X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor® 594 conjugate

RRID:AB_2534073

Antibody ID

AB_2534073

Target Antigen

Mouse IgG (H+L) mouse

Proper Citation

(Thermo Fisher Scientific Cat# A-11005, RRID:AB_2534073)

Clonality

polyclonal antibody

Comments

Applications: Flow (1-10 µg/mL), IF (1-10 µg/mL), ICC (1-10 µg/mL)

Host Organism

goat

Vendor

Thermo Fisher Scientific Go To Vendor

Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus.

  • Readhead B
  • Neuron
  • 2018 Jun 21

Literature context:


Abstract:

Investigators have long suspected that pathogenic microbes might contribute to the onset and progression of Alzheimer's disease (AD) although definitive evidence has not been presented. Whether such findings represent a causal contribution, or reflect opportunistic passengers of neurodegeneration, is also difficult to resolve. We constructed multiscale networks of the late-onset AD-associated virome, integrating genomic, transcriptomic, proteomic, and histopathological data across four brain regions from human post-mortem tissue. We observed increased human herpesvirus 6A (HHV-6A) and human herpesvirus 7 (HHV-7) from subjects with AD compared with controls. These results were replicated in two additional, independent and geographically dispersed cohorts. We observed regulatory relationships linking viral abundance and modulators of APP metabolism, including induction of APBB2, APPBP2, BIN1, BACE1, CLU, PICALM, and PSEN1 by HHV-6A. This study elucidates networks linking molecular, clinical, and neuropathological features with viral activity and is consistent with viral activity constituting a general feature of AD.

Funding information:
  • NIGMS NIH HHS - 8P20GM103447(United States)

Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation.

  • Hoshi Y
  • J. Neurosci.
  • 2018 Jun 20

Literature context:


Abstract:

Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia.SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia.

Funding information:
  • NIGMS NIH HHS - GM58272(United States)

Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway.

  • Sitko AA
  • J. Comp. Neurol.
  • 2018 May 1

Literature context:


Abstract:

Prior to forming and refining synaptic connections, axons of projection neurons navigate long distances to their targets. While much is known about guidance cues for axon navigation through intermediate choice points, whether and how axons are organized within tracts is less clear. Here we analyze the organization of retinal ganglion cell (RGC) axons in the developing mouse retinogeniculate pathway. RGC axons are organized by both eye-specificity and topography in the optic nerve and tract: ipsilateral RGC axons are segregated from contralateral axons and are offset laterally in the tract relative to contralateral axon topographic position. To identify potential cell-autonomous factors contributing to the segregation of ipsilateral and contralateral RGC axons in the visual pathway, we assessed their fasciculation behavior in a retinal explant assay. Ipsilateral RGC neurites self-fasciculate more than contralateral neurites in vitro and maintain this difference in the presence of extrinsic chiasm cues. To further probe the role of axon self-association in circuit formation in vivo, we examined RGC axon organization and fasciculation in an EphB1-/- mutant, in which a subset of ipsilateral RGC axons aberrantly crosses the midline but targets the ipsilateral zone in the dorsal lateral geniculate nucleus on the opposite side. Aberrantly crossing axons retain their association with ipsilateral axons in the contralateral tract, indicating that cohort-specific axon affinity is maintained independently of guidance signals present at the midline. Our results provide a comprehensive assessment of RGC axon organization in the retinogeniculate pathway and suggest that axon self-association contributes to pre-target axon organization.

Funding information:
  • NIGMS NIH HHS - SC3GM08153(United States)

Generation of two isogenic human induced pluripotent stem cell lines from a 15 year-old female patient with MERRF syndrome and A8344G mutation of mitochondrial DNA.

  • Chou SJ
  • Stem Cell Res
  • 2018 May 28

Literature context:


Abstract:

MERRF syndrome is predominantly caused by A8344G mutation in the mitochondrial DNA (mtDNA), affecting MT-TK gene, which impairs the mitochondrial electron transport chain function. Here, we report the generation of two isogenic induced pluripotent stem cell (iPSC) lines, TVGH-iPSC-MRF-Mlow and TVGH-iPSC-MRF-Mhigh, from the skin fibroblasts of a female MERRF patient harboring mtDNA A8344G mutation by using retrovirus transduction system. Both cell lines share the same genetic background except containing different proportions of mtDNA with the A8344G mutation. Both cell lines exhibited the pluripotency and capacity to differentiate into three germ layers.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains.

  • Zhang L
  • Neuron
  • 2018 May 16

Literature context:


Abstract:

How signaling molecules achieve signal diversity and specificity is a long-standing cell biology question. Here we report the development of a targeted delivery method that permits specific expression of homologous Ras-family small GTPases (i.e., Ras, Rap2, and Rap1) in different subcellular microdomains, including the endoplasmic reticulum, lipid rafts, bulk membrane, lysosomes, and Golgi complex, in rodent hippocampal CA1 neurons. The microdomain-targeted delivery, combined with multicolor fluorescence protein tagging and high-resolution dual-quintuple simultaneous patch-clamp recordings, allows systematic analysis of microdomain-specific signaling. The analysis shows that Ras signals long-term potentiation via endoplasmic reticulum PI3K and lipid raft ERK, whereas Rap2 and Rap1 signal depotentiation and long-term depression via bulk membrane JNK and lysosome p38MAPK, respectively. These results establish an effective subcellular microdomain-specific targeted delivery method and unveil subcellular microdomain-specific signaling as the mechanism for homologous Ras and Rap to achieve signal diversity and specificity to control multiple forms of synaptic plasticity.

Funding information:
  • Medical Research Council - U117588499(88499)(United Kingdom)

Generation of an iPS cell line via a non-integrative method using urine-derived cells from a patient with USH2A-associated retinitis pigmentosa.

  • Guo Y
  • Stem Cell Res
  • 2018 Apr 17

Literature context:


Abstract:

We have established an induced pluripotent stem (iPS) cell line using urine-derived cells from a 27-year-old male patient with retinitis pigmentosa associated with point mutations in the USH2A gene. Feeder-free culture conditions and the integration-free CytoTune™-iPS 2.0 Sendai Reprogramming Kit were used.

Funding information:
  • NCI NIH HHS - R01 CA042857(United States)

Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly.

  • Aneichyk T
  • Cell
  • 2018 Feb 22

Literature context:


Abstract:

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders.

Funding information:
  • Medical Research Council - G0601618(United Kingdom)
  • NINDS NIH HHS - R01 NS102423()

An Antimicrobial Peptide and Its Neuronal Receptor Regulate Dendrite Degeneration in Aging and Infection.

  • E L
  • Neuron
  • 2018 Jan 3

Literature context:


Abstract:

Infections have been identified as possible risk factors for aging-related neurodegenerative diseases, but it remains unclear whether infection-related immune molecules have a causative role in neurodegeneration during aging. Here, we reveal an unexpected role of an epidermally expressed antimicrobial peptide, NLP-29 (neuropeptide-like protein 29), in triggering aging-associated dendrite degeneration in C. elegans. The age-dependent increase of nlp-29 expression is regulated by the epidermal tir-1/SARM-pmk-1/p38 MAPK innate immunity pathway. We further identify an orphan G protein-coupled receptor NPR-12 (neuropeptide receptor 12) acting in neurons as a receptor for NLP-29 and demonstrate that the autophagic machinery is involved cell autonomously downstream of NPR-12 to transduce degeneration signals. Finally, we show that fungal infections cause dendrite degeneration using a similar mechanism as in aging, through NLP-29, NPR-12, and autophagy. Our findings reveal an important causative role of antimicrobial peptides, their neuronal receptors, and the autophagy pathway in aging- and infection-associated dendrite degeneration.

Funding information:
  • Medical Research Council - MC_U137973817(United Kingdom)
  • NIDA NIH HHS - R01 DA031833()
  • NIDCD NIH HHS - R01 DC014423()
  • NIGMS NIH HHS - R01 GM054657()
  • NIGMS NIH HHS - T32 GM007240()
  • NIH HHS - P40 OD010440()
  • NINDS NIH HHS - K99 NS076646()
  • NINDS NIH HHS - R00 NS076646()
  • NINDS NIH HHS - R01 NS094171()
  • NINDS NIH HHS - R01 NS096352()

Intrinsic Immunity Shapes Viral Resistance of Stem Cells.

  • Wu X
  • Cell
  • 2018 Jan 25

Literature context:


Abstract:

Stem cells are highly resistant to viral infection compared to their differentiated progeny; however, the mechanism is mysterious. Here, we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that, conserved across species, stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic, as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner, and many ISGs decrease upon differentiation, at which time cells become IFN responsive, allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly, we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance.

Funding information:
  • NIAID NIH HHS - R01 AI091707()
  • NIAID NIH HHS - U19 AI111825()
  • NIDDK NIH HHS - R01 DK100810()
  • NINDS NIH HHS - R01 NS046789-09S1(United States)

Nuclear, Cytosolic, and Surface-Localized Poly(A)-Binding Proteins of Plasmodium yoelii.

  • Minns AM
  • mSphere
  • 2018 Jan 24

Literature context:


Abstract:

Malaria is a devastating illness that causes approximately 500,000 deaths annually. The malaria-causing parasite (Plasmodium genus) uses the process of translational repression to regulate its growth, development, and transmission. As poly(A)-binding proteins (PABP) have been identified as critical components of RNA metabolism and translational repression in model eukaryotes and in Plasmodium, we have identified and investigated two PABPs in Plasmodium yoelii, PyPABP1 and PyPABP2. In contrast to most single-celled eukaryotes, Plasmodium closely resembles metazoans and encodes both a nuclear PABP and a cytosolic PABP; here, we provide multiple lines of evidence in support of this observation. The conserved domain architectures of PyPABP1 and PyPABP2 resemble those of yeast and metazoans, while multiple independent binding assays demonstrated their ability to bind very strongly and specifically to poly(A) sequences. Interestingly, we also observed that purified PyPABP1 forms homopolymeric chains despite exhaustive RNase treatment in vitro. Finally, we show by indirect immunofluorescence assays (IFAs) that PyPABP1 and PyPABP2 are cytoplasm- and nucleus-associated PABPs during the blood stages of the life cycle. Surprisingly, however, PyPABP1 was instead observed to also be localized on the surface of transmitted salivary gland sporozoites and to be deposited in trails when parasites glide on a substrate. This is the third RNA-binding protein verified to be found on the sporozoite surface, and the data may point to an unappreciated RNA-centered interface between the host and parasite. IMPORTANCE Malaria remains one of the great global health problems. The parasite that causes malaria (Plasmodium genus) relies upon exquisite control of its transmission between vertebrate hosts and mosquitoes. One crucial way that it does so is by proactively producing mRNAs needed to establish the new infection but by silencing and storing them until they are needed. One key protein in this process of translational repression in model eukaryotes is poly(A)-binding protein (PABP). Here we have shown that Plasmodium yoelii utilizes both a nuclear PABP and a cytosolic PABP, both of which bind specifically to polyadenylated RNA sequences. Moreover, we find that the cytosolic PABP forms chains in vitro, consistent with its appreciated role in coating the poly(A) tails of mRNA. Finally, we have also verified that, surprisingly, the cytosolic PABP is found on the surface of Plasmodium sporozoites. Taking the data together, we propose that Plasmodium utilizes a more metazoan-like strategy for RNA metabolism using specialized PABPs.

Funding information:
  • Intramural NIH HHS - (United States)
  • NIAID NIH HHS - K22 AI101039()
  • NIAID NIH HHS - R01 AI123341()
  • NIH HHS - S10 OD011986()

Widespread Rewiring of Genetic Networks upon Cancer Signaling Pathway Activation.

  • Billmann M
  • Cell Syst
  • 2018 Jan 24

Literature context:


Abstract:

Cellular signaling networks coordinate physiological processes in all multicellular organisms. Within networks, modules switch their function to control signaling activity in response to the cellular context. However, systematic approaches to map the interplay of such modules have been lacking. Here, we generated a context-dependent genetic interaction network of a metazoan's signaling pathway. Using Wnt signaling in Drosophila as a model, we measured >290,000 double perturbations of the pathway in a baseline state, after activation by Wnt ligand or after loss of the tumor suppressor APC. We found that genetic interactions within the Wnt network globally rewired after pathway activation. We derived between-state networks that showed how genes changed their function between state-specific networks. This related pathway inhibitors across states and identified genes required for pathway activation. For instance, we predicted and confirmed the ER-resident protein Catsup to be required for ligand-mediated Wnt signaling activation. Together, state-dependent and between-state genetic interaction networks identify responsive functional modules that control cellular pathways.

Funding information:
  • Medical Research Council - MR/J015377/1(United Kingdom)

Generation of a PXR reporter human induced pluripotent stem cell line (PXR-mCherry hiPSC) using the CRISPR/Cas9 system.

  • Kim H
  • Stem Cell Res
  • 2017 Dec 17

Literature context:


Abstract:

Pregnane X receptor (PXR) is a key nuclear receptor that mediates drug metabolism and stimulates hepatocyte proliferation. However, the lack of PXR expression in human pluripotent stem cell-derived hepatocytes limits their application for drug screening and toxicity testing. Here, we generated a PXR-mCherry reporter human induced pluripotent stem cell (hiPSC) line using the CRISPR/Cas9 system. PXR-mCherry hiPSCs were pluripotent and had differentiation potential and a normal karyotype. This cell line is an important tool for identifying factors that increase PXR-mediated drug metabolism and hepatocyte proliferation.

Funding information:
  • NIH HHS - P40 OD 010961(United States)

Peripheral treatment with enoxaparin exacerbates amyloid plaque pathology in Tg2576 mice.

  • Cui H
  • J. Neurosci. Res.
  • 2017 Nov 16

Literature context:


Abstract:

Alzheimer's disease (AD) is a complex, progressive neurological disorder characterized by the formation of extracellular amyloid plaques composed of β-amyloid protein (Aβ), the key component in pathogenesis of AD. Peripheral administration of enoxaparin (ENO) reportedly reduces the level of Aβ and the amyloid plaques in the cortex of amyloid precursor protein (APP) transgenic mice. However, the exact mechanism of these effects is unclear. Our previous studies indicated that ENO can inhibit APP processing to Aβ in primary cortical cells from Tg2576 mice by downregulating BACE1 levels. This study examines whether ENO-induced reduction of amyloid load is due to the decreased APP processing to Aβ in Tg2576 mice. Surprisingly, our results indicated that ENO significantly increases the Aβ42/Aβ40 ratio in cortex and enhances the amyloid plaque load in both cortex and hippocampus, although overall APP processing was not influenced by ENO. Moreover, ENO stimulated the aggregation of both Aβ40 and Aβ42 in vitro. Although ENO has been reported to improve cognition in vivo and has potential as a therapeutic agent for AD, the results from our study suggest that ENO can exacerbate the amyloid pathology, and the strategy of using ENO for the treatment of AD may require further assessment. © 2016 Wiley Periodicals, Inc.

A General Strategy for Discovery of Inhibitors and Activators of RING and U-box E3 Ligases with Ubiquitin Variants.

  • Gabrielsen M
  • Mol. Cell
  • 2017 Oct 19

Literature context:


Abstract:

RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.

Developmental changes in trak-mediated mitochondrial transport in neurons.

  • Loss O
  • Mol. Cell. Neurosci.
  • 2017 Sep 1

Literature context:


Abstract:

Previous studies established that the kinesin adaptor proteins, TRAK1 and TRAK2, play an important role in mitochondrial transport in neurons. They link mitochondria to kinesin motor proteins via a TRAK acceptor protein in the mitochondrial outer membrane, the Rho GTPase, Miro. TRAKs also associate with enzyme, O-linked N-acetylglucosamine transferase (OGT), to form a quaternary, mitochondrial trafficking complex. A recent report suggested that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons whereas TRAK2 controls mitochondrial transport in dendrites. However, it is not clear whether the function of any of these proteins is exclusive to axons or dendrites and if their mechanisms of action are conserved between different neuronal populations and also, during maturation. Here, a comparative study was carried out into TRAK-mediated mitochondrial mobility in axons and dendrites of hippocampal and cortical neurons during maturation in vitro using a shRNA gene knockdown approach. It was found that in mature hippocampal and cortical neurons, TRAK1 predominantly mediates axonal mitochondrial transport whereas dendritic transport is mediated via TRAK2. In young, maturing neurons, TRAK1 and TRAK2 contribute similarly in mitochondrial transport in both axons and dendrites in both neuronal types. These findings demonstrate maturation regulation of mitochondrial transport which is conserved between at least two distinct neuronal subtypes.

Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.

  • Hamperl S
  • Cell
  • 2017 Aug 10

Literature context:


Abstract:

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.

Funding information:
  • NIGMS NIH HHS - R01 GM119334()

RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis.

  • Di Marco S
  • Mol. Cell
  • 2017 Jun 1

Literature context:


Abstract:

The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.

Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.

  • Espuny-Camacho I
  • Neuron
  • 2017 Mar 8

Literature context:


Abstract:

Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.

Regulation of Thalamic and Cortical Network Synchrony by Scn8a.

  • Makinson CD
  • Neuron
  • 2017 Mar 8

Literature context:


Abstract:

Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, pathological hypersynchronous brain states. Here we present two mechanisms that help to explain how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony and generate pathological oscillations. To our knowledge, this finding is the first clear demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave discharges is striking and represents an example of absence epilepsy of thalamic origin.

Funding information:
  • NINDS NIH HHS - R01 NS034774()
  • NINDS NIH HHS - R01 NS048336()
  • NINDS NIH HHS - R01 NS065187()
  • NINDS NIH HHS - R01 NS072221()
  • NINDS NIH HHS - R01 NS090911()
  • NINDS NIH HHS - T32 NS007280()

Transarterial regional hypothermia provides robust neuroprotection in a rat model of permanent middle cerebral artery occlusion with transient collateral hypoperfusion.

  • Kurisu K
  • Brain Res.
  • 2016 Nov 15

Literature context:


Abstract:

The robust neuroprotective effects of transarterial regional hypothermia have been demonstrated in the typical transient middle cerebral artery occlusion (tMCAO) model, but have not yet been tested in other ischemic stroke models, even though clinical ischemic conditions are diverse. In order to clarify these effects in a different ischemic stroke model, we employed a rat model of permanent MCAO (pMCAO) with transient collateral hypoperfusion (tCHP), which was achieved by direct MCA ligation through craniotomy and 1-h bilateral common carotid artery occlusion at the beginning of pMCAO. The infusion of 20ml/kg of 4°C cold saline (CS) or 37°C warm saline (WS) into the ipsilateral internal carotid artery (ICA) was performed for 15min in intra- or post-tCHP. Neurological scores, infarct/edema volumes, and neuronal apoptosis and reactive gliosis were compared between the CS and WS groups and a non-infusion control group after 48h of reperfusion. Although brain temperatures were only reduced by 2-3°C for 15min, the CS group had significantly better neurological scores, smaller infarct/edema volumes, and less penumbral neuronal apoptosis and reactive gliosis than the control and WS groups. The post-tCHP CS group exhibited prominent neuroprotective effects, even though infarct volumes and neuronal apoptosis were reduced less than those in the intra-tCHP CS group. In conclusion, we demonstrated the neuroprotective effects of transarterial regional hypothermia in an ischemic model of pMCAO with tCHP. Even though MCAO is persistent, cold infusion via the ICA is neuroprotective for the penumbra, suggesting the wider therapeutic application of this therapy.

Funding information:
  • NHLBI NIH HHS - U54 HL127365(United States)
  • NIGMS NIH HHS - 8P41GM103540(United States)

Distribution and innervation of putative arterial chemoreceptors in the bullfrog (Rana catesbeiana).

  • Reyes C
  • J. Comp. Neurol.
  • 2014 Nov 1

Literature context:


Abstract:

Peripheral arterial chemoreceptors have been located previously in the carotid labyrinth, the aortic arch, and the pulmocutaneous artery of frogs. In the present study we used cholera toxin B neuronal tract tracing and immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH), and serotonin (5HT) to identify putative O2-sensing cells in Rana catesbeiana. We found potential O2-sensing cells in all three vascular areas innervated by branches of the vagus nerve, whereas only cells in the carotid labyrinth were innervated by the glossopharyngeal nerve. Cells containing either 5HT or TH were found in all three sites, whereas cells containing both neurotransmitters were found only in the carotid labyrinth. Cell bodies containing VAChT were not found at any site. The morphology and innervation of putative O2-sensing cells were similar to those of glomus cells found in other vertebrates. The presence of 5HT- and TH-immunoreactive cells in the aorta, pulmocutaneous artery, and carotid labyrinth appears to reflect a phylogenetic transition between the major neurotransmitter seen in the putative O2-sensing cells of fish (5HT) and those found in the glomus cells of mammals (acetylcholine, adenosine, and catecholamines).

Cell-mass structures expressing the aromatase gene Cyp19a1 lead to ovarian cavities in Xenopus laevis.

  • Mawaribuchi S
  • Endocrinology
  • 2014 Oct 20

Literature context:


Abstract:

The African clawed frog, Xenopus laevis, has a ZZ/ZW-type sex-determination system. We previously reported that a W-linked gene, Dm-W, can determine development as a female. However, the mechanisms of early sex differentiation remain unclear. We used microarrays to screen for genes with sexually dimorphic expression in ZZ and ZW gonads during early sex differentiation in X laevis and found several steroidogenic genes. Importantly, the steroid 17α-hydroxylase gene Cyp17a1 and the aromatase gene Cyp19a1 were highly expressed in ZZ and ZW gonads, respectively, just after sex determination. At this stage, we found that Cyp17a1, Cyp19a1, or both were expressed in the ZZ and ZW gonads in a unique mass-in-line structure, in which several masses of cells, each surrounded by a basement membrane, were aligned along the anteroposterior axis. In fact, during sex differentiation, ovarian cavities formed inside each mass of Cyp17a1- and Cyp19a1-positive cells in the ZW gonads. However, the mass-in-line structure disappeared during testicular development in the ZZ testes. These results suggested that the mass-in-line structure found in both ZZ and ZW gonads just after sex determination might be formed in advance to produce ovarian cavities and then oocytes. Consequently, we propose a view that the default sex may be female in the morphological aspect of gonads in X laevis.

Funding information:
  • Canadian Institutes of Health Research - MOP4918(Canada)

β-Arrestin 2 is a mediator of GnRH-(1-5) signaling in immortalized GnRH neurons.

  • Larco DO
  • Endocrinology
  • 2013 Dec 25

Literature context:


Abstract:

We have previously demonstrated that the cleavage product of the full-length GnRH, GnRH-(1-5), is biologically active, binds G protein-coupled receptor 173 (GPR173), and inhibits the migration of cells in the immortalized GnRH-secreting GN11 cell. In this study, we attempted to characterize the GnRH-(1-5) intracellular signaling mechanism. To determine whether the signaling pathway mediating GnRH-(1-5) regulation of migration involves a G protein-dependent mechanism, cells were treated with a generic G protein antagonist in the presence and absence of GnRH-(1-5), and a wound-healing assay was conducted to measure migration. G Protein antagonist 2 treatment abolished the GnRH-(1-5) inhibition of migration, indicating that the mechanism of GnRH-(1-5) is G protein coupled. To identify the potential Gα-subunit recruited by GnRH-(1-5) binding GPR173, we measured the second messengers cAMP and inositol triphosphate levels. GnRH-(1-5) treatment did not alter cAMP levels relative to cells treated with vehicle or forskolin, suggesting that GnRH-(1-5) does not couple to the Gαs or Gαi subunits. Similarly, inositol triphosphate levels remained unchanged with GnRH-(1-5) treatment, indicating a mechanism not mediated by the Gαq/11 subunit. Therefore, we also examined whether GnRH-(1-5) activating GPR173 deviated from the canonical G protein-coupled receptor signaling pathway by coupling to β-arrestin 1/2 to regulate migration. Our coimmunoprecipitation studies indicate that GnRH-(1-5) induces the rapid interaction between GPR173 and β-arrestin 2 in GN11 cells. Furthermore, we demonstrate that this association recruits phosphatase and tensin homolog to mediate the downstream action of GnRH-(1-5). These findings suggest that the GnRH-(1-5) mechanism deviates from the canonical G protein-coupled receptor pathway to regulate cell migration in immortalized GnRH neurons.

Funding information:
  • NCI NIH HHS - R21 CA190775(United States)
  • NICHD NIH HHS - HD 21350(United States)