X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

IB4 antibody

RRID:AB_2313663

Antibody ID

AB_2313663

Target Antigen

Proper Citation

(Sigma-Aldrich Cat# L2140, RRID:AB_2313663)

Clonality

unknown

Vendor

Sigma-Aldrich

Cat Num

L2140

Publications that use this research resource

Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability.

  • Dawes JM
  • Neuron
  • 2018 Feb 21

Literature context:


Abstract:

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.

Funding information:
  • NINDS NIH HHS - NS18400(United States)

A novel and robust conditioning lesion induced by ethidium bromide.

  • Hollis ER
  • Exp. Neurol.
  • 2015 Mar 2

Literature context:


Abstract:

Molecular and cellular mechanisms underlying the peripheral conditioning lesion remain unsolved. We show here that injection of a chemical demyelinating agent, ethidium bromide, into the sciatic nerve induces a similar set of regeneration-associated genes and promotes a 2.7-fold greater extent of sensory axon regeneration in the spinal cord than sciatic nerve crush. We found that more severe peripheral demyelination correlates with more severe functional and electrophysiological deficits, but more robust central regeneration. Ethidium bromide injection does not activate macrophages at the demyelinated sciatic nerve site, as observed after nerve crush, but briefly activates macrophages in the dorsal root ganglion. This study provides a new method for investigating the underlying mechanisms of the conditioning response and suggests that loss of the peripheral myelin may be a major signal to change the intrinsic growth state of adult sensory neurons and promote regeneration.

Funding information:
  • NINDS NIH HHS - 1F31NS084706-01(United States)

Neurochemical features of boar lumbosacral dorsal root ganglion neurons and characterization of sensory neurons innervating the urinary bladder trigone.

  • Russo D
  • J. Comp. Neurol.
  • 2013 Feb 1

Literature context:


Abstract:

Porcine lumbosacral dorsal root ganglion (DRG) neurons were neurochemically characterized by using six neuronal markers: calcitonin gene-related peptide (CGRP), substance P (SP), neuronal nitric oxide synthase (nNOS), neurofilament 200kDa (NF200), transient receptor potential vanilloid 1 (TRPV1), and isolectin B4 (IB4) from Griffonia simplicifolia. In addition, the phenotype and cross-sectional area of DRG neurons innervating the urinary bladder trigone (UBT) were evaluated by coupling retrograde tracer technique and immunohistochemistry. Lumbar and sacral DRG neuronal subpopulations were immunoreactive (IR) for CGRP (30 ± 3% and 29 ± 3%, respectively), SP (26 ± 8% and 27 ± 12%, respectively), nNOS (21 ± 4% and 26 ± 7%, respectively), NF200 (75 ± 14% and 81 ± 7%, respectively), and TRPV1 (48 ± 13% and 43 ± 6%, respectively), and labeled for IB4 (56 ± 6% and 43 ± 10%, respectively). UBT sensory neurons, which were distributed from L2 to Ca1 DRG, had a segmental localization, showing their highest density in L4-L5 and S2-S4 DRG. Lumbar and sacral UBT sensory neurons expressed similar percentages of NF200 immunoreactivity (64 ± 33% and 58 ± 12%, respectively) but showed a significantly different immunoreactivity for CGRP, SP, nNOS, and TRPV1 (56 ± 9%, 39 ± 15%, 17 ± 13%, 62 ± 10% vs. 16 ± 6%, 16 ± 11%, 6 ± 1%, 45 ± 24%, respectively). Lumbar and sacral UBT sensory neurons also showed different IB4 labeling (67 ± 19% and 48 ± 16, respectively). Taken together, these data indicate that the lumbar and sacral pathways probably play different roles in sensory transmission from the UBT. The findings related to cell size also reinforced this hypothesis, because lumbar UBT sensory neurons were significantly larger than sacral ones (1,112 ± 624 μm(2) vs. 716 ± 421 μm(2) ).

Funding information:
  • NIGMS NIH HHS - R01GM079203(United States)

Kv7.5 is the primary Kv7 subunit expressed in C-fibers.

  • King CH
  • J. Comp. Neurol.
  • 2012 Jun 15

Literature context:


Abstract:

Kv7 (KCNQ) potassium channel openers (enhancers) decrease neuropathic pain in experimental models. Here we show that C-fibers, and their associated small-diameter neurons in the dorsal root ganglia (both IB4- and TrkA-positive), expressed Kv7.5. In contrast, C-fibers did not express detectable levels of Kv7.2 or Kv7.3, which are instead localized to nodes of Ranvier and the cell bodies of large sensory neurons. These data suggest that Kv7.5 provides the primary M current in nociceptive neurons.

Funding information:
  • NIMH NIH HHS - 1R01 MH084803(United States)