X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Chicken anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 594

RRID:AB_2535871

Antibody ID

AB_2535871

Target Antigen

Goat IgG (H+L) Cross-Adsorbed goat

Proper Citation

(Thermo Fisher Scientific Cat# A-21468, RRID:AB_2535871)

Clonality

polyclonal antibody

Comments

Applications: IHC (1-10 µg/mL), IF (1-10 µg/mL), ICC (1-10 µg/mL)

Host Organism

chicken

Vendor

Thermo Fisher Scientific Go To Vendor

Cat Num

A-21468

Publications that use this research resource

A Hierarchical, Data-Driven Approach to Modeling Single-Cell Populations Predicts Latent Causes of Cell-To-Cell Variability.

  • Loos C
  • Cell Syst
  • 2018 May 23

Literature context:


Abstract:

All biological systems exhibit cell-to-cell variability. Frameworks exist for understanding how stochastic fluctuations and transient differences in cell state contribute to experimentally observable variations in cellular responses. However, current methods do not allow identification of the sources of variability between and within stable subpopulations of cells. We present a data-driven modeling framework for the analysis of populations comprising heterogeneous subpopulations. Our approach combines mixture modeling with frameworks for distribution approximation, facilitating the integration of multiple single-cell datasets and the detection of causal differences between and within subpopulations. The computational efficiency of our framework allows hundreds of competing hypotheses to be compared. We initially validate our method using simulated data with an understood ground truth, then we analyze data collected using quantitative single-cell microscopy of cultured sensory neurons involved in pain initiation. This approach allows us to quantify the relative contribution of neuronal subpopulations, culture conditions, and expression levels of signaling proteins to the observed cell-to-cell variability in NGF/TrkA-initiated Erk1/2 signaling.

Funding information:
  • NIAID NIH HHS - R01 AI024157(United States)

Melanocyte Stem Cell Activation and Translocation Initiate Cutaneous Melanoma in Response to UV Exposure.

  • Moon H
  • Cell Stem Cell
  • 2017 Nov 2

Literature context:


Abstract:

Melanoma is one of the deadliest cancers, yet the cells of origin and mechanisms of tumor initiation remain unclear. The majority of melanomas emerge from clear skin without a precursor lesion, but it is unknown whether these melanomas can arise from melanocyte stem cells (MCSCs). Here we employ mouse models to define the role of MCSCs as melanoma cells of origin, demonstrate that MCSC quiescence acts as a tumor suppressor, and identify the extrinsic environmental and molecular factors required for the critical early steps of melanoma initiation. Specifically, melanomas originate from melanoma-competent MCSCs upon stimulation by UVB, which induces MCSC activation and translocation via an inflammation-dependent process. Moreover, the chromatin-remodeling factor Hmga2 in the skin plays a critical role in UVB-mediated melanomagenesis. These findings delineate melanoma formation from melanoma-competent MCSCs following extrinsic stimuli, and they suggest that abrogation of Hmga2 function in the microenvironment can suppress MCSC-originating cutaneous melanomas.