X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

mCherry Monoclonal Antibody (16D7)

RRID:AB_2536611

Antibody ID

AB_2536611

Target Antigen

mCherry tag

Proper Citation

(Thermo Fisher Scientific Cat# M11217, RRID:AB_2536611)

Clonality

monoclonal antibody

Comments

Applications: ICC (Assay Dependent), WB (Assay Dependent), Flow (Assay Dependent), IP (Assay Dependent), IHC (Assay Dependent)

Clone ID

Clone 16D7

Host Organism

rat

Thalamostriatal and cerebellothalamic pathways in a songbird, the Bengalese finch.

  • Nicholson DA
  • J. Comp. Neurol.
  • 2018 Jun 15

Literature context:


Abstract:

The thalamostriatal system is a major network in the mammalian brain, originating principally from the intralaminar nuclei of thalamus. Its functions remain unclear, but a subset of these projections provides a pathway through which the cerebellum communicates with the basal ganglia. Both the cerebellum and basal ganglia play crucial roles in motor control. Although songbirds have yielded key insights into the neural basis of vocal learning, it is unknown whether a thalamostriatal system exists in the songbird brain. Thalamic nucleus DLM is an important part of the song system, the network of nuclei required for learning and producing song. DLM receives output from song system basal ganglia nucleus Area X and sits within dorsal thalamus, the proposed avian homolog of the mammalian intralaminar nuclei that also receives projections from the cerebellar nuclei. Using a viral vector that specifically labels presynaptic axon segments, we show in Bengalese finches that dorsal thalamus projects to Area X, the basal ganglia nucleus of the song system, and to surrounding medial striatum. To identify the sources of thalamic input to Area X, we map DLM and cerebellar-recipient dorsal thalamus (DTCbN ). Surprisingly, we find both DLM and dorsal anterior DTCbN adjacent to DLM project to Area X. In contrast, the ventral medial subregion of DTCbN projects to medial striatum outside Area X. Our results suggest the basal ganglia in the song system, like the mammalian basal ganglia, integrate feedback from the thalamic region to which they project as well as thalamic regions that receive cerebellar output.

Funding information:
  • NIDCD NIH HHS - R01 DC014364()
  • NIDDK NIH HHS - U01DK089565(United States)
  • NINDS NIH HHS - R01 NS084844()

Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.

  • Selcho M
  • J. Comp. Neurol.
  • 2018 Jun 1

Literature context:


Abstract:

The peptidergic Pigment-dispersing factor (PDF)-Tri neurons are a group of non-clock neurons that appear transiently around the time of adult ecdysis (=eclosion) in the fruit fly Drosophila melanogaster. This specific developmental pattern points to a function of these neurons in eclosion or other processes that are active around pupal-adult transition. As a first step to understand the role of these neurons, we here characterize the anatomy of the PDF-Tri neurons. In addition, we describe a further set of peptidergic neurons that have been associated with eclosion behavior, eclosion hormone (EH), and crustacean cardioactive peptide (CCAP) neurons, to single cell level in the pharate adult brain. PDF-Tri neurons as well as CCAP neurons co-express a classical transmitter indicated by the occurrence of small clear vesicles in addition to dense-core vesicles containing the peptides. In the tritocerebrum, gnathal ganglion and the superior protocerebrum PDF-Tri neurites contain peptidergic varicosities and both pre- and postsynaptic sites, suggesting that the PDF-Tri neurons represent modulatory rather than pure interneurons that connect the subesophageal zone with the superior protocerebrum. The extensive overlap of PDF-Tri arborizations with neurites of CCAP- and EH-expressing neurons in distinct brain regions provides anatomical evidence for a possible function of the PDF-Tri neurons in eclosion behavior.

Funding information:
  • NIAID NIH HHS - AI29611(United States)

A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration.

  • Kamijo S
  • J. Neurosci.
  • 2018 Jun 13

Literature context:


Abstract:

Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCC during brain development remain unclear. Calcium signaling has been shown to be essential for neurodevelopmental processes such as sculpting of neurites, functional wiring, and fine tuning of growing networks. To investigate this relationship, we performed submembraneous calcium imaging using a membrane-tethered genetically encoded calcium indicator (GECI) Lck-G-CaMP7. We successfully recorded spontaneous regenerative calcium transients (SRCaTs) in developing mouse excitatory cortical neurons prepared from both sexes before synapse formation. SRCaTs originated locally in immature neurites independently of somatic calcium rises and were significantly more elevated in the axons than in dendrites. SRCaTs were not blocked by tetrodoxin, a Na+ channel blocker, but were strongly inhibited by hyperpolarization, suggesting a voltage-dependent source. Pharmacological and genetic manipulations revealed the critical importance of the Cav1.2 (CACNA1C) pore-forming subunit of L-type VGCCs, which were indeed expressed in immature mouse brains. Consistently, knocking out Cav1.2 resulted in significant alterations of neurite outgrowth. Furthermore, expression of a gain-of-function Cav1.2 mutant found in Timothy syndrome, an autosomal dominant multisystem disorder exhibiting syndromic autism, resulted in impaired radial migration of layer 2/3 excitatory neurons, whereas postnatal abrogation of Cav1.2 enhancement could rescue cortical malformation. Together, these lines of evidence suggest a critical role for spontaneous opening of L-type VGCCs in neural development and corticogenesis and indicate that L-type VGCCs might constitute a perinatal therapeutic target for neuropsychiatric calciochannelopathies.SIGNIFICANCE STATEMENT Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCCs during brain development remain unclear. We here combined the latest Ca2+ indicator technology, quantitative pharmacology, and in utero electroporation and found a hitherto unsuspected role for L-type VGCCs in determining the Ca2+ signaling landscape of mouse immature neurons. We found that malfunctional L-type VGCCs in immature neurons before birth might cause errors in neuritic growth and cortical migration. Interestingly, the retarded corticogenesis phenotype was rescued by postnatal correction of L-type VGCC signal aberration. These findings suggest that L-type VGCCs might constitute a perinatal therapeutic target for neurodevelopment-associated psychiatric disorders.

Funding information:
  • Howard Hughes Medical Institute - R01HD041900(United States)

Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system.

  • Schubert FK
  • J. Comp. Neurol.
  • 2018 May 1

Literature context:


Abstract:

Drosophila melanogaster is a long-standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor-labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s-LNv ) and one ITP positive dorsolateral neuron (LNd ). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre- and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF-neurons (l-LNv s). We could show that the four hardly distinguishable l-LNv s consist of two subgroups with different innervation patterns. While three of the neurons reflect the well-known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla-surface. We named this neuron "extra" l-LNv (l-LNv x). We suggest the anatomical findings reflect different functional properties of the two l-LNv subgroups.

Funding information:
  • NCI NIH HHS - R01 CA031363(United States)

Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits.

  • Cavaccini A
  • Neuron
  • 2018 May 16

Literature context:


Abstract:

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.

Funding information:
  • Wellcome Trust - (United Kingdom)

Cell-Specific Imd-NF-κB Responses Enable Simultaneous Antibacterial Immunity and Intestinal Epithelial Cell Shedding upon Bacterial Infection.

  • Zhai Z
  • Immunity
  • 2018 May 15

Literature context:


Abstract:

Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding.

Funding information:
  • NIA NIH HHS - R01 AG31675(United States)

Sonic Hedgehog Is a Remotely Produced Cue that Controls Axon Guidance Trans-axonally at a Midline Choice Point.

  • Peng J
  • Neuron
  • 2018 Jan 17

Literature context:


Abstract:

At the optic chiasm choice point, ipsilateral retinal ganglion cells (RGCs) are repelled away from the midline by guidance cues, including Ephrin-B2 and Sonic Hedgehog (Shh). Although guidance cues are normally produced by cells residing at the choice point, the mRNA for Shh is not found at the optic chiasm. Here we show that Shh protein is instead produced by contralateral RGCs at the retina, transported anterogradely along the axon, and accumulates at the optic chiasm to repel ipsilateral RGCs. In vitro, contralateral RGC axons, which secrete Shh, repel ipsilateral RGCs in a Boc- and Smo-dependent manner. Finally, knockdown of Shh in the contralateral retina causes a decrease in the proportion of ipsilateral RGCs in a non-cell-autonomous manner. These findings reveal a role for axon-axon interactions in ipsilateral RGC guidance, and they establish that remotely produced cues can act at axon guidance midline choice points.

Long-Range GABAergic Inputs Regulate Neural Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis.

  • Bao H
  • Cell Stem Cell
  • 2017 Nov 2

Literature context:


Abstract:

The quiescence of adult neural stem cells (NSCs) is regulated by local parvalbumin (PV) interneurons within the dentate gyrus (DG). Little is known about how local PV interneurons communicate with distal brain regions to regulate NSCs and hippocampal neurogenesis. Here, we identify GABAergic projection neurons from the medial septum (MS) as the major afferents to dentate PV interneurons. Surprisingly, dentate PV interneurons are depolarized by GABA signaling, which is in sharp contrast to most mature neurons hyperpolarized by GABA. Functionally, these long-range GABAergic inputs are necessary and sufficient to maintain adult NSC quiescence and ablating them leads to NSC activation and subsequent depletion of the NSC pool. Taken together, these findings delineate a GABAergic network involving long-range GABAergic projection neurons and local PV interneurons that couples dynamic brain activity to the neurogenic niche in controlling NSC quiescence and hippocampal neurogenesis.

Funding information:
  • NIMH NIH HHS - R01 MH111773()
  • NIMH NIH HHS - R21 MH106939()

Identification of Two Classes of Somatosensory Neurons That Display Resistance to Retrograde Infection by Rabies Virus.

  • Albisetti GW
  • J. Neurosci.
  • 2017 Oct 25

Literature context:


Abstract:

Glycoprotein-deleted rabies virus-mediated monosynaptic tracing has become a standard method for neuronal circuit mapping, and is applied to virtually all parts of the rodent nervous system, including the spinal cord and primary sensory neurons. Here we identified two classes of unmyelinated sensory neurons (nonpeptidergic and C-fiber low-threshold mechanoreceptor neurons) resistant to direct and trans-synaptic infection from the spinal cord with rabies viruses that carry glycoproteins in their envelopes and that are routinely used for infection of CNS neurons (SAD-G and N2C-G). However, the same neurons were susceptible to infection with EnvA-pseudotyped rabies virus in tumor virus A receptor transgenic mice, indicating that resistance to retrograde infection was due to impaired virus adsorption rather than to deficits in subsequent steps of infection. These results demonstrate an important limitation of rabies virus-based retrograde tracing of sensory neurons in adult mice, and may help to better understand the molecular machinery required for rabies virus spread in the nervous system. In this study, mice of both sexes were used.SIGNIFICANCE STATEMENT To understand the neuronal bases of behavior, it is important to identify the underlying neural circuitry. Rabies virus-based monosynaptic tracing has been used to identify neuronal circuits in various parts of the nervous system. This has included connections between peripheral sensory neurons and their spinal targets. These connections form the first synapse in the somatosensory pathway. Here we demonstrate that two classes of unmyelinated sensory neurons, which account for >40% of dorsal root ganglia neurons, display resistance to rabies infection. Our results are therefore critical for interpreting monosynaptic rabies-based tracing in the sensory system. In addition, identification of rabies-resistant neurons might provide a means for future studies addressing rabies pathobiology.

Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling.

  • Resch JM
  • Neuron
  • 2017 Sep 27

Literature context:


Abstract:

Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTSHSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTSHSD2 neuron activation, identify the circuit by which NTSHSD2 neurons drive appetite, and uncover an interaction between the NTSHSD2 circuit and ATII signaling. NTSHSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Nav1.5 channels. Remarkably, NTSHSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTSHSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTSHSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.

Funding information:
  • NIDDK NIH HHS - F32 DK103387()
  • NIDDK NIH HHS - P30 DK046200()
  • NIDDK NIH HHS - P30 DK057521()
  • NIDDK NIH HHS - R01 DK075632()
  • NIDDK NIH HHS - R01 DK089044()
  • NIDDK NIH HHS - R01 DK096010()
  • NIDDK NIH HHS - R01 DK111401()
  • NINDS NIH HHS - K08 NS099425()

A Ratiometric Sensor for Imaging Insulin Secretion in Single β Cells.

  • Schifferer M
  • Cell Chem Biol
  • 2017 Apr 20

Literature context:


Abstract:

Despite the urgent need for assays to visualize insulin secretion there is to date no reliable method available for measuring insulin release from single cells. To address this need, we developed a genetically encoded reporter termed RINS1 based on proinsulin superfolder GFP (sfGFP) and mCherry fusions for monitoring insulin secretion. RINS1 expression in MIN6 β cells resulted in proper processing yielding single-labeled insulin species. Unexpectedly, glucose or drug stimulation of insulin secretion in β cells led to the preferential release of the insulin-sfGFP construct, while the mCherry-fused C-peptide remained trapped in exocytic granules. This physical separation was used to monitor glucose-stimulated insulin secretion ratiometrically by total internal reflection fluorescence microscopy in single MIN6 and primary mouse β cells. Further, RINS1 enabled parallel monitoring of pulsatile insulin release in tolbutamide-treated β cells, demonstrating the potential of RINS1 for investigations of antidiabetic drug candidates at the single-cell level.

BTBD18 Regulates a Subset of piRNA-Generating Loci through Transcription Elongation in Mice.

  • Zhou L
  • Dev. Cell
  • 2017 Mar 13

Literature context:


Abstract:

PIWI-interacting RNAs (piRNAs) are small non-coding RNAs essential for animal germ cell development. Despite intense investigation of post-transcriptional processing, chromatin regulators for piRNA biogenesis in mammals remain largely unexplored. Here we document that BTBD18 is a pachytene nuclear protein in mouse testes that occupies a subset of pachytene piRNA-producing loci. Ablation of Btbd18 in mice disrupts piRNA biogenesis, prevents spermiogenesis, and results in male sterility. Transcriptome profiling, chromatin accessibility, and RNA polymerase II occupancy demonstrate that BTBD18 facilitates expression of pachytene piRNA precursors by promoting transcription elongation. Thus, our study identifies BTBD18 as a specific controller for transcription activation through RNA polymerase II elongation at a subset of genomic piRNA loci.