X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

p44/42 MAP kinase (phosphorylated Erk1/2) antibody

RRID:AB_2315036

Antibody ID

AB_331646

Target Antigen

Erk1/2 chicken, fish, hamster, human, mouse, other, rat, human, mouse, rat, chicken, hamster, zebrafish

Proper Citation

(Cell Signaling Technology Cat# 9101, RRID:AB_331646)

Clonality

polyclonal antibody

Comments

Applications: W, IP, IF-IC, F. Consolidation: AB_2315036, AB_2315114, AB_2315111, AB_2315113.

Host Organism

rabbit

Vendor

Cell Signaling Technology

Ca2+ involvement in activation of extracellular-signal-regulated-kinase 1/2 and m-calpain after axotomy of the sciatic nerve.

  • Mårtensson LB
  • Neural Regen Res
  • 2017 Apr 29

Literature context:


Abstract:

Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracellular-signal-regulated kinase-1/2 (ERK1/2; important for proliferation) and m-calpain in vitro, and the relation to Ca2+ deletion and Schwann cell proliferation and death after rat sciatic nerve axotomy. Nerve segments were cultured for up to 72 hours with and without ethylene glycol-bis(β-aminoethyl ether)-N, N, N', N'-tetraacetic acid (EGTA). In some experiments, 5-bromo-2'-deoxyuridine (BrdU) was added during the last 24 hours to detect proliferating cells and propidium iodide (PI) was added at the last hour to detect dead and/or dying cells. Immunohistochemistry of sections of the cultured nerve segments was performed to label m-calpain and the phosphorylated and activated form of ERK1/2. The experiments revealed that immunoreactivity for p-ERK1/2 increased with time in organotypically cultured SCs. p-ERK1/2 and m-calpain were also observed in axons. A significant increase in the number of dead or dying SCs was observed in nerve segments cultured for 24 hours. When deprived of Ca2+, activation of axonal m-calpain was reduced, whereas p-ERK1/2 was increased in SCs. Ca2+ deprivation also significantly reduced the number of proliferating SCs, and instead increased the number of dead or dying SCs. Ca2+ seems to play an important role in activation of ERK1/2 in SCs and in SC survival and proliferation. In addition, extracellular Ca2+ levels are also required for m-calpain activation and up-regulation in axons. Thus, regulation of Ca2+ levels is likely to be a useful method to promote SC proliferation.

ROS1 signaling regulates epithelial differentiation in the epididymis.

  • Jun HJ
  • Endocrinology
  • 2014 Sep 25

Literature context:


Abstract:

The initial segment (IS) of the epididymis plays an essential role in male fertility. The IS epithelium is undifferentiated and nonfunctional at birth. Prior to puberty, the epithelium undergoes differentiation that leads to the formation of a fully functional organ. However, the mechanistic details of this program are not well understood. To explore this further, we used genetic engineering to create a kinase dead allele of the ROS1 receptor tyrosine kinase in mice and studied the effects of ROS1 tyrosine kinase activity on the differentiation of the IS epithelium. We show that the expression and activation of ROS1 coincides with the onset of differentiation and is exclusively located in the IS of the maturing and adult mouse epididymides. Here we demonstrate that the differentiation of the IS is dependent on the kinase activity of ROS1 and its downstream effector MEK1/2-ERK1/2 signaling axis. Using genetic engineering, we show that germ line ablation of ROS1 kinase activity leads to a failure of the IS epithelium to differentiate, and as a consequence sperm maturation and infertility were dramatically perturbed. Pharmacological inhibition of ROS1 kinase activity in the developing epididymis, however, only delayed differentiation transiently and did not result in infertility. Our results demonstrate that ROS1 kinase activity and the ensuing MEK1/2-ERK1/2 signaling are necessary for the postnatal development of the IS epithelium and that a sustained ablation of ROS1 kinase activity within the critical window of terminal differentiation abrogate the function of the epididymis and leads to sterility.

Funding information:
  • NCI NIH HHS - P30 CA142543(United States)

Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure.

  • Dorfman MD
  • Endocrinology
  • 2014 Aug 19

Literature context:


Abstract:

Neurotrophins (NTs), once believed to be neural-specific trophic factors, are now known to also provide developmental cues to non-neural cells. In the ovary, NTs contribute to both the formation and development of follicles. Here we show that oocyte-specific deletion of the Ntrk2 gene that encodes the NTRK2 receptor (NTRK2) for neurotrophin-4/5 and brain-derived neurotrophic factor (BDNF) results in post-pubertal oocyte death, loss of follicular organization, and early adulthood infertility. Oocytes lacking NTRK2 do not respond to gonadotropins with activation of phosphatidylinositol 3-kinase (PI3K)-AKT-mediated signaling. Before puberty, oocytes only express a truncated NTRK2 form (NTRK2.T1), but at puberty full-length (NTRK2.FL) receptors are rapidly induced by the preovulatory gonadotropin surge. A cell line expressing both NTRK2.T1 and the kisspeptin receptor (KISS1R) responds to BDNF stimulation with activation of Ntrk2 expression only if kisspeptin is present. This suggests that BDNF and kisspeptin that are produced by granulosa cells (GCs) of periovulatory follicles act in concert to mediate the effect of gonadotropins on Ntrk2 expression in oocytes. In keeping with this finding, the oocytes of NTRK2-intact mice fail to respond to gonadotropins with increased Ntrk2 expression in the absence of KISS1R. Our results demonstrate that the preovulatory gonadotropin surge promotes oocyte survival at the onset of reproductive cyclicity by inducing oocyte expression of NTRK2.FL receptors that set in motion an AKT-mediated survival pathway. They also suggest that gonadotropins activate NTRK2.FL expression via a dual communication pathway involving BDNF and kisspeptin produced in GCs and their respective receptors NTRK2.T1 and KISS1R expressed in oocytes.

Funding information:
  • NIMH NIH HHS - R01 MH110404(United States)

Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats.

  • Ferland CL
  • Endocrinology
  • 2014 Aug 19

Literature context:


Abstract:

Evidence suggests that when presented with novel acute stress, animals previously exposed to chronic homotypic or heterotypic stressors exhibit normal or enhanced hypothalamic-pituitary-adrenal (HPA) response compared with animals exposed solely to that acute stressor. The molecular mechanisms involved in this effect remain unknown. The extracellular signal-regulated kinase (ERK) is one of the key pathways regulated in the hippocampus in both acute and chronic stress. The aim of this study was to examine the interaction of prior chronic stress, using the chronic variable stress model (CVS), with exposure to a novel acute stressor (2,5-dihydro-2,4,5-trimethyl thiazoline; TMT) on ERK activation, expression of the downstream protein BCL-2, and the glucocorticoid receptor co-chaperone BAG-1 in control and chronically stressed male rats. TMT exposure after chronic stress resulted in a significant interaction of chronic and acute stress in all 3 hippocampus subregions on ERK activation and BCL-2 expression. Significantly, acute stress increased ERK activation, BCL-2 and BAG-1 protein expression in the dentate gyrus (DG) of CVS-treated rats compared with control, CVS-treated alone, and TMT-only animals. Furthermore, CVS significantly increased ERK activation in medial prefrontal cortex, but acute stress had no significant effect. Inhibition of corticosterone synthesis with metyrapone had no significant effect on ERK activation in the hippocampus; therefore, glucocorticoids alone do not mediate the molecular effects. Finally, because post-translational modifications of histones are believed to play an important role in the stress response, we examined changes in histone acetylation. We found that, in general, chronic stress decreased K12H4 acetylation, whereas acute stress increased acetylation. These results indicate a molecular mechanism by which chronic stress-induced HPA axis plasticity can lead to neurochemical alterations in the hippocampus that influence reactivity to subsequent stress exposure. This may represent an important site of dysfunction that contributes to stress-induced pathology such as depression, anxiety disorders, and posttraumatic stress disorder.

Funding information:
  • NINDS NIH HHS - NS084706(United States)

IL-6 up-regulates the expression of rat LH receptors during granulosa cell differentiation.

  • Imai F
  • Endocrinology
  • 2014 Apr 24

Literature context:


Abstract:

IL-6 is produced in granulosa cells under normal physiological conditions, including during ovulation. However, the roles of IL-6 in ovarian function, including regulation of LH receptor (LHR) expression in granulosa cells, have not been explored in detail. The aim of this study was to identify the mechanism underlying the effect of IL-6 on LHR expression in the granulosa cells of female Wistar rats. Our results indicated that IL-6 clearly enhanced the FSH-induced LHR mRNA expression in a dose-dependent manner and did not stimulate cAMP accumulation by itself. The membrane protein level of LHR, assessed by a binding assay, was increased by FSH and was further enhanced by association with IL-6. Results of the luciferase assay, using promoter constructs of LHR 281 bp upstream of the translational start site, revealed that IL-6 increased the promoter activity induced by FSH, but this effect was not observed with treatment by IL-6 alone. This ability of IL-6 to enhance FSH-induced LHR mRNA expression was blocked by the Janus tyrosine kinase (JAK) pathway inhibitor, but not by the ERK1/2 inhibitor. Thus, we speculated that this IL-6 activity might be mediated by the JAK/signal transducer and activator of transcription pathway. In addition, IL-6 augmented FSH-induced IL-6 receptor α mRNA expression and FSH elevated IL-6 production in granulosa cells, which indicates that IL-6 may positively regulate paracrine and autocrine actions in granulosa cells. These results suggest that IL-6 up-regulates FSH-induced LHR production by increasing mRNA transcription, and JAK/signal transducer and activator of transcription 3 signaling is required for up-regulation by IL-6 in granulosa cells.

Funding information:
  • NIMH NIH HHS - U01 MH106013(United States)

Neural input is critical for arcuate hypothalamic neurons to mount intracellular signaling responses to systemic insulin and deoxyglucose challenges in male rats: implications for communication within feeding and metabolic control networks.

  • Khan AM
  • Endocrinology
  • 2014 Feb 22

Literature context:


Abstract:

The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

Funding information:
  • NIA NIH HHS - AG012609(United States)

Insulin-like growth factor-1 receptor-mediated inhibition of A-type K(+) current induces sensory neuronal hyperexcitability through the phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 pathways, independently of Akt.

  • Wang H
  • Endocrinology
  • 2014 Jan 24

Literature context:


Abstract:

Although IGF-1 has been implicated in mediating hypersensitivity to pain, the underlying mechanisms remain unclear. We identified a novel functional of the IGF-1 receptor (IGF-1R) in regulating A-type K(+) currents (IA) as well as membrane excitability in small trigeminal ganglion neurons. Our results showed that IGF-1 reversibly decreased IA, whereas the sustained delayed rectifier K(+) current was unaffected. This IGF-1-induced IA decrease was associated with a hyperpolarizing shift in the voltage dependence of inactivation and was blocked by the IGF-1R antagonist PQ-401; an insulin receptor tyrosine kinase inhibitor had no such effect. An small interfering RNA targeting the IGF-1R, or pretreatment of neurons with specific phosphatidylinositol 3-kinase (PI3K) inhibitors abolished the IGF-1-induced IA decrease. Surprisingly, IGF-1-induced effects on IA were not regulated by Akt, a common downstream target of PI3K. The MAPK/ERK kinase inhibitor U0126, but not its inactive analog U0124, as well as the c-Raf-specific inhibitor GW5074, blocked the IGF-1-induced IA response. Analysis of phospho-ERK (p-ERK) showed that IGF-1 significantly activated ERK1/2 whereas p-JNK and p-p38 were unaffected. Moreover, the IGF-1-induced p-ERK1/2 increase was attenuated by PI3K and c-Raf inhibition, but not by Akt blockade. Functionally, we observed a significantly increased action potential firing rate induced by IGF-1; pretreatment with 4-aminopyridine abolished this effect. Taken together, our results indicate that IGF-1 attenuates IA through sequential activation of the PI3K- and c-Raf-dependent ERK1/2 signaling cascade. This occurred via the activation of IGF-1R and might contribute to neuronal hyperexcitability in small trigeminal ganglion neurons.

Funding information:
  • NIAID NIH HHS - HHSN272201400048C(United States)

The regulatory role of the adrenergic agonists phenylephrine and isoproterenol on fetal hemoglobin expression and erythroid differentiation.

  • Mei Y
  • Endocrinology
  • 2013 Dec 25

Literature context:


Abstract:

It has been reported that various endocrine hormones exert prominent effects on erythropoiesis. We conducted experiments to identify the mechanisms involved in the regulatory functions of adrenergic signaling on erythroid differentiation and the expression of hemoglobin genes. The reactivation of fetal hemoglobin (HbF) expression is also an important therapeutic option in patients with hemoglobin disorders. We determined that the adrenergic agonists phenylephrine (PE) and isoproterenol (ISO) can induce the production of β-hemoglobin embryonic 1 (hbbe1) mRNA and protein in adult zebrafish erythrocytes. Elevated levels of HbF mRNA and protein were also observed in human K562 cells after the adrenergic agonist treatments. In addition, elevated levels of histone acetylation were observed in both the PE- and the ISO-treated K562 cells. Additionally, our data further indicate that the induction effects of the adrenergic agonists on HbF synthesis and erythroid differentiation in K562 cells are mainly mediated by the p38 MAPK/cAMP response element binding pathway. In summary, the present study identifies the role of the adrenergic agonists PE and ISO on p38 MAPK and ERK signaling for the stimulation of HbF production and erythroid differentiation.

Funding information:
  • NIAAA NIH HHS - U01 AA020942(United States)

Autocrine and paracrine mechanisms of prostaglandin E₂ action on trophoblast/conceptus cells through the prostaglandin E₂ receptor (PTGER2) during implantation.

  • Waclawik A
  • Endocrinology
  • 2013 Oct 23

Literature context:


Abstract:

The conceptus and endometrium secrete large amounts of prostaglandin E₂ (PGE₂) into the porcine uterine lumen during the periimplantation period. We hypothesized that PGE₂ acts on conceptus/trophoblast cells through auto- and paracrine mechanisms. Real-time RT-PCR analysis revealed that PGE₂ receptor (PTGER)2 mRNA was 14-fold greater in conceptuses/trophoblasts on days 14-25 (implantation and early placentation period) vs preimplantation day 10-13 conceptuses (P < .05). Similarly, expression of PTGER2 protein increased during implantation. Conceptus expression of PTGER4 mRNA and protein did not differ on days 10-19. PGE₂ stimulated PTGER2 mRNA expression in day 15 trophoblast cells through PTGER2 receptor signaling. PGE₂ elevated aromatase expression and estradiol-17β secretion by trophoblast cells. Moreover, PGE₂ and the PTGER2 agonist, butaprost, increased the adhesive capacity of both human HTR-8/SVneo trophoblast and primary porcine trophoblast cells to extracellular matrix. This PGE₂-induced alteration in trophoblast cell adhesion to extracellular matrix was abolished by incubation of these cells with AH6809 (PTGER2 antagonist), ITGAVB3-directed tetrapeptide arg-gly-asp-ser or integrin ITGAVB3 antibody. PGE₂ stimulated adhesion of porcine trophoblast cells via the estrogen receptor and MEK/MAPK signaling pathway. PGE₂ induced phosphorylation of MAPK1/MAPK3 through PTGER2 and up-regulated expression of cell adhesion proteins such as focal adhesion kinase and intercellular adhesion molecule-1. Our study indicates that elevated PGE₂ in the periimplantation uterine lumen stimulates conceptus PTGER2 expression, which in turn promotes trophoblast adhesion via integrins, and synthesis and secretion of the porcine embryonic signal estradiol-17β. Moreover, the mechanism through which PGE₂ increases trophoblast adhesion is not species specific because it is PTGER2- and integrin-dependent in both porcine and human trophoblast cells.

Funding information:
  • NIGMS NIH HHS - 8P41GM103540(United States)

Impact of divergent effects of astaxanthin on insulin signaling in L6 cells.

  • Ishiki M
  • Endocrinology
  • 2013 Aug 22

Literature context:


Abstract:

Because oxidative stress promotes insulin resistance in obesity and type 2 diabetes, it is crucial to find effective antioxidant for the purpose of decreasing this threat. In this study, we explored the effect of astaxanthin, a carotenoid antioxidant, on insulin signaling and investigated whether astaxanthin improves cytokine- and free fatty acid-induced insulin resistance in vitro. We examined the effect of astaxanthin on insulin-stimulated glucose transporter 4 (GLUT4) translocation, glucose uptake, and insulin signaling in cultured rat L6 muscle cells using plasma membrane lawn assay, 2-deoxyglucose uptake, and Western blot analysis. Next, we examined the effect of astaxanthin on TNFα- and palmitate-induced insulin resistance. The amount of reactive oxygen species generated by TNFα or palmitate with or without astaxanthin was evaluated by dichlorofluorescein staining. We also compared the effect of astaxanthin on insulin signaling with that of other antioxidants, α-lipoic acid and α-tocopherol. We observed astaxanthin enhanced insulin-stimulated GLUT4 translocation and glucose uptake, which was associated with an increase in insulin receptor substrate-1 tyrosine and Akt phosphorylation and a decrease in c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 serine 307 phosphorylation. Furthermore, astaxanthin restored TNFα- and palmitate-induced decreases in insulin-stimulated GLUT4 translocation or glucose uptake with a concomitant decrease in reactive oxygen species generation. α-Lipoic acid enhanced Akt phosphorylation and decreased ERK and JNK phosphorylation, whereas α-tocopherol enhanced ERK and JNK phosphorylation but had little effect on Akt phosphorylation. Collectively these findings indicate astaxanthin is a very effective antioxidant for ameliorating insulin resistance by protecting cells from oxidative stress generated by various stimuli including TNFα and palmitate.

Funding information:
  • NEI NIH HHS - R01 EY012857(United States)
  • NIDDK NIH HHS - R01 DK085715(United States)

Diet-induced obesity increases tumor growth and promotes anaplastic change in thyroid cancer in a mouse model.

  • Kim WG
  • Endocrinology
  • 2013 Aug 22

Literature context:


Abstract:

Recent epidemiological studies provide strong evidence suggesting obesity is a risk factor in several cancers, including thyroid cancer. However, the molecular mechanisms by which obesity increases the risk of thyroid cancer are poorly understood. In this study, we evaluated the effect of diet-induced obesity on thyroid carcinogenesis in a mouse model that spontaneously develops thyroid cancer (Thrb(PV/PV)Pten(+/-) mice). These mice harbor a mutated thyroid hormone receptor-β (denoted as PV) and haplodeficiency of the Pten gene. A high-fat diet (HFD) efficiently induced the obese phenotype in Thrb(PV/PV)Pten(+/-) mice after 15 weeks. Thyroid tumor growth was markedly greater and survival was significantly lower in Thrb(PV/PV)Pten(+/-) mice fed an HFD than in controls fed a low-fat diet (LFD). The HFD increased thyroid tumor cell proliferation by increasing the protein levels of cyclin D1 and phosphorylated retinoblastoma protein to propel cell cycle progression. Histopathological analysis showed that the frequency of anaplasia of thyroid cancer was significantly greater (2.6-fold) in the HFD group than the LFD group. The HFD treatment led to an increase in parametrial/epididymal fat pad and elevated serum leptin levels in Thrb(PV/PV)Pten(+/-) mice. Further molecular analyses indicated that the HFD induced more aggressive pathological changes that were mediated by increased activation of the Janus kinase 2-signaling transducer and activator of transcription 3 (STAT3) signaling pathway and induction of STAT3 target gene expression. Our findings demonstrate that diet-induced obesity exacerbates thyroid cancer progression in Thrb(PV/PV)Pten(+/-) mice and suggest that the STAT3 signaling pathway could be tested as a potential target for the treatment of thyroid cancer.

Funding information:
  • Canadian Institutes of Health Research - 6027(Canada)
  • NIGMS NIH HHS - T32 GM007315(United States)

Neither signal transducer and activator of transcription 3 (STAT3) or STAT5 signaling pathways are required for leptin's effects on fertility in mice.

  • Singireddy AV
  • Endocrinology
  • 2013 Jul 24

Literature context:


Abstract:

The hormone leptin is critical for the regulation of energy balance and fertility. The long-form leptin receptor (LepR) regulates multiple intracellular signaling cascades, including the classic Janus kinase-signal transducer and activator of transcription (STAT) pathways. Previous studies have shown that deletion of STAT3 or the closely related STAT5 from the brain results in an obese phenotype, but their roles in fertility regulation are not clear. This study tested whether STAT3 and STAT5 pathways of leptin signaling are required for fertility, and whether absence of one pathway might be compensated for by the other in a redundant manner. A Cre-loxP approach was used to generate 3 models of male and female transgenic mice with LepR-specific deletion of STAT3, STAT5, or both STAT3 and STAT5. Body weight, puberty onset, estrous cyclicity, and fertility were measured in all knockout (KO) mice and their control littermates. Knocking out STAT3 or both STAT3 and 5 from LepR expressing cells, but not STAT5 alone, led to significant increase in body weight. All STAT3 and STAT5 single KO mice exhibited normal puberty onset and subsequent fertility compared to their control littermates. Surprisingly, all STAT3 and STAT5 double KO mice also exhibited normal puberty onset, estrous cyclicity, and fertility, although they had severely disrupted body weight regulation. These results suggest that, although STAT3 signaling is crucial for body weight regulation, neither STAT3 nor STAT5 is required for the regulation of fertility by leptin. It remains to be determined what other signaling molecules mediate this effect of leptin, and whether they interact in a redundant manner.

Funding information:
  • NEI NIH HHS - R01-EY020535(United States)

Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2.

  • Cholfin JA
  • J. Comp. Neurol.
  • 2008 Jul 10

Literature context:


Abstract:

The frontal cortex (FC) plays a major role in cognition, movement and behavior. However, little is known about the genetic mechanisms that govern its development. We recently described a panel of gene expression markers that delineate neonatal FC subdivisions and identified FC regionalization defects in Fgf17-/- mutant mice (Cholfin and Rubenstein [2007] Proc. Natl. Acad. Sci. U. S. A. [in press]). In the present study, we applied this FC gene expression panel to examine regionalization phenotypes in Fgf8(neo/neo), Emx2-/-, and Emx2-/-;Fgf17-/- newborn mice. We report that Fgf8, Fgf17 and Emx2 play distinct roles in the molecular regionalization of FC subdivisions. The changes in regionalization are presaged by differential effects of rostral patterning center Fgf8 and Fgf17 signaling on the rostral cortical neuroepithelium, revealed by altered expression of Spry1, Spry2, and "rostral" transcription factors Er81, Erm, Pea3, and Sp8. We used Emx2-/-;Fgf17-/- double mutants to provide direct evidence that Emx2 and Fgf17 antagonistically regulate the expression of Erm, Pea3, and Er81 in the rostral cortical neuroepithelium and FC regionalization. We have integrated our results to propose a model for how fibroblast growth factors regulate FC patterning through regulation of regional transcription factor expression within the FC anlage.