative dual-function neurons send projections to somatomotor and sympathetic targets and likely participate in sympatho-somatomotor integration. A significant portion of these neurons is found within brainstem areas known to contain serotonergic neurons. Thus, we hypothesized that some of the PSPMNs utilize serotonin as their neurotransmitter. To test this hypothesis we first produced an antibody against TPH2, a brain-specific isoform of tryptophan hydroxylase (serotonin synthetic enzyme). We identified PSPMNs by using recombinant strains of the pseudorabies virus (PRV) for transsynaptic tract-tracing. PRV-152, a strain that expresses enhanced green fluorescent protein, was injected into sympathectomized gastrocnemius muscle, while PRV-BaBlu, which expresses beta-galactosidase, was injected into the adrenal gland in the same animals. Using immunofluorescent methods we determined whether coinfected neurons expressed TPH2. Our findings demonstrate that TPH2-positive PSPMNs are present at different rostrocaudal levels of the brainstem. Just over half of them are found at the pontomedullary junction within raphe obscurus, raphe magnus, and gigantocellular nucleus pars alpha. These cells may play a role in mediating responses to acute pain stimuli and/or participate in the central control of exercise. Overactivity of these serotonergic sympatho-somatomotor circuits may also play a role in the pathophysiology of serotonin syndrome.

Funding information:
  • NHGRI NIH HHS - HG002238(United States)