X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GABA antibody

RRID:AB_2314455

Antibody ID

AB_2314455

Target Antigen

Proper Citation

(Protos Biotech Cat# NT 108, RRID:AB_2314455)

Clonality

unknown

Vendor

Protos Biotech

Cat Num

NT 108

Publications that use this research resource

Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach, Rhyparobia maderae.

  • Arendt A
  • J. Comp. Neurol.
  • 2017 Apr 1

Literature context:


Abstract:

The circadian pacemaker of the Madeira cockroach, Rhyparobia (Leucophaea) maderae, is located in the accessory medulla (AME). Ipsi- and contralateral histaminergic compound eyes are required for photic entrainment. Light pulses delay locomotor activity rhythm during the early night and advance it during the late night. Thus, different neuronal pathways might relay either light-dependent delays or advances to the clock. Injections of neuroactive substances combined with running-wheel assays suggested that GABA, pigment-dispersing factor, myoinhibitory peptides (MIPs), and orcokinins (ORCs) were part of both entrainment pathways, whereas allatotropin (AT) only delayed locomotor rhythms at the early night. To characterize photic entrainment further, histamine and corazonin were injected. Histamine injections resulted in light-like phase delays and advances, indicating that the neurotransmitter of the compound eyes participates in both entrainment pathways. Because injections of corazonin only advanced during the late subjective night, it was hypothesized that corazonin is only part of the advance pathway. Multiple-label immunocytochemistry in combination with neurobiotin backfills demonstrated that a single cell expressed corazonin in the optic lobes that belonged to the group of medial AME interneurons. It colocalized GABA and MIP but not AT or ORC immunoreactivity. Corazonin-immunoreactive (-ir) terminals overlapped with projections of putatively light-sensitive interneurons from the ipsi- and contralateral compound eye. Thus, we hypothesize that the corazonin-ir medial neuron integrates ipsi- and contralateral light information as part of the phase-advancing light entrainment pathway to the circadian clock. J. Comp. Neurol. 525:1250-1272, 2017. © 2016 Wiley Periodicals, Inc.

The neuropeptide SIFamide in the brain of three cockroach species.

  • Arendt A
  • J. Comp. Neurol.
  • 2016 May 1

Literature context:


Abstract:

The sequence as well as the distribution pattern of SIFamide in the brain of different insects is highly conserved. As a general rule, at least four prominent SIFamide-immunoreactive somata occur in the pars intercerebralis. They arborize throughout the brain and the ventral nerve cord. Whereas SIFamide is implicated in mating and sleep regulation in Drosophila, other functions of this peptide remain largely unknown. To determine whether SIFamide plays a role in the circadian system of cockroaches, we studied SIFamide in Rhyparobia (= Leucophaea) maderae (Blaberidae), Periplaneta americana (Blattidae), and Therea petiveriana (Polyphagidae). Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry revealed identical SIFamide sequences (TYRKPPFNGSIFamide) in the three species. In addition to four large immunoreactive cells in the pars intercerebralis (group 1), smaller SIFamide-immunoreactive somata were detected in the pars intercerebralis (group 2), in the superior median protocerebrum (group 3), and in the lateral protocerebrum (group 4). Additional cells in the optic lobe (group 5) and posterior protocerebrum (group 6) were stained only in P. americana. Almost the entire protocerebrum was filled with a beaded network of SIFamide-immunoreactive processes that especially strongly invaded the upper unit of the central body. Double-label experiments did not confirm colocalizations with γ-aminobutyric acid (GABA) or the circadian coupling peptide pigment-dispersing factor (PDF). In contrast to locusts, colocalization of SIFamide and histamine immunoreactivity occurred not in group 1, but in group 4 cells. Because the accessory medulla displayed SIFamide immunoreactivity and injections of SIFamide delayed locomotor activity rhythms circadian time-dependently, SIFamide plays a role in the circadian system of cockroaches. J. Comp. Neurol. 524:1337-1360, 2016. © 2015 Wiley Periodicals, Inc.

Funding information:
  • HHMI - R01ES021557(United States)

Colocalization of allatotropin and tachykinin-related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana).

  • Fusca D
  • J. Comp. Neurol.
  • 2015 Jul 1

Literature context:


Abstract:

In the insect antennal lobe different types of local interneurons mediate complex excitatory and inhibitory interactions between the glomerular pathways to structure the spatiotemporal representation of odors. Mass spectrometric and immunohistochemical studies have shown that in local interneurons classical neurotransmitters are likely to colocalize with a variety of substances that can potentially act as cotransmitters or neuromodulators. In the antennal lobe of the cockroach Periplaneta americana, gamma-aminobutyric acid (GABA) has been identified as the potential inhibitory transmitter of spiking type I local interneurons, whereas acetylcholine is most likely the excitatory transmitter of nonspiking type IIa1 local interneurons. This study used whole-cell patch clamp recordings combined with single-cell labeling and immunohistochemistry to test if the GABAergic type I local interneurons and the cholinergic type IIa1 local interneurons express allatotropin and tachykinin-related neuropeptides (TKRPs). These are two of the most abundant types of peptides in the insect antennal lobe. GABA-like and choline acetyltransferase (ChAT)-like immunoreactivity were used as markers for GABAergic and cholinergic neurons, respectively. About 50% of the GABA-like immunoreactive (-lir) spiking type I local interneurons were allatotropin-lir, and ∼ 40% of these neurons were TKRP-lir. About 20% of nonspiking ChAT-lir type IIa1 local interneurons were TKRP-lir. Our results suggest that in subpopulations of GABAergic and cholinergic local interneurons, allatotropin and TKRPs might act as cotransmitters or neuromodulators. To unequivocally assign neurotransmitters, cotransmitters, and neuromodulators to identified classes of antennal lobe neurons is an important step to deepen our understanding of information processing in the insect olfactory system.

Funding information:
  • NHLBI NIH HHS - HL107147(United States)
  • NIDDK NIH HHS - R01 DK057038(United States)

Melanin-concentrating hormone inputs to the nucleus accumbens originate from distinct hypothalamic sources and are apposed to GABAergic and cholinergic cells in the Long-Evans rat brain.

  • Haemmerle CA
  • Neuroscience
  • 2015 Mar 19

Literature context:


Abstract:

Melanin-concentrating hormone [MCH] is a neuropeptide that modulates several behaviors, such as feeding and reward. Because the hedonic and rewarding features of a food also influence feeding behavior, the nucleus accumbens [Acb] has been highlighted as a key area integrating these roles. Functional data confirm that MCH acts on a subdivision of the Acb; however, considering the importance of finding anatomical and neurochemical data that correlate the previously demonstrated function of MCH, we delineated this investigation based on the following points: (1) Is there a pattern of innervation by MCH fibers regarding the subregions within the Acb? (2) Specifically, which hypothalamic nuclei synthesize MCH and innervate the Acb? (3) Finally, what are the neurochemical identities of the accumbal neurons innervated by MCH inputs? We examined the MCH immunoreactivity [MCH-ir] in the Acb in rat brains using the peroxidase technique. Additionally, after injecting retrograde neuronal tracer [Fluoro-Gold® - FG®] into subdivisions of the Acb [shell or core], we mapped single- or double-labeled cells. Moreover, using a double immunoperoxidase protocol, we investigated the MCH-ir fibers for gamma-aminobutyric acid [GABA]-ir and choline acetyltransferase [ChAT]-ir cells in the shell subdivision of the Acb [AcbSh]. We found that the MCH-ir fibers preferentially innervate the medial AcbSh, particularly the septal pole. This innervation originated from the incerto-hypothalamic area [IHy], internuclear area, lateral hypothalamic area, perifornical area, periventricular nucleus and posterior hypothalamus. Moreover, the IHy has the highest relationship between double/single retrogradely labeled cells [n=5.33±0.66/16±0.93, i.e. 33.33%] in the whole hypothalamus. Furthermore, our data suggest that MCH-ir fibers are in apposition to GABAergic and cholinergic cells in the AcbSh. Therefore, we provide anatomical support to the ongoing functional studies investigating the relation among the hypothalamus, MCH transmission into the Acb and the involvement of known neuronal phenotypes within the AcbSh.

Funding information:
  • Grant-in-Aid for Scientific Research (C) - 17K11444(United States)

Organization of endogenous opioids in the rostral agranular insular cortex of the rat.

  • Evans JM
  • J. Comp. Neurol.
  • 2007 Jan 20

Literature context:


Abstract:

The rostral agranular insular cortex (RAIC) of rats has opioid receptors and has been implicated in the analgesic and reinforcing effects of opiates. To help in understanding the function of endogenous opioids in this structure, we sought to identify and describe the opioid peptides intrinsic to the RAIC by using immunohistochemical methods. Immunolabeling for proopiomelanocortin (POMC), the precursor to beta-endorphin, and endomorphin 1 and 2 on sectioned rat forebrain revealed limited labeling consisting of individual varicose fibers. Immunolabeling for prodynorphin and enkephalin revealed numerous immunopositive cell bodies and fibers with distribution and morphology unique to each. Prodynorphin-immunopositive cell bodies consisted of two types: large, lightly labeled, pyramidal-shaped cell bodies in lamina V and more intensely labeled, small, ovoid cell bodies scattered in other lamina. Axonal fibers immunolabeled for prodynorphin varied in size and were found in all lamina. Immunolabeling for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) was rarely found in dynorphin-containing cell bodies (6%, 10/167) but was visible within a subpopulation of axons. Enkephalin immunolabeling was detected within a single morphological subpopulation of nonpyramidal neurons located predominantly in lamina II/III, 30% (33/109) of which were also GABA immunopositive. Axons immunolabeled for enkephalin were also abundant in lamina II/III. These results suggest that dynorphin and enkephalin peptides are the predominant endogenous opioids in the RAIC and their distinct distributions suggest divergent functional roles. The localization of prodynorphin immunoreactivity to pyramidal cells suggests the possibility that this neuropeptide may be used in RAIC projection neurons, whereas enkephalin distribution was more characteristic of a role in local networks.

Funding information:
  • NLM NIH HHS - 5T15LM007059-18(United States)