Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PV (parvalbumin) antibody


Antibody ID


Target Antigen

mouse PV null

Proper Citation

(Frontier Institute Cat# PV-GP-Af1000, RRID:AB_2336938)


polyclonal antibody

Host Organism

guinea pig


Frontier Institute Go To Vendor

Cat Num


Publications that use this research resource

Alterations in expression of Cat-315 epitope of perineuronal nets during normal ageing, and its modulation by an open-channel NMDA receptor blocker, memantine.

  • Yamada J
  • J. Comp. Neurol.
  • 2017 Jun 15

Literature context:


The perineuronal net (PNN), a specialized aggregate of the extracellular matrix, is involved in neuroprotection against oxidative stress, which is now recognized as a major contributor to age-related decline in brain functions. In this study, we investigated the age-related molecular changes of PNNs using monoclonal antibody Cat-315, which recognizes human natural killer-1 (HNK-1) glycan on aggrecan-based PNNs. Western blot analysis showed that the expression levels of Cat-315 epitope in the hippocampus were higher in middle-aged (MA, 12-month-old) mice than in young adult (YA, 2-month-old) mice. Although there were no differences in the expression levels of Cat-315 epitope between old age (OA, 20-month-old) and MA mice, Cat-315 immunoreactivity was also detected in astrocytes of OA mice. To focus on Cat-315 epitope in PNNs, we used YA and MA mice in the following experiments. Optical disector analysis showed that there were no differences in the numbers of Cat-315-positive (Cat-315+ ) PNNs between YA and MA mice. Fluorescence intensity analysis indicated that Cat-315 immunoreactivity in PNNs increased with age in the dorsal hippocampus, which is mainly involved in cognitive functions. Administration of an open-channel blocker of NMDA receptor, memantine, reduced the expression levels of Cat-315 epitope in the hippocampus. Furthermore, the numbers of glutamatergic and GABAergic terminals colocalized with Cat-315 epitope around parvalbumin-positive neurons were decreased by memantine. These findings provide novel insight into the involvement of PNNs in normal brain ageing, and suggest that memantine may counteract the age-related alterations in expression levels of Cat-315 epitope via regulation of its subcellular localization.

Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus.

  • Yamada J
  • J. Comp. Neurol.
  • 2017 Apr 1

Literature context:


Subsets of GABAergic neurons are surrounded by perineuronal nets (PNNs), which play a critical role in the regulation of neural plasticity and neuroprotection. Although the plant lectin Wisteria floribunda agglutinin (WFA) has been commonly used to label PNNs, WFA only detects N-acetyl-d-galactosamine on aggrecan, a member of the lectican family. In this study, we used WFA and the antibody against the core protein of aggrecan (ACAN) to investigate the molecular heterogeneity of aggrecan-based PNNs around five subclasses of parvalbumin-expressing (PV+) γ-aminobutyric acid (GABA)ergic neurons in the CA1 and CA3 regions of the mouse hippocampus. The vast majority of ACAN+ PNNs were colocalized with WFA in the stratum pyramidale, whereas a substantial population of ACAN+ PNNs lacked WFA labeling in the stratum oriens. We then defined the subclasses of PV+ neurons based on their cellular locations, molecular expression, and septal projection. Like the WFA+ PNNs, ACAN+ PNNs surrounded PV+ basket cells and bistratified cells but not axo-axonic cells. Unlike the WFA+ PNNs, ACAN+ PNNs frequently surrounded PV+ oriens-lacunosum moleculare cells and hippocampo-septal cells. Interestingly, the relative densities of GABAergic synapses were higher around PV+ neurons with ACAN+ PNNs than around those without ACAN+ PNNs. Degradation of WFA+ PNNs by chondroitinase ABC did not affect the GABAergic synaptic densities around PV+ neurons. Our findings suggest that the molecular composition of aggrecan-based PNNs around PV+ neurons may differ in a subclass-specific manner, and also might help determine the functional involvement of PNNs in the regulation of GABAergic synapses around PV+ neurons in the hippocampus. J. Comp. Neurol. 525:1234-1249, 2017. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NHGRI NIH HHS - U54 HG003067(United States)

The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn.

  • Abraira VE
  • Cell
  • 2017 Jan 12

Literature context:


The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.

Funding information:
  • NCRR NIH HHS - S10 RR028832()
  • NIDA NIH HHS - P30 DA035756()
  • NIDA NIH HHS - R01 DA034022()
  • NIDA NIH HHS - R21 DA023643()
  • NIDCR NIH HHS - R01 DE022750()
  • NINDS NIH HHS - F32 NS077836()
  • NINDS NIH HHS - P01 NS079419()
  • NINDS NIH HHS - P30 NS072030()
  • NINDS NIH HHS - R35 NS097344()
  • NINDS NIH HHS - T32 NS007292()

Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

  • Kerti-Szigeti K
  • Elife
  • 2016 Aug 18

Literature context:


Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content.

Funding information:
  • NIA NIH HHS - R37 AG008796(United States)

Subclass-specific formation of perineuronal nets around parvalbumin-expressing GABAergic neurons in Ammon's horn of the mouse hippocampus.

  • Yamada J
  • J. Comp. Neurol.
  • 2015 Apr 1

Literature context:


Perineuronal nets (PNNs) are closely associated with parvalbumin-positive (PV+) neurons, and play a major role in controlling developmental neural plasticity. Considering the recent advances in classification of PV+ neurons, here we aimed to clarify whether PNNs might be associated with specific subclasses of PV+ neurons in the hippocampus. In this study, we labeled PNNs by Wisteria floribunda agglutinin (WFA), and classified PV+ neurons based on the combination of cellular location, molecular expression (neuropeptide Y [NPY], somatostatin [SOM], special AT-rich sequence-binding protein-1 [SATB1]), and retrograde tracing through stereotaxic injection of Fluoro-Gold (FG) into the medial septum. The criteria of each subclass can be summarized as follows: axo-axonic cells, PV+/SATB1-/NPY- cells in the stratum pyramidale; basket cells, PV+/SATB1+/NPY- cells in the stratum pyramidale; bistratified cells, PV+/SATB1+/NPY+ cells in the stratum pyramidale; oriens-lacunosum-moleculare (O-LM) cells, PV+/SOM+/FG- cells in the stratum oriens; hippocampo-septal projection (H-S) cells, and PV+/SOM+/FG+ cells in the stratum oriens. The ratios of formation of WFA+ PNNs around each subclass of PV+ neurons were estimated according to the optical disector principle. The vast majority (over 90%) of putative PV+ basket cells were surrounded by PNNs, while only a minor population (less than 10%) of putative PV+ axo-axonic, O-LM, and H-S cells were enwrapped with PNNs. The ratios of formation of PNNs around putative PV+ bistratified cells were intermediate (25-50%). These findings indicate that PNNs may be specifically associated with PV+ basket cells, and also provide a key to understand the functional significance of PNNs and PV+ neurons in the hippocampus.