Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

EH (eclosion hormone) antibody


Antibody ID


Target Antigen

Proper Citation

(J.W. Truman, University of Washington; Washington; USA Cat# EH (eclosion hormone), RRID:AB_2314361)




J.W. Truman, University of Washington; Washington; USA

Cat Num

EH (eclosion hormone)

Publications that use this research resource

Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.

  • Selcho M
  • J. Comp. Neurol.
  • 2018 Jun 1

Literature context:


The peptidergic Pigment-dispersing factor (PDF)-Tri neurons are a group of non-clock neurons that appear transiently around the time of adult ecdysis (=eclosion) in the fruit fly Drosophila melanogaster. This specific developmental pattern points to a function of these neurons in eclosion or other processes that are active around pupal-adult transition. As a first step to understand the role of these neurons, we here characterize the anatomy of the PDF-Tri neurons. In addition, we describe a further set of peptidergic neurons that have been associated with eclosion behavior, eclosion hormone (EH), and crustacean cardioactive peptide (CCAP) neurons, to single cell level in the pharate adult brain. PDF-Tri neurons as well as CCAP neurons co-express a classical transmitter indicated by the occurrence of small clear vesicles in addition to dense-core vesicles containing the peptides. In the tritocerebrum, gnathal ganglion and the superior protocerebrum PDF-Tri neurites contain peptidergic varicosities and both pre- and postsynaptic sites, suggesting that the PDF-Tri neurons represent modulatory rather than pure interneurons that connect the subesophageal zone with the superior protocerebrum. The extensive overlap of PDF-Tri arborizations with neurites of CCAP- and EH-expressing neurons in distinct brain regions provides anatomical evidence for a possible function of the PDF-Tri neurons in eclosion behavior.

Funding information:
  • NIAID NIH HHS - AI29611(United States)

Hormone-dependent expression of fasciclin II during ganglionic migration and fusion in the ventral nerve cord of the moth Manduca sexta.

  • Himes KE
  • J. Comp. Neurol.
  • 2008 Jul 20

Literature context:


The ventral nerve cord of holometabolous insects is reorganized during metamorphosis. A prominent feature of this reorganization is the migration of subsets of thoracic and abdominal larval ganglia to form fused compound ganglia. Studies in the hawkmoth Manduca sexta revealed that pulses of the steroid hormone 20-hydroxyecdysone (20E) regulate ganglionic fusion, but little is known about the cellular mechanisms that make migration and fusion possible. To test the hypothesis that modulation of cell adhesion molecules is an essential component of ventral nerve cord reorganization, we used antibodies selective for either the transmembrane isoform of the cell adhesion receptor fasciclin II (TM-MFas II) or the glycosyl phosphatidylinositol-linked isoform (GPI-MFas II) to study cell adhesion during ganglionic migration and fusion. Our observations show that expression of TM-MFas II is regulated temporally and spatially. GPI-MFas II was expressed on the surface of the segmental ganglia and the transverse nerve, but no evidence was obtained for regulation of GPI-MFas II expression during metamorphosis of the ventral nerve cord. Manipulation of 20E titers revealed that TM-MFas II expression on neurons in migrating ganglia is regulated by hormonal events previously shown to choreograph ganglionic migration and fusion. Injections of actinomycin D (an RNA synthesis inhibitor) or cycloheximide (a protein synthesis inhibitor) blocked ganglionic movement and the concomitant increase in TM-MFas II, suggesting that 20E regulates transcription of TM-MFas II. The few neurons that showed TM-MFas II immunoreactivity independent of endocrine milieu were immunoreactive to an antiserum specific for eclosion hormone (EH), a neuropeptide regulator of molting.