X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-NeuN antibody

RRID:AB_2298772

Antibody ID

AB_2298772

Target Antigen

NeuN avian, chicken, ferret, human, mouse, pig, rat, salamander

Proper Citation

(Millipore Cat# MAB377, RRID:AB_2298772)

Clonality

monoclonal antibody

Comments

Note - This antibody may be under Chemicon, Millipore, EMD Millipore, Merck, Merck-Millipore or Sigma/Merck/Millipore. seller recommendations: FC, IC, IF, IH, IH(P), IP and WB

Clone ID

A60

Host Organism

mouse

Vendor

Millipore

Cat Num

MAB377

Publications that use this research resource

Identification of NeuN immunopositive cells in the adult mouse subventricular zone.

  • Saito K
  • J. Comp. Neurol.
  • 2018 Aug 15

Literature context:


Abstract:

In the adult rodent subventricular zone (SVZ), there are neural stem cells (NSCs) and the specialized neurogenic niche is critical to maintain their stemness. To date, many cellular and noncellular factors that compose the neurogenic niche and markers to identify subpopulations of Type A cells have been confirmed. In particular, neurotransmitters regulate adult neurogenesis and mature neurons in the SVZ have been only partially analyzed. Moreover, Type A cells, descendants of NSCs, are highly heterogeneous and more molecular markers are still needed to identify them. In the present study, we systematically classified NeuN, commonly used as a marker of mature and immature post-mitotic neurons, immunopositive (+) cells within the adult mouse SVZ. These SVZ-NeuN+ cells (SVZ-Ns) were mainly classified into two types. One was mature SVZ-Ns (M-SVZ-Ns). Neurochemical properties of M-SVZ-Ns were similar to those of striatal neurons, but their birth date and morphology were different. M-SVZ-Ns were generated during embryonic and early postnatal stages with bipolar peaks and extended their processes along the wall of the lateral ventricle. The second type was small SVZ-Ns (S-SVZ-Ns) with features of Type A cells. They expressed not only markers of Type A cells, but also proliferated and migrated from the SVZ to the olfactory bulb. Furthermore, S-SVZ-Ns could be classified into two types by their spatial locations and glutamic acid decarboxylase 67 expression. Our data indicate that M-SVZ-Ns are a new component of the neurogenic niche and S-SVZ-Ns are newly identified subpopulations of Type A cells.

Funding information:
  • NIGMS NIH HHS - R01 GM102869-01(United States)

MicroRNAs Overcome Cell Fate Barrier by Reducing EZH2-Controlled REST Stability during Neuronal Conversion of Human Adult Fibroblasts.

  • Lee SW
  • Dev. Cell
  • 2018 Jul 2

Literature context:


Abstract:

The ability to convert human somatic cells efficiently to neurons facilitates the utility of patient-derived neurons for studying neurological disorders. As such, ectopic expression of neuronal microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124) in adult human fibroblasts has been found to evoke extensive reconfigurations of the chromatin and direct the fate conversion to neurons. However, how miR-9/9∗-124 break the cell fate barrier to activate the neuronal program remains to be defined. Here, we identified an anti-neurogenic function of EZH2 in fibroblasts that acts outside its role as a subunit of Polycomb Repressive Complex 2 to directly methylate and stabilize REST, a transcriptional repressor of neuronal genes. During neuronal conversion, miR-9/9∗-124 induced the repression of the EZH2-REST axis by downregulating USP14, accounting for the opening of chromatin regions harboring REST binding sites. Our findings underscore the interplay between miRNAs and protein stability cascade underlying the activation of neuronal program.

Funding information:
  • NHLBI NIH HHS - P50 HL077107(United States)

Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration.

  • Kukreja L
  • J. Neurosci.
  • 2018 Jul 4

Literature context:


Abstract:

Frontotemporal lobar degeneration (FTLD) is among the most prevalent dementias of early-onset. Pathologically, FTLD presents with tauopathy or TAR DNA-binding protein 43 (TDP-43) proteinopathy. A biallelic mouse model of FTLD was produced on a mix FVB/129SVE background overexpressing wild-type human TDP-43 (hTDP-43) using tetracycline transactivator (tTA), a system widely used in mouse models of neurological disorders. tTA activates hTDP-43, which is placed downstream of the tetracycline response element. The original study on this transgenic mouse found hippocampal degeneration following hTDP-43 expression, but did not account for independent effects of tTA protein. Here, we initially analyzed the neurotoxic effects of tTA in postweaning age mice of either sex using immunostaining and area measurements of select brain regions. We observed tTA-dependent toxicity selectively in the hippocampus affecting the dentate gyrus significantly more than CA fields, whereas hTDP-43-dependent toxicity in bigenic mice occurred in most other cortical regions. Atrophy was associated with inflammation, activation of caspase-3, and loss of neurons. The atrophy associated with tTA expression was rescuable by the tetracycline analog, doxycycline, in the diet. MRI studies corroborated the patterns of atrophy. tTA-induced degeneration was strain-dependent and was rescued by moving the transgene onto a congenic C57BL/6 background. Despite significant hippocampal atrophy, behavioral tests in bigenic mice revealed no hippocampally mediated memory impairment. Significant atrophy in most cortical areas due solely to TDP-43 expression indicates that this mouse model remains useful for providing critical insight into co-occurrence of TDP-43 pathology, neurodegeneration, and behavioral deficits in FTLD.SIGNIFICANCE STATEMENT The tTA expression system has been widely used in mice to model neurological disorders. The technique allows investigators to reversibly turn on or off disease causing genes. Here, we report on a mouse model that overexpresses human TDP-43 using tTA and attempt to recapitulate features of TDP-43 pathology present in human FTLD. The tTA expression system is problematic, resulting in dramatic degeneration of the hippocampus. Thus, our study adds a note of caution for the use of the tTA system. However, because FTLD is primarily characterized by cortical degeneration and our mouse model shows significant atrophy in most cortical areas due to human TDP-43 overexpression, our animal model remains useful for providing critical insight on this human disease.

Funding information:
  • NIGMS NIH HHS - GM30998(United States)

Dual leucine zipper kinase is required for mechanical allodynia and microgliosis after nerve injury.

  • Wlaschin JJ
  • Elife
  • 2018 Jul 3

Literature context:


Abstract:

Neuropathic pain resulting from nerve injury can become persistent and difficult to treat but the molecular signaling responsible for its development remains poorly described. Here, we identify the neuronal stress sensor dual leucine zipper kinase (DLK; Map3k12) as a key molecule controlling the maladaptive pathways that lead to pain following injury. Genetic or pharmacological inhibition of DLK reduces mechanical hypersensitivity in a mouse model of neuropathic pain. Furthermore, DLK inhibition also prevents the spinal cord microgliosis that results from nerve injury and arises distant from the injury site. These striking phenotypes result from the control by DLK of a transcriptional program in somatosensory neurons regulating the expression of numerous genes implicated in pain pathogenesis, including the immune gene Csf1. Thus, activation of DLK is an early event, or even the master regulator, controlling a wide variety of pathways downstream of nerve injury that ultimately lead to chronic pain.

Funding information:
  • National Center for Complementary and Integrative Health - Intramural Research Program()
  • National Institute of Child Heath and Human Development - Intramural Research Program()
  • National Institutes of Health - Intramural Research Program - DDIR Innovation Award()
  • NCI NIH HHS - P30 CA33572(United States)

Adult Neurogenesis Conserves Hippocampal Memory Capacity.

  • Alam MJ
  • J. Neurosci.
  • 2018 Jul 9

Literature context:


Abstract:

The hippocampus is crucial for declarative memories in humans and encodes episodic and spatial memories in animals. Memory coding strengthens synaptic efficacy via a long-term potentiation (LTP)-like mechanism. Given that animals store memories of everyday experiences, the hippocampal circuit must have a mechanism that prevents saturation of overall synaptic weight for the preservation of learning capacity. Long-term depression (LTD) works to balance plasticity and prevent saturation. In addition, adult neurogenesis in the hippocampus is proposed to be involved in the down-scaling of synaptic efficacy. Here, we show that adult neurogenesis in male rats plays a crucial role in the maintenance of hippocampal capacity for memory (learning and/or memory formation). Neurogenesis regulated the maintenance of LTP, with decreases and increases in neurogenesis prolonging or shortening LTP persistence, respectively. Artificial saturation of hippocampal LTP impaired memory capacity in contextual fear conditioning, which completely recovered after 14 days, which was the time required for LTP to decay to the basal level. Memory capacity gradually recovered in parallel with neurogenesis-mediated gradual decay of LTP. Ablation of neurogenesis by X-ray irradiation delayed the recovery of memory capacity, while enhancement of neurogenesis using a running wheel sped up recovery. Thus, one benefit of ongoing adult neurogenesis is the maintenance of hippocampal memory capacity through homeostatic renewing of hippocampal memory circuits. Decreased neurogenesis in aged animals may be responsible for the decline in cognitive function with age.SIGNIFICANCE STATEMENTLearning many events each day increases synaptic efficacy via long-term potentiation (LTP), which can prevent the storage of new memories in the hippocampal circuit. In this study, we demonstrate that hippocampal capacity for the storage of new memories is maintained by ongoing adult neurogenesis through homoeostatic renewing of hippocampal circuits in rats. A decrease or an increase in neurogenesis, respectively, delayed or sped up the recovery of memory capacity, suggesting that hippocampal adult neurogenesis plays a critical role in reducing LTP saturation and keeps the gate open for new memories by clearing out the old memories from the hippocampal memory circuit.

Funding information:
  • NICHD NIH HHS - T32 HD049302(United States)

Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats.

  • Zuo X
  • Front Aging Neurosci
  • 2018 Jun 6

Literature context:


Abstract:

Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO) in Sprague-Dawley (SD) rats and cathepsin (Cath) B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN) after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA-074Me) would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA) or pseudorabies virus (PRV) 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.

Funding information:
  • NCI NIH HHS - R01 CA125392-04(United States)

Moderate UV Exposure Enhances Learning and Memory by Promoting a Novel Glutamate Biosynthetic Pathway in the Brain.

  • Zhu H
  • Cell
  • 2018 Jun 14

Literature context:


Abstract:

Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes.

Funding information:
  • NIDCD NIH HHS - R01DC010154-01A2(United States)

MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes.

  • Dhar SS
  • Mol. Cell
  • 2018 Jun 7

Literature context:


Abstract:

Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes.

Funding information:
  • NCI NIH HHS - P30 CA016672()
  • NCI NIH HHS - R01 CA157919()
  • NCI NIH HHS - R01 CA207098()
  • NCI NIH HHS - R01 CA207109()
  • NIAID NIH HHS - 1R01AI059372(United States)

Permanent Whisker Removal Reduces the Density of c-Fos+ Cells and the Expression of Calbindin Protein, Disrupts Hippocampal Neurogenesis and Affects Spatial-Memory-Related Tasks.

  • Gonzalez-Perez O
  • Front Cell Neurosci
  • 2018 Jun 6

Literature context:


Abstract:

Facial vibrissae, commonly known as whiskers, are the main sensitive tactile system in rodents. Whisker stimulation triggers neuronal activity that promotes neural plasticity in the barrel cortex (BC) and helps create spatial maps in the adult hippocampus. Moreover, activity-dependent inputs and calcium homeostasis modulate adult neurogenesis. Therefore, the neuronal activity of the BC possibly regulates hippocampal functions and neurogenesis. To assess whether tactile information from facial whiskers may modulate hippocampal functions and neurogenesis, we permanently eliminated whiskers in CD1 male mice and analyzed the effects in cellular composition, molecular expression and memory processing in the adult hippocampus. Our data indicated that the permanent deprivation of whiskers reduced in 4-fold the density of c-Fos+ cells (a calcium-dependent immediate early gene) in cornu ammonis subfields (CA1, CA2 and CA3) and 4.5-fold the dentate gyrus (DG). A significant reduction in the expression of calcium-binding proteincalbindin-D28k was also observed in granule cells of the DG. Notably, these changes coincided with an increase in apoptosis and a decrease in the proliferation of neural precursor cells in the DG, which ultimately reduced the number of Bromodeoxyuridine (BrdU)+NeuN+ mature neurons generated after whisker elimination. These abnormalities in the hippocampus were associated with a significant impairment of spatial memory and navigation skills. This is the first evidence indicating that tactile inputs from vibrissal follicles strongly modify the expression of c-Fos and calbindin in the DG, disrupt different aspects of hippocampal neurogenesis, and support the notion that spatial memory and navigation skills strongly require tactile information in the hippocampus.

Funding information:
  • NHLBI NIH HHS - HL097817(United States)

ZL006 promotes migration and differentiation of transplanted neural stem cells in male rats after stroke.

  • Wang DL
  • J. Neurosci. Res.
  • 2018 Jun 8

Literature context:


Abstract:

New strategies must be developed to resolve the problems of stroke treatment. In recent years, stem cell-based therapy after stroke has come into the public and academic lens. Previously we have shown that uncoupling neuronal nitric oxide synthase (nNOS) from the postsynaptic density protein-95 (PSD-95) by ZL006, a small molecular compound, can ameliorate ischemic damage and promote neuronal differentiation of endogenous neural stem cells (NSCs) in focal cerebral ischemic male rats. In this study, we transplanted exogenous NSCs into the ipsilateral hemisphere of male rats in combination with ZL006 treatment after ischemic stroke. We show that ZL006 treatment facilitates the migration of transplanted NSCs into the ischemia-injured area and promotes neuronal differentiation of these cells, which is not due to a direct effect of ZL006 on exogenous NSCs but is associated with increased phosphorylation of cAMP response element-binding protein (CREB) in neurons and favorable microenvironment. Moreover, improved functional outcome in the ZL006-treated group was also found. Taken together, our data indicate that ZL006, uncoupling nNOS-PSD-95 in neurons, positively regulates the fate of transplanted NSCs and benefits the functional outcome after stroke in male rats.

Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization.

  • Clark AM
  • eNeuro
  • 2018 Jun 11

Literature context:


Abstract:

Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.

Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory.

  • Robin LM
  • Neuron
  • 2018 Jun 6

Literature context:


Abstract:

Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca2+ levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.

Funding information:
  • NIGMS NIH HHS - R01GM097035(United States)

The Epigenetic State of PRDM16-Regulated Enhancers in Radial Glia Controls Cortical Neuron Position.

  • Baizabal JM
  • Neuron
  • 2018 Jun 6

Literature context:


Abstract:

The epigenetic landscape is dynamically remodeled during neurogenesis. However, it is not understood how chromatin modifications in neural stem cells instruct the formation of complex structures in the brain. We report that the histone methyltransferase PRDM16 is required in radial glia to regulate lineage-autonomous and stage-specific gene expression programs that control number and position of upper layer cortical projection neurons. PRDM16 regulates the epigenetic state of transcriptional enhancers to activate genes involved in intermediate progenitor cell production and repress genes involved in cell migration. The histone methyltransferase domain of PRDM16 is necessary in radial glia to promote cortical neuron migration through transcriptional silencing. We show that repression of the gene encoding the E3 ubiquitin ligase PDZRN3 by PRDM16 determines the position of upper layer neurons. These findings provide insights into how epigenetic control of transcriptional enhancers in radial glial determines the organization of the mammalian cerebral cortex.

Funding information:
  • NCI NIH HHS - R01 CA109038-04(United States)

Efferent projections of excitatory and inhibitory preBötzinger Complex neurons.

  • Yang CF
  • J. Comp. Neurol.
  • 2018 Jun 1

Literature context:


Abstract:

The preBötzinger Complex (preBötC), a compact medullary region essential for generating normal breathing rhythm and pattern, is the kernel of the breathing central pattern generator (CPG). Excitatory preBötC neurons in rats project to major breathing-related brainstem regions. Here, we provide a brainstem connectivity map in mice for both excitatory and inhibitory preBötC neurons. Using a genetic strategy to label preBötC neurons, we confirmed extensive projections of preBötC excitatory neurons within the brainstem breathing CPG including the contralateral preBötC, Bötzinger Complex (BötC), ventral respiratory group, nucleus of the solitary tract, parahypoglossal nucleus, parafacial region (RTN/pFRG or alternatively, pFL /pFV ), parabrachial and Kölliker-Füse nuclei, as well as major projections to the midbrain periaqueductal gray. Interestingly, preBötC inhibitory projections paralleled the excitatory projections. Moreover, we examined overlapping projections in the pons in detail and found that they targeted the same neurons. We further explored the direct anatomical link between the preBötC and suprapontine brain regions that may govern emotion and other complex behaviors that can affect or be affected by breathing. Forebrain efferent projections were sparse and restricted to specific nuclei within the thalamus and hypothalamus, with processes rarely observed in cortex, basal ganglia, or other limbic regions, e.g., amygdala or hippocampus. We conclude that the preBötC sends direct, presumably inspiratory-modulated, excitatory and inhibitory projections in parallel to distinct targets throughout the brain that generate and modulate breathing pattern and/or coordinate breathing with other behaviors, physiology, cognition, or emotional state.

Funding information:
  • NHLBI NIH HHS - F32 HL126522()
  • NHLBI NIH HHS - R35 HL135779()
  • NIAMS NIH HHS - AR43510-17(United States)
  • NINDS NIH HHS - R01 NS072211()

Glucocorticoid receptor-mediated amygdalar metaplasticity underlies adaptive modulation of fear memory by stress.

  • Inoue R
  • Elife
  • 2018 Jun 26

Literature context:


Abstract:

Glucocorticoid receptor (GR) is crucial for signaling mediated by stress-induced high levels of glucocorticoids. The lateral nucleus of the amygdala (LA) is a key structure underlying auditory-cued fear conditioning. Here, we demonstrate that genetic disruption of GR in the LA (LAGRKO) resulted in an auditory-cued fear memory deficit for strengthened conditioning. Furthermore, the suppressive effect of a single restraint stress (RS) prior to conditioning on auditory-cued fear memory in floxed GR (control) mice was abolished in LAGRKO mice. Optogenetic induction of long-term depression (LTD) at auditory inputs to the LA reduced auditory-cued fear memory in RS-exposed LAGRKO mice, and in contrast, optogenetic induction of long-term potentiation (LTP) increased auditory-cued fear memory in RS-exposed floxed GR mice. These findings suggest that prior stress suppresses fear conditioning-induced LTP at auditory inputs to the LA in a GR-dependent manner, thereby protecting animals from encoding excessive cued fear memory under stress conditions.

Funding information:
  • Core Research for Evolutional Science and Technology - JPMJCR13W1()
  • Ministry of Education, Culture, Sports, Science and Technology - 15H01279()
  • Ministry of Education, Culture, Sports, Science and Technology - 15K06705()
  • Ministry of Education, Culture, Sports, Science and Technology - 25116508()
  • Ministry of Education, Culture, Sports, Science, and Technology - 221S0003()
  • Ministry of Education, Culture, Sports, Science, and Technology - 26293213()
  • Ministry of Education, Culture, Sports, Science, and Technology - JP25115002()
  • NIDCR NIH HHS - RL1DE019023(United States)

Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation.

  • Hoshi Y
  • J. Neurosci.
  • 2018 Jun 20

Literature context:


Abstract:

Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia.SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia.

Funding information:
  • NIGMS NIH HHS - GM58272(United States)

Brain Somatic Mutations in MTOR Disrupt Neuronal Ciliogenesis, Leading to Focal Cortical Dyslamination.

  • Park SM
  • Neuron
  • 2018 Jun 9

Literature context:


Abstract:

Focal malformations of cortical development (FMCDs), including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are major etiologies of pediatric intractable epilepsies exhibiting cortical dyslamination. Brain somatic mutations in MTOR have recently been identified as a major genetic cause of FMCDs. However, the molecular mechanism by which these mutations lead to cortical dyslamination remains poorly understood. Here, using patient tissue, genome-edited cells, and mouse models with brain somatic mutations in MTOR, we discovered that disruption of neuronal ciliogenesis by the mutations underlies cortical dyslamination in FMCDs. We found that abnormal accumulation of OFD1 at centriolar satellites due to perturbed autophagy was responsible for the defective neuronal ciliogenesis. Additionally, we found that disrupted neuronal ciliogenesis accounted for cortical dyslamination in FMCDs by compromising Wnt signals essential for neuronal polarization. Altogether, this study describes a molecular mechanism by which brain somatic mutations in MTOR contribute to the pathogenesis of cortical dyslamination in FMCDs.

Funding information:
  • NHLBI NIH HHS - HL073284(United States)

Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair.

  • Zhao C
  • Dev. Cell
  • 2018 Jun 18

Literature context:


Abstract:

Disruptive mutations in chromatin remodeler CHD8 cause autism spectrum disorders, exhibiting widespread white matter abnormalities; however, the underlying mechanisms remain elusive. We show that cell-type specific Chd8 deletion in oligodendrocyte progenitors, but not in neurons, results in myelination defects, revealing a cell-intrinsic dependence on CHD8 for oligodendrocyte lineage development, myelination and post-injury remyelination. CHD8 activates expression of BRG1-associated SWI/SNF complexes that in turn activate CHD7, thus initiating a successive chromatin remodeling cascade that orchestrates oligodendrocyte lineage progression. Genomic occupancy analyses reveal that CHD8 establishes an accessible chromatin landscape, and recruits MLL/KMT2 histone methyltransferase complexes distinctively around proximal promoters to promote oligodendrocyte differentiation. Inhibition of histone demethylase activity partially rescues myelination defects of CHD8-deficient mutants. Our data indicate that CHD8 exhibits a dual function through inducing a cascade of chromatin reprogramming and recruiting H3K4 histone methyltransferases to establish oligodendrocyte identity, suggesting potential strategies of therapeutic intervention for CHD8-associated white matter defects.

Funding information:
  • NIMH NIH HHS - R01 MH087592(United States)

Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels.

  • Cárdenas A
  • Cell
  • 2018 Jun 20

Literature context:


Abstract:

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.

Funding information:
  • Wellcome Trust - (United Kingdom)

Defects in the Alternative Splicing-Dependent Regulation of REST Cause Deafness.

  • Nakano Y
  • Cell
  • 2018 Jun 25

Literature context:


Abstract:

The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.

Funding information:
  • NIMH NIH HHS - 5 F32 MH064339-03(United States)

The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer.

  • Jaarsma D
  • J. Comp. Neurol.
  • 2018 Jun 26

Literature context:


Abstract:

The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit and ferret, using tracing, immunohistological and electrophysiological approaches. We show that BIN neurons are GABAergic and glycinergic, that in primates they also express the marker for cholinergic neurons choline acetyl transferase (ChAT), that they project with beaded fibers to the glomeruli in the granular layer of the ipsilateral floccular complex, and that they are driven by excitation from the ipsilateral and contralateral medio-dorsal medullary gigantocellular reticular formation. Systematic analysis of co-distribution of the inhibitory synapse marker VIAAT, labeled BIN axons and Golgi cell marker mGluR2 indicate that BIN axon terminals complement Golgi cell axon terminals in glomeruli, accounting for a considerable proportion (> 20%) of the inhibitory terminals in the granule cell layer of the floccular complex. Together, these data show that BIN neurons represent a novel and relevant inhibitory input to the part of the vestibulocerebellum that controls compensatory and smooth pursuit eye movements. This article is protected by copyright. All rights reserved.

Funding information:
  • NCI NIH HHS - 2R15CA113747-02(United States)

Type 2 Diabetes Leads to Axon Initial Segment Shortening in db/db Mice.

  • Yermakov LM
  • Front Cell Neurosci
  • 2018 Jun 26

Literature context:


Abstract:

Cognitive and mood impairments are common central nervous system complications of type 2 diabetes, although the neuronal mechanism(s) remains elusive. Previous studies focused mainly on neuronal inputs such as altered synaptic plasticity. Axon initial segment (AIS) is a specialized functional domain within neurons that regulates neuronal outputs. Structural changes of AIS have been implicated as a key pathophysiological event in various psychiatric and neurological disorders. Here we evaluated the structural integrity of the AIS in brains of db/db mice, an established animal model of type 2 diabetes associated with cognitive and mood impairments. We assessed the AIS before (5 weeks of age) and after (10 weeks) the development of type 2 diabetes, and after daily exercise treatment of diabetic condition. We found that the development of type 2 diabetes is associated with significant AIS shortening in both medial prefrontal cortex and hippocampus, as evident by immunostaining of the AIS structural protein βIV spectrin. AIS shortening occurs in the absence of altered neuronal and AIS protein levels. We found no change in nodes of Ranvier, another neuronal functional domain sharing a molecular organization similar to the AIS. This is the first study to identify AIS alteration in type 2 diabetes condition. Since AIS shortening is known to lower neuronal excitability, our results may provide a new avenue for understanding and treating cognitive and mood impairments in type 2 diabetes.

Funding information:
  • NIDDK NIH HHS - K01 DK076743(United States)

A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury.

  • Curtis E
  • Cell Stem Cell
  • 2018 Jun 1

Literature context:


Abstract:

We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting.

Funding information:
  • NIGMS NIH HHS - R01 GM66516(United States)

G-Protein-Coupled Receptor Gpr17 Expression in Two Multiple Sclerosis Remyelination Models.

  • Nyamoya S
  • Mol. Neurobiol.
  • 2018 Jun 5

Literature context:


Abstract:

In multiple sclerosis patients, demyelination is prominent in both the white and gray matter. Chronic clinical deficits are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination. The underlying molecular mechanisms of remyelination and its failure remain currently unclear. Recent studies have recognized G protein-coupled receptor 17 (GPR17) as an important regulator of oligodendrocyte development and remyelination. So far, the relevance of GPR17 for myelin repair was mainly tested in remyelinating white matter lesions. The relevance of GPR17 for gray matter remyelination as well as remyelination of chronic white matter lesions was not addressed so far. Here, we provide a detailed characterization of GPR17 expression during experimental de- and remyelination. Experimental lesions with robust and limited endogenous remyelination capacity were established by either acute or chronic cuprizone-induced demyelination. Furthermore, remyelinating lesions were induced by the focal injection of lysophosphatidylcholine (LPC) into the corpus callosum. GPR17 expression was analyzed by complementary techniques including immunohistochemistry, in situ hybridization, and real-time PCR. In control animals, GPR17+ cells were evenly distributed in the corpus callosum and cortex and displayed a highly ramified morphology. Virtually all GPR17+ cells also expressed the oligodendrocyte-specific transcription factor OLIG2. After acute cuprizone-induced demyelination, robust endogenous remyelination was evident in the white matter corpus callosum but not in the gray matter cortex. Endogenous callosal remyelination was paralleled by a robust induction of GPR17 expression which was absent in the gray matter cortex. Higher numbers of GPR17+ cells were as well observed after LPC-induced focal white matter demyelination. In contrast, densities of GPR17+ cells were comparable to control animals after chronic cuprizone-induced demyelination indicating quiescence of this cell population. Our findings demonstrate that GPR17 expression induction correlates with acute demyelination and sufficient endogenous remyelination. This strengthens the view that manipulation of this receptor might be a therapeutic opportunity to support endogenous remyelination.

Funding information:
  • Deutsche Forschungsgemeinschaft - KI 1469/8-1()
  • NIGMS NIH HHS - R01 GM085490-03(United States)

A Novel Role for Lymphotactin (XCL1) Signaling in the Nervous System: XCL1 Acts via its Receptor XCR1 to Increase Trigeminal Neuronal Excitability.

  • Bird EV
  • Neuroscience
  • 2018 May 21

Literature context:


Abstract:

Chemokines are known to have a role in the nervous system, influencing a range of processes including the development of chronic pain. To date there are very few studies describing the functions of the chemokine lymphotactin (XCL1) or its receptor (XCR1) in the nervous system. We investigated the role of the XCL1-XCR1 axis in nociceptive processing, using a combination of immunohistochemical, pharmacological and electrophysiological techniques. Expression of XCR1 in the rat mental nerve was elevated 3 days following chronic constriction injury (CCI), compared with 11 days post-CCI and sham controls. XCR1 co-existed with neuronal marker PGP9.5, leukocyte common antigen CD45 and Schwann cell marker S-100. In the trigeminal root and white matter of the brainstem, XCR1-positive cells co-expressed the oligodendrocyte marker Olig2. In trigeminal subnucleus caudalis (Vc), XCR1 immunoreactivity was present in the outer laminae and was colocalized with vesicular glutamate transporter 2 (VGlut2), but not calcitonin gene-related peptide (CGRP) or isolectin B4 (IB4). Incubation of brainstem slices with XCL1 induced activation of c-Fos, ERK and p38 in the superficial layers of Vc, and enhanced levels of intrinsic excitability. These effects were blocked by the XCR1 antagonist viral CC chemokine macrophage inhibitory protein-II (vMIP-II). This study has identified for the first time a role for XCL1-XCR1 in nociceptive processing, demonstrating upregulation of XCR1 at nerve injury sites and identifying XCL1 as a modulator of central excitability and signaling via XCR1 in Vc, a key area for modulation of orofacial pain, thus indicating XCR1 as a potential target for novel analgesics.

Funding information:
  • Medical Research Council - 87834(United Kingdom)

Corticospinal Circuits from the Sensory and Motor Cortices Differentially Regulate Skilled Movements through Distinct Spinal Interneurons.

  • Ueno M
  • Cell Rep
  • 2018 May 1

Literature context:


Abstract:

Little is known about the organizational and functional connectivity of the corticospinal (CS) circuits that are essential for voluntary movement. Here, we map the connectivity between CS neurons in the forelimb motor and sensory cortices and various spinal interneurons, demonstrating that distinct CS-interneuron circuits control specific aspects of skilled movements. CS fibers originating in the mouse motor cortex directly synapse onto premotor interneurons, including those expressing Chx10. Lesions of the motor cortex or silencing of spinal Chx10+ interneurons produces deficits in skilled reaching. In contrast, CS neurons in the sensory cortex do not synapse directly onto premotor interneurons, and they preferentially connect to Vglut3+ spinal interneurons. Lesions to the sensory cortex or inhibition of Vglut3+ interneurons cause deficits in food pellet release movements in goal-oriented tasks. These findings reveal that CS neurons in the motor and sensory cortices differentially control skilled movements through distinct CS-spinal interneuron circuits.

Funding information:
  • NIA NIH HHS - R01 AG023806(United States)

Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells.

  • Theofilas P
  • J. Neurosci. Res.
  • 2018 May 18

Literature context:


Abstract:

Connexin 43 (Cx43) is the main astrocytic connexin and forms the basis of the glial syncytium. The morphology of connexin-expressing cells can be best studied in transgenic mouse lines expressing cytoplasmic fluorescent reporters, since immunolabeling the plaques can obscure the shapes of the individual cells. The Cx43kiECFP mouse generated by Degen et al. (FASEBJ 26:4576, 2012) expresses cytosolic ECFP and has previously been used to establish that Cx43 may not be expressed by all astrocytes within a population, and this can vary in a region-dependent way. To establish this mouse line as a tool for future astrocyte and connexin research, we sought to consolidate reporter authenticity, studying cell types and within-region population heterogeneity. Applying anti-GFP, all cell types related to astroglia were positive-namely, protoplasmic astrocytes in the hippocampus, cortex, thalamus, spinal cord, olfactory bulb, cerebellum with Bergmann glia and astrocytes also in the molecular layer, and retinal Müller cells and astrocytes. Labeled cell types further comprise white matter astrocytes, olfactory ensheathing cells, radial glia-like stem cells, retinal pigment epithelium cells, ependymal cells, and meningeal cells. We furthermore describe a retinal Cx43-expressing amacrine cell morphologically reminiscent of ON-OFF wide-field amacrine cells, representing the first example of a mammalian CNS neuron-expressing Cx43 protein. In double staining with cell type-specific markers (GFAP, S100ß, glutamine synthetase), Cx43 reporter expression in the hippocampus and cortex was restricted to GFAP+ astrocytes. Altogether, this mouse line is a highly reliable tool for studies of Cx43-expressing CNS cells and astroglial cell morphology. © 2017 Wiley Periodicals, Inc.

Time-dependent change of in vivo optical imaging of oxidative stress in a mouse stroke model.

  • Nakano Y
  • J. Neurosci. Res.
  • 2018 May 11

Literature context:


Abstract:

Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in cellular defense against oxidative stress damage after ischemic stroke. In the present study, we examined the time-dependent change of in vivo optical imaging of oxidative stress after stroke with Keap1-dependent oxidative stress detector (OKD) mice. OKD mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 45 min, and in vivo optical signals were detected during the pre-operative period, 12 h, 1 d, 3 d, and 7 d after tMCAO. Ex vivo imaging was performed immediately after obtaining in vivo optical signals at 1 d after tMCAO. Immunohistochemical analyses and infarct volume were also examined after in vivo imaging at each period. The in vivo signals showed a peak at 1 d after tMCAO that was slightly correlated to infarct volume. The strong ex vivo signals, which were detected in the peri-ischemic area, corresponded to endogenous Nrf2 expression. Moreover, endogenous Nrf2 expression was detected mainly in neurons followed by oligodendrocytes and pericytes, but only slightly in astrocytes, microglia, endothelial cells. The present study successfully demonstrated the temporal change of in vivo imaging of oxidative stress after tMCAO, which is consistent with strong expression of endogenous Nrf2 in the peri-ischemic area with a similar time course. © 2017 Wiley Periodicals, Inc.

Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development.

  • Storer MA
  • Stem Cell Reports
  • 2018 May 8

Literature context:


Abstract:

Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools.

Funding information:
  • NIGMS NIH HHS - GM61712(United States)

Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia.

  • Iskusnykh IY
  • Exp. Neurol.
  • 2018 May 18

Literature context:


Abstract:

Preterm birth is a leading cause of long-term motor and cognitive deficits. Clinical studies suggest that some of these deficits result from disruption of cerebellar development, but the mechanisms that mediate cerebellar abnormalities in preterm infants are largely unknown. Furthermore, it remains unclear whether preterm birth and precocious exposure to the ex-utero environment directly disrupt cerebellar development or indirectly by increasing the probability of cerebellar injury, including that resulting from clinical interventions and protocols associated with the care of preterm infants. In this study, we analyzed the cerebellum of preterm pigs delivered via c-section at 91% term and raised for 10 days, until term-equivalent age. The pigs did not receive any treatments known or suspected to affect cerebellar development and had no evidence of brain damage. Term pigs sacrificed at birth were used as controls. Immunohistochemical analysis revealed that preterm birth did not affect either size or numbers of Purkinje cells or molecular layer interneurons at term-equivalent age. The number of granule cell precursors and Bergmann glial fibers, however, were reduced in preterm pigs. Preterm pigs had reduced proliferation but not differentiation of granule cells. qRT-PCR analysis of laser capture microdissected external granule cell layer showed that preterm pigs had a reduced expression of Ccnd1 (Cyclin D1), Ccnb1 (Cyclin B1), granule cell master regulatory transcription factor Atoh1, and signaling molecule Jag1. In vitro rescue experiments identified Jag1 as a central granule cell gene affected by preterm birth. Thus, preterm birth and precocious exposure to the ex-utero environment disrupt cerebellum by modulating expression of key cerebellar developmental genes, predominantly affecting development of granule precursors and Bergmann glia.

Funding information:
  • NICHD NIH HHS - T32 HD007491(United States)

Current concepts in the neuropathogenesis of mucolipidosis type IV.

  • Boudewyn LC
  • J. Neurochem.
  • 2018 May 16

Literature context:


Abstract:

Mucolipidosis type IV (MLIV) is an autosomal recessive, lysosomal storage disorder causing progressively severe intellectual disability, motor and speech deficits, retinal degeneration often culminating in blindness, and systemic disease causing a shortened lifespan. MLIV results from mutations in the gene MCOLN1 encoding the transient receptor potential channel mucolipin-1. It is an ultra-rare disease and is currently known to affect just over 100 diagnosed individuals. The last decade has provided a wealth of research focused on understanding the role of the enigmatic mucolipin-1 protein in cell and brain function and how its absence causes disease. This review explores our current understanding of the mucolipin-1 protein in relation to neuropathogenesis in MLIV and describes recent findings implicating mucolipin-1's important role in mTOR (mechanistic target of rapamycin) and TFEB (transcription factor EB) signaling feedback loops as well as in the function of the greater endosomal/lysosomal system. In addition to addressing the vital role of mucolipin-1 in the brain, we also report new data on the question of whether haploinsufficiency as would be anticipated in MCOLN1 heterozygotes is associated with any evidence of neuron dysfunction or disease. Greater insights into the role of mucolipin-1 in the nervous system can be expected to shed light not only on MLIV disease but also on numerous processes governing normal brain function. This article is protected by copyright. All rights reserved.

Funding information:
  • NIA NIH HHS - F32 AG027631(United States)
  • NICHD NIH HHS - P30 HD071593()
  • NICHD NIH HHS - R01 HD045561()
  • NICHD NIH HHS - U54 HD090260()
  • NINDS NIH HHS - R01 NS053677()

Alternative 3' UTRs Modify the Localization, Regulatory Potential, Stability, and Plasticity of mRNAs in Neuronal Compartments.

  • Tushev G
  • Neuron
  • 2018 May 2

Literature context:


Abstract:

Neurons localize mRNAs near synapses where their translation can be regulated by synaptic demand and activity. Differences in the 3' UTRs of mRNAs can change their localization, stability, and translational regulation. Using 3' end RNA sequencing of microdissected rat brain slices, we discovered a huge diversity in mRNA 3' UTRs, with many transcripts showing enrichment for a particular 3' UTR isoform in either somata or the neuropil. The 3' UTR isoforms of localized transcripts are significantly longer than the 3' UTRs of non-localized transcripts and often code for proteins associated with axons, dendrites, and synapses. Surprisingly, long 3' UTRs add not only new, but also duplicate regulatory elements. The neuropil-enriched 3' UTR isoforms have significantly longer half-lives than somata-enriched isoforms. Finally, the 3' UTR isoforms can be significantly altered by enhanced activity. Most of the 3' UTR plasticity is transcription dependent, but intriguing examples of changes that are consistent with altered stability, trafficking between compartments, or local "remodeling" remain.

Funding information:
  • NCATS NIH HHS - UL1 TR000371(United States)

Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

  • Youssef M
  • Hippocampus
  • 2018 May 9

Literature context:


Abstract:

Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved.

Funding information:
  • Intramural NIH HHS - (United States)
  • NIMH NIH HHS - F30 MH111209()
  • NIMH NIH HHS - R01 MH091844()
  • NIMH NIH HHS - R56 MH106809()

Detachment of Chain-Forming Neuroblasts by Fyn-Mediated Control of cell-cell Adhesion in the Postnatal Brain.

  • Fujikake K
  • J. Neurosci.
  • 2018 May 9

Literature context:


Abstract:

In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell-cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening and in vivo loss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell-cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB.SIGNIFICANCE STATEMENT In the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell-cell adhesion between chain-forming neuroblasts, which involves adherens junction-like structures. Our results suggest that Fyn-mediated regulation of the cell-cell adhesion of neuroblasts is critical for their detachment from chains in the postnatal brain.

Funding information:
  • NCCIH NIH HHS - 5R01AT006732(United States)

The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity.

  • Filipello F
  • Immunity
  • 2018 May 15

Literature context:


Abstract:

The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2-/- mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases.

Funding information:
  • NCI NIH HHS - CA156700(United States)

Functional disruption of stress modulatory circuits in a model of temporal lobe epilepsy.

  • Wulsin AC
  • PLoS ONE
  • 2018 May 26

Literature context:


Abstract:

Clinical data suggest that the neuroendocrine stress response is chronically dysregulated in a subset of patients with temporal lobe epilepsy (TLE), potentially contributing to both disease progression and the development of psychiatric comorbidities such as anxiety and depression. Whether neuroendocrine dysregulation and psychiatric comorbidities reflect direct effects of epilepsy-related pathologies, or secondary effects of disease burden particular to humans with epilepsy (i.e. social estrangement, employment changes) is not clear. Animal models provide an opportunity to dissociate these factors. Therefore, we queried whether epileptic mice would reproduce neuroendocrine and behavioral changes associated with human epilepsy. Male FVB mice were exposed to pilocarpine to induce status epilepticus (SE) and the subsequent development of spontaneous recurrent seizures. Morning baseline corticosterone levels were elevated in pilocarpine treated mice at 1, 7 and 10 weeks post-SE relative to controls. Similarly, epileptic mice had increased adrenal weight when compared to control mice. Exposure to acute restraint stress resulted in hypersecretion of corticosterone 30 min after the onset of the challenge. Anatomical analyses revealed reduced Fos expression in infralimbic and prelimbic prefrontal cortex, ventral subiculum and basal amygdala following restraint. No differences in Fos immunoreactivity were found in the paraventricular nucleus of the hypothalamus, hippocampal subfields or central amygdala. In order to assess emotional behavior, a second cohort of mice underwent a battery of behavioral tests, including sucrose preference, open field, elevated plus maze, 24h home-cage monitoring and forced swim. Epileptic mice showed increased anhedonic behavior, hyperactivity and anxiety-like behaviors. Together these data demonstrate that epileptic mice develop HPA axis hyperactivity and exhibit behavioral dysfunction. Endocrine and behavioral changes are associated with impaired recruitment of forebrain circuits regulating stress inhibition and emotional reactivity. Loss of forebrain control may underlie pronounced endocrine dysfunction and comorbid psychopathologies seen in temporal lobe epilepsy.

Funding information:
  • Medical Research Council - MC_UP_A390_1107(United Kingdom)
  • NIGMS NIH HHS - T32 GM063483()
  • NINDS NIH HHS - F30 NS095578()

Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine.

  • Anan J
  • J. Neurosci. Res.
  • 2018 Apr 17

Literature context:


Abstract:

Intracerebral hemorrhage (ICH) is associated with diverse sets of neurological symptoms and prognosis, depending on the site of bleeding. Relative rate of hemorrhage occurring in the cerebral cortex (lobar hemorrhage) has been increasing, but there is no report on effective pharmacotherapeutic approaches for cortical hemorrhage either in preclinical or clinical studies. The present study aimed to establish an experimental model of cortical hemorrhage in mice for evaluation of effects of therapeutic drug candidates. Type VII collagenase at 0.015 U, injected into the parietal cortex, induced hemorrhage expanding into the whole layer of the posterior parts of the sensorimotor cortex in male C57BL/6 mice. Mice with ICH under these conditions exhibited significant motor deficits as revealed by beam-walking test. Daily administration of nicotine (1 and 2 mg/kg), with the first injection given at 3 hr after induction of ICH, improved motor performance of mice in a dose-dependent manner, although nicotine did not alter the volume of hematoma. Immunohistochemical examinations revealed that the number of neurons was drastically decreased within the hematoma region. Nicotine at 2 mg/kg partially but significantly increased the number of remaining neurons within the hematoma at 3 days after induction of ICH. ICH also resulted in inflammatory activation of microglia/macrophages in the perihematoma region, and nicotine (1 and 2 mg/kg) significantly attenuated the increase of microglia. These results suggest that nicotine can provide a therapeutic effect on cortical hemorrhage, possibly via its neuroprotective and anti-inflammatory actions. © 2017 Wiley Periodicals, Inc.

Dynamic mislocalizations of nuclear pore complex proteins after focal cerebral ischemia in rat.

  • Li Q
  • J. Neurosci. Res.
  • 2018 Apr 17

Literature context:


Abstract:

Nuclear pore complexes (NPCs) play an important role in coordinating the transport of proteins and nucleic acids between the nucleus and cytoplasm, and are therefore essential for maintaining normal cellular function and liability. In the present study, we investigated the temporal immunohistochemical distribution of five representative components of NPCs-Ran GTPase-activating protein 1 (RanGap1), glycoprotein-210 (Gp210), nucleoporin 205 (Nup205), nucleoporin 107 (Nup107), and nucleoporin 50 (Nup50)-after 90 min of transient middle cerebral artery occlusion (tMCAO) up to 28 days after the reperfusion in rat brains. Single immunohistochemical analyses showed ring-like stainings along the periphery of the nucleus in sham control brains. After tMCAO, Gp210 and Nup107 immunoreactivity continuously increased from 1 day, and RanGap1, Nup205, and Nup50 increased from 2 days until 28 days, which also displayed progressive precipitations within the nucleus in the peri-ischemic area, while the ischemic core showed scarce expression with collapsed structure. Double immunofluorescent analyses revealed nuclear retention and apparent colocalization of RanGap1 with Nup205, Gp210 with Nup205, and partial colocalization of Nup205 with Nup107; most of the ischemic changes above were similar to those observed in patients with C9orf72-genetic amyotrophic lateral sclerosis. Taken together, these observations suggest that the mislocalization of these nucleoporins may be a common pathogenesis of both ischemic and neurodegenerative disease. © 2016 Wiley Periodicals, Inc.

Task Division within the Prefrontal Cortex: Distinct Neuron Populations Selectively Control Different Aspects of Aggressive Behavior via the Hypothalamus.

  • Biro L
  • J. Neurosci.
  • 2018 Apr 25

Literature context:


Abstract:

An important question in behavioral neurobiology is how particular neuron populations and pathways mediate the overall roles of brain structures. Here we investigated this issue by studying the medial prefrontal cortex (mPFC), an established locus of inhibitory control of aggression. We established in male rats that dominantly distinct mPFC neuron populations project to and produce dense fiber networks with glutamate release sites in the mediobasal hypothalamus (MBH) and lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Optogenetic stimulation of mPFC terminals in MBH distinctively increased bite counts in resident/intruder conflicts, whereas the stimulation of similar terminals in LH specifically resulted in violent bites. No other behaviors were affected by stimulations. These findings show that the mPFC controls aggressiveness by behaviorally dedicated neuron populations and pathways, the roles of which may be opposite to those observed in experiments where the role of the whole mPFC (or of its major parts) has been investigated. Overall, our findings suggest that the mPFC organizes into working units that fulfill specific aspects of its wide-ranging roles.SIGNIFICANCE STATEMENT Aggression control is associated with many cognitive and emotional aspects processed by the prefrontal cortex (PFC). However, how the prefrontal cortex influences quantitative and qualitative aspects of aggressive behavior remains unclear. We demonstrated that dominantly distinct PFC neuron populations project to the mediobasal hypothalamus (MBH) and the lateral hypothalamus (LH; i.e., two executory centers of species-specific and violent bites, respectively). Stimulation of mPFC fibers in MBH distinctively increased bite counts during fighting, whereas stimulation of similar terminals in LH specifically resulted in violent bites. Overall, our results suggest a direct prefrontal control over the hypothalamus, which is involved in the modulation of quantitative and qualitative aspects of aggressive behavior through distinct prefrontohypothalamic projections.

Funding information:
  • NCI NIH HHS - R01 CA164152-01(United States)

An Optical Neuron-Astrocyte Proximity Assay at Synaptic Distance Scales.

  • Octeau JC
  • Neuron
  • 2018 Apr 4

Literature context:


Abstract:

Astrocytes are complex bushy cells that serve important functions through close contacts between their processes and synapses. However, the spatial interactions and dynamics of astrocyte processes relative to synapses have proven problematic to study in adult living brain tissue. Here, we report a genetically targeted neuron-astrocyte proximity assay (NAPA) to measure astrocyte-synapse spatial interactions within intact brain preparations and at synaptic distance scales. The method exploits resonance energy transfer between extracellularly displayed fluorescent proteins targeted to synapses and astrocyte processes. We validated the method in the striatal microcircuitry following in vivo expression. We determined the proximity of striatal astrocyte processes to distinct neuronal input pathways, to D1 and D2 medium spiny neuron synapses, and we evaluated how astrocyte-to-excitatory synapse proximity changed following cortical afferent stimulation, during ischemia and in a model of Huntington's disease. NAPA provides a simple approach to measure astrocyte-synapse spatial interactions in a variety of experimental scenarios. VIDEO ABSTRACT.

Funding information:
  • NCI NIH HHS - R01 CA104926(United States)

Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits.

  • Wang D
  • Neuron
  • 2018 Apr 4

Literature context:


Abstract:

Cellular interactions between delta and mu opioid receptors (DORs and MORs), including heteromerization, are thought to regulate opioid analgesia. However, the identity of the nociceptive neurons in which such interactions could occur in vivo remains elusive. Here we show that DOR-MOR co-expression is limited to small populations of excitatory interneurons and projection neurons in the spinal cord dorsal horn and unexpectedly predominates in ventral horn motor circuits. Similarly, DOR-MOR co-expression is rare in parabrachial, amygdalar, and cortical brain regions processing nociceptive information. We further demonstrate that in the discrete DOR-MOR co-expressing nociceptive neurons, the two receptors internalize and function independently. Finally, conditional knockout experiments revealed that DORs selectively regulate mechanical pain by controlling the excitability of somatostatin-positive dorsal horn interneurons. Collectively, our results illuminate the functional organization of DORs and MORs in CNS pain circuits and reappraise the importance of DOR-MOR cellular interactions for developing novel opioid analgesics.

Funding information:
  • NCI NIH HHS - P30 CA042014(United States)

Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength.

  • Kelley KW
  • Neuron
  • 2018 Apr 18

Literature context:


Abstract:

Diversified neurons are essential for sensorimotor function, but whether astrocytes become specialized to optimize circuit performance remains unclear. Large fast α-motor neurons (FαMNs) of spinal cord innervate fast-twitch muscles that generate peak strength. We report that ventral horn astrocytes express the inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) around MNs in a VGLUT1-dependent manner. Loss of astrocyte-encoded Kir4.1 selectively altered FαMN size and function and led to reduced peak strength. Overexpression of Kir4.1 in astrocytes was sufficient to increase MN size through activation of the PI3K/mTOR/pS6 pathway. Kir4.1 was downregulated cell autonomously in astrocytes derived from amyotrophic lateral sclerosis (ALS) patients with SOD1 mutation. However, astrocyte Kir4.1 was dispensable for FαMN survival even in the mutant SOD1 background. These findings show that astrocyte Kir4.1 is essential for maintenance of peak strength and suggest that Kir4.1 downregulation might uncouple symptoms of muscle weakness from MN cell death in diseases like ALS.

Funding information:
  • FIC NIH HHS - K01 TW000001(United States)

JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory.

  • Morel C
  • J. Neurosci.
  • 2018 Apr 11

Literature context:


Abstract:

The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.

Funding information:
  • NIA NIH HHS - SC1 AG046907()
  • NIAID NIH HHS - AI-52786(United States)
  • NINDS NIH HHS - S11 NS055883()
  • NINDS NIH HHS - U54 NS083932()

Recombinant interleukin-4 alleviates mechanical allodynia via injury-induced interleukin-4 receptor alpha in spinal microglia in a rat model of neuropathic pain.

  • Okutani H
  • Glia
  • 2018 Apr 25

Literature context:


Abstract:

Glial cells play important roles in the development and maintenance of neuropathic pain. In particular, activated microglia in the spinal cord facilitate the hyper-excitability of dorsal horn neurons after peripheral nerve injury via pro-inflammatory molecules. In this study, we investigated the possible involvement of the anti-inflammatory cytokine, interleukin-4 (IL-4), in neuropathic pain. We did not detect the expression of IL-4 mRNA in the rat dorsal root ganglion or spinal cord; however, peripheral nerve injury induced the expression of IL-4 receptor (IL-4R) alpha mRNA in the spinal cord. A histological analysis revealed that nerve injury induced IL-4R alpha mRNA in activated spinal microglia ipsilateral to the injury site. Additionally, the increases in IL-4R alpha were coincident with the increased expression of phosphorylated signal transducer and activator of transcription 6 (pSTAT6) in spinal microglia. Intrathecal administration of recombinant IL-4 suppressed mechanical hypersensitivity in neuropathic rats, and the analgesic effect of IL-4 was accompanied by further enhancement of pSTAT6 expression in spinal microglia. Taken together, these results suggest that the adaptive responses of microglia to nerve injury involve both inflammatory and anti-inflammatory signaling, including IL-4R alpha and pSTAT6. These findings support that utilizing the endogenous anti-nociceptive activity of IL-4R alpha may modify the cell lineage of pro-nociceptive microglia, thus providing a novel therapeutic strategy for neuropathic pain.

Funding information:
  • NCI NIH HHS - P30 CA006516(United States)

Human Hippocampal Neurogenesis Persists throughout Aging.

  • Boldrini M
  • Cell Stem Cell
  • 2018 Apr 5

Literature context:


Abstract:

Adult hippocampal neurogenesis declines in aging rodents and primates. Aging humans are thought to exhibit waning neurogenesis and exercise-induced angiogenesis, with a resulting volumetric decrease in the neurogenic hippocampal dentate gyrus (DG) region, although concurrent changes in these parameters are not well studied. Here we assessed whole autopsy hippocampi from healthy human individuals ranging from 14 to 79 years of age. We found similar numbers of intermediate neural progenitors and thousands of immature neurons in the DG, comparable numbers of glia and mature granule neurons, and equivalent DG volume across ages. Nevertheless, older individuals have less angiogenesis and neuroplasticity and a smaller quiescent progenitor pool in anterior-mid DG, with no changes in posterior DG. Thus, healthy older subjects without cognitive impairment, neuropsychiatric disease, or treatment display preserved neurogenesis. It is possible that ongoing hippocampal neurogenesis sustains human-specific cognitive function throughout life and that declines may be linked to compromised cognitive-emotional resilience.

Funding information:
  • NCI NIH HHS - 5R03CA162131(United States)

Identification of a neuronal population in the telencephalon essential for fear conditioning in zebrafish.

  • Lal P
  • BMC Biol.
  • 2018 Apr 25

Literature context:


Abstract:

BACKGROUND: Fear conditioning is a form of learning essential for animal survival and used as a behavioral paradigm to study the mechanisms of learning and memory. In mammals, the amygdala plays a crucial role in fear conditioning. In teleost, the medial zone of the dorsal telencephalon (Dm) has been postulated to be a homolog of the mammalian amygdala by anatomical and ablation studies, showing a role in conditioned avoidance response. However, the neuronal populations required for a conditioned avoidance response via the Dm have not been functionally or genetically defined. RESULTS: We aimed to identify the neuronal population essential for fear conditioning through a genetic approach in zebrafish. First, we performed large-scale gene trap and enhancer trap screens, and created transgenic fish lines that expressed Gal4FF, an engineered version of the Gal4 transcription activator, in specific regions in the brain. We then crossed these Gal4FF-expressing fish with the effector line carrying the botulinum neurotoxin gene downstream of the Gal4 binding sequence UAS, and analyzed the double transgenic fish for active avoidance fear conditioning. We identified 16 transgenic lines with Gal4FF expression in various brain areas showing reduced performance in avoidance responses. Two of them had Gal4 expression in populations of neurons located in subregions of the Dm, which we named 120A-Dm neurons. Inhibition of the 120A-Dm neurons also caused reduced performance in Pavlovian fear conditioning. The 120A-Dm neurons were mostly glutamatergic and had projections to other brain regions, including the hypothalamus and ventral telencephalon. CONCLUSIONS: Herein, we identified a subpopulation of neurons in the zebrafish Dm essential for fear conditioning. We propose that these are functional equivalents of neurons in the mammalian pallial amygdala, mediating the conditioned stimulus-unconditioned stimulus association. Thus, the study establishes a basis for understanding the evolutionary conservation and diversification of functional neural circuits mediating fear conditioning in vertebrates.

Funding information:
  • European Research Council - Starting Grant 335561(International)
  • Japan Agency for Medical Research and Development - National BioResource Project()
  • Japan Agency for Medical Research and Development - NBRP()
  • Japan Society for the Promotion of Science - KAKENHI Grant Number JP15H02370()
  • Japan Society for the Promotion of Science - KAKENHI Grant Number JP16H01651()
  • NCATS NIH HHS - UL1 TR000439(United States)

Brain Diffusivity and Structural Changes in the R6/2 Mouse Model of Huntington Disease.

  • Vorisek I
  • J. Neurosci. Res.
  • 2018 Mar 12

Literature context:


Abstract:

Diffusion-weighted magnetic resonance (DW-MR) is an important diagnostic tool in Huntington disease (HD), a fatal hereditary neurodegenerative disorder. To clarify the nature of diffusivity changes in HD, we compared the apparent diffusion coefficient of water (ADCW ) acquired by DW-MR with extracellular space volume fraction α and tortuosity λ, measured by the iontophoretic method in the R6/2 mouse model of HD and in wild-type controls (WT). In anisotropic globus pallidus (GP), diffusion measurements were performed in the mediolateral (x), rostrocaudal (y), and ventrodorsal (z) axes. In HD animals, we detected an increase in ADCW in all axes and larger α than in WT mice. No significant difference between WT and HD mice was found in the values of tortuosity (λx , λy , λz ). Despite structural changes in GP, diffusion anisotropy was unaffected in HD mice. Immunohistochemical analysis revealed in HD mice weaker expression of extracellular matrix and a decrease in neuron numbers compared with WT mice. Glial fibrillary acidic protein staining detected astrogliosis-like changes in the morphology of astrocytic processes in HD GP. In the somatosensory cortex, no significant differences in the studied parameters were found. We conclude that in the R6/2 model of HD, a decrease in the number of neurons in the GP results in increased ADCW and α values. Values of λ were not significantly changed as the increase of diffusion obstacles formed by reactive astrocytes was compensated for by the extracellular matrix reduction. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NIGMS NIH HHS - R01 GM076507(United States)

Participation of the dentate-rubral pathway in the kindling model of epilepsy.

  • Hernández-Cerón M
  • J. Neurosci. Res.
  • 2018 Mar 12

Literature context:


Abstract:

Lesions of the cerebellar dentate nucleus (DN) reduce the after-discharge duration induced by repetitive kindling stimulation and decrease seizures to a lower rank according to Racine's scale. The DN sends cholinergic and glutamatergic fibers to the red nucleus (RN), which is composed of glutamatergic and GABAergic cells. To test the participation of these neurotransmitters in seizures, we compared the levels of glutamate and gamma-aminobutyric acid (GABA) at the RN in a control condition, a kindled stage, and a kindled stage followed by DN lesions. We found that the kindled stage was associated with significant reductions in glutamate and GABA in the RN and that the lesions of the DN in kindled rats reversed the severity of seizures and restored the GABA levels. GAD65 , a GABA-synthesizing enzyme, was increased in kindled rats and decreased after DN lesions. GAD65 commonly appears localized at nerve terminals and synapses, and it is only activated when GABA neurotransmission occurs. Thus, it is possible that the increased expression of GAD65 found in kindled rats could be due to an exacerbated demand for GABA due to kindled seizures. It is known that GABA maintains the inhibitory tone that counterbalances neuronal excitation. The decreased expression of GAD65 found after the DN lesions indicated that the GABA-synthesizing enzyme was no longer required once it eliminated the excitatory glutamate input to the RN. We thus conclude that DN lesions and their consequent biochemical changes are capable of decreasing the generalized seizures induced by kindling stimulation. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NINDS NIH HHS - T32 NS007220(United States)

Axon-terminals expressing EAAT2 (GLT-1; Slc1a2) are common in the forebrain and not limited to the hippocampus.

  • Zhou Y
  • Neurochem. Int.
  • 2018 Mar 9

Literature context:


Abstract:

The excitatory amino acid transporter type 2 (EAAT2) represents the major mechanism for removal of extracellular glutamate. In the hippocampus, there is some EAAT2 in axon-terminals, whereas most of the protein is found in astroglia. The functional importance of the neuronal EAAT2 is unknown, and it is debated whether EAAT2-expressing nerve terminals are present in other parts of the brain. Here we selectively deleted the EAAT2 gene in neurons (by crossing EAAT2-flox mice with synapsin 1-Cre mice in the C57B6 background). To reduce interference from astroglial EAAT2, we measured glutamate accumulation in crude tissue homogenates. EAAT2 proteins levels were measured by immunoblotting. Although synapsin 1-Cre mediated gene deletion only reduced the forebrain tissue content of EAAT2 protein to 95.5 ± 3.4% of wild-type (littermate) controls, the glutamate accumulation in homogenates of neocortex, hippocampus, striatum and thalamus were nevertheless diminished to, respectively, 54 ± 4, 46 ± 3, 46 ± 2 and 65 ± 7% of controls (average ± SEM, n = 3 pairs of littermates). GABA uptake was unaffected. After injection of U-13C-glucose, lack of neuronal EAAT2 resulted in higher 13C-labeling of glutamine and GABA in the hippocampus suggesting that neuronal EAAT2 is partly short-circuiting the glutamate-glutamine cycle in wild-type mice. Crossing synapsin 1-Cre mice with Ai9 reporter mice revealed that Cre-mediated excision occurred efficiently in hippocampus CA3, but less efficiently in other regions and hardly at all in the cerebellum. CONCLUSIONS: (1) EAAT2 is expressed in nerve terminals in multiple brain regions. (2) The uptake catalyzed by neuronal EAAT2 plays a role in glutamate metabolism, at least in the hippocampus. (3) Synapsin 1-Cre does not delete floxed genes in all neurons, and the contribution of neuronal EAAT2 is therefore likely to be larger than revealed in the present study.

Funding information:
  • NCI NIH HHS - R21 CA162264(United States)

Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury.

  • Dias DO
  • Cell
  • 2018 Mar 22

Literature context:


Abstract:

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.

Funding information:
  • Intramural NIH HHS - Z01 DE000698-10(United States)

fMRI Reveals a Novel Region for Evaluating Acoustic Information for Mate Choice in a Female Songbird.

  • Van Ruijssevelt L
  • Curr. Biol.
  • 2018 Mar 5

Literature context:


Abstract:

Selection of sexual partners is among the most critical decisions that individuals make and is therefore strongly shaped by evolution. In social species, where communication signals can convey substantial information about the identity, state, or quality of the signaler, accurate interpretation of communication signals for mate choice is crucial. Despite the importance of social information processing, to date, relatively little is known about the neurobiological mechanisms that contribute to sexual decision making and preferences. In this study, we used a combination of whole-brain functional magnetic resonance imaging (fMRI), immediate early gene expression, and behavior tests to identify the circuits that are important for the perception and evaluation of courtship songs in a female songbird, the zebra finch (Taeniopygia guttata). Female zebra finches are sensitive to subtle differences in male song performance and strongly prefer the longer, faster, and more stereotyped courtship songs to non-courtship renditions. Using BOLD fMRI and EGR1 expression assays, we uncovered a novel region involved in auditory perceptual decision making located in a sensory integrative region of the avian central nidopallium outside the traditionally studied auditory forebrain pathways. Changes in activity in this region in response to acoustically similar but categorically divergent stimuli showed stronger parallels to behavioral responses than an auditory sensory region. These data highlight a potential role for the caudocentral nidopallium (NCC) as a novel node in the avian circuitry underlying the evaluation of acoustic signals and their use in mate choice.

Funding information:
  • NIAID NIH HHS - T32 AI55397(United States)

Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner.

  • Datta M
  • Immunity
  • 2018 Mar 20

Literature context:


Abstract:

Microglia as tissue macrophages contribute to the defense and maintenance of central nervous system (CNS) homeostasis. Little is known about the epigenetic signals controlling microglia function in vivo. We employed constitutive and inducible mutagenesis in microglia to delete two class I histone deacetylases, Hdac1 and Hdac2. Prenatal ablation of Hdac1 and Hdac2 impaired microglial development. Mechanistically, the promoters of pro-apoptotic and cell cycle genes were hyperacetylated in absence of Hdac1 and Hdac2, leading to increased apoptosis and reduced survival. In contrast, Hdac1 and Hdac2 were not required for adult microglia survival during homeostasis. In a mouse model of Alzheimer's disease, deletion of Hdac1 and Hdac2 in microglia, but not in neuroectodermal cells, resulted in a decrease in amyloid load and improved cognitive impairment by enhancing microglial amyloid phagocytosis. Collectively, we report a role for epigenetic factors that differentially affect microglia development, homeostasis, and disease that could potentially be utilized therapeutically.

Funding information:
  • Austrian Science Fund FWF - P 18613(Austria)

Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia.

  • Esposito E
  • J. Neurochem.
  • 2018 Mar 23

Literature context:


Abstract:

Ischemic postconditioning is increasingly being investigated as a therapeutic approach for cerebral ischemia. However, the majority of studies are focused on the acute protection of neurons per se. Whether and how postconditioning affects multiple cells in the recovering neurovascular unit remains to be fully elucidated. Here, we asked whether postconditioning may modulate help-me signaling between injured neurons and reactive microglia. Rats were subjected to 100 min of focal cerebral ischemia, then randomized into a control versus postconditioning group. After 3 days of reperfusion, infarct volumes were significantly reduced in animals treated with postconditioning, along with better neurologic outcomes. Immunostaining revealed that ischemic postconditioning increased expression of vascular endothelial growth factor (VEGF) in neurons within peri-infarct regions. Correspondingly, we confirmed that VEGFR2 was expressed on Iba1-positive microglia/macrophages, and confocal microscopy showed that in postconditioned rats, these cells were polarized to a ramified morphology with higher expression of M2-like markers. Treating rats with a VEGF receptor 2 kinase inhibitor negated these effects of postconditioning on microglia/macrophage polarization. In vitro, postconditoning after oxygen-glucose deprivation up-regulated VEGF release in primary neuron cultures, and adding VEGF to microglial cultures partly shifted their M2-like markers. Altogether, our findings support the idea that after postconditioning, injured neurons may release VEGF as a 'help-me' signal that promotes microglia/macrophage polarization into potentially beneficial phenotypes.

Funding information:
  • NCI NIH HHS - R01 CA114209(United States)
  • NINDS NIH HHS - R01 NS093415()
  • NINDS NIH HHS - R03 NS099739()

Mechanism and consequence of abnormal calcium homeostasis in Rett syndrome astrocytes.

  • Dong Q
  • Elife
  • 2018 Mar 29

Literature context:


Abstract:

Astrocytes play an important role in Rett syndrome (RTT) disease progression. Although the non-cell-autonomous effect of RTT astrocytes on neurons was documented, cell-autonomous phenotypes and mechanisms within RTT astrocytes are not well understood. We report that spontaneous calcium activity is abnormal in RTT astrocytes in vitro, in situ, and in vivo. Such abnormal calcium activity is mediated by calcium overload in the endoplasmic reticulum caused by abnormal store operated calcium entry, which is in part dependent on elevated expression of TRPC4. Furthermore, the abnormal calcium activity leads to excessive activation of extrasynaptic NMDA receptors (eNMDARs) on neighboring neurons and increased network excitability in Mecp2 knockout mice. Finally, both the abnormal astrocytic calcium activity and the excessive activation of eNMDARs are caused by Mecp2 deletion in astrocytes in vivo. Our findings provide evidence that abnormal calcium homeostasis is a key cell-autonomous phenotype in RTT astrocytes, and reveal its mechanism and consequence.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/D017319(United Kingdom)
  • Eunice Kennedy Shriver National Institute of Child Health and Human Development - R01HD064743()
  • Eunice Kennedy Shriver National Institute of Child Health and Human Development - U54HD090256()
  • National Institute of Mental Health - ZIAMH002897()
  • National Institute of Neurological Disorders and Stroke - R21NS081484()
  • National Institute of Neurological Disorders and Stroke - R56NS100024()

Delivery of an anti-transthyretin Nanobody to the brain through intranasal administration reveals transthyretin expression and secretion by motor neurons.

  • Gomes JR
  • J. Neurochem.
  • 2018 Mar 13

Literature context:


Abstract:

Transthyretin (TTR) is a transport protein of retinol and thyroxine in serum and CSF, which is mainly secreted by liver and choroid plexus, and in smaller amounts in other cells throughout the body. The exact role of TTR and its specific expression in Central Nervous System (CNS) remains understudied. We investigated TTR expression and metabolism in CNS, through the intranasal and intracerebroventricular delivery of a specific anti-TTR Nanobody to the brain, unveiling Nanobody pharmacokinetics to the CNS. In TTR deficient mice, we observed that anti-TTR Nanobody was successfully distributed throughout all brain areas, and also reaching the spinal cord. In wild-type mice, a similar distribution pattern was observed. However, in areas known to be rich in TTR, reduced levels of Nanobody were found, suggesting potential target-mediated effects. Indeed, in wild-type mice, the anti-TTR Nanobody was specifically internalized in a receptor-mediated process, by neuronal-like cells, which were identified as motor neurons. Whereas in KO TTR mice Nanobody was internalized by all cells, for late lysosomal degradation. Moreover, we demonstrate that in vivo motor neurons also actively synthesize TTR. Finally, in vitro cultured primary motor neurons were also found to synthesize and secrete TTR into culture media. Thus, through a novel intranasal CNS distribution study with an anti-TTR Nanobody, we disclose a new cell type capable of synthesizing TTR, which might be important for the understanding of the physiological role of TTR, as well as in pathological conditions where TTR levels are altered in CSF, such as amyotrophic lateral sclerosis.

Funding information:
  • NEI NIH HHS - EY017653(United States)

Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries.

  • Toussay X
  • Neurobiol. Aging
  • 2018 Feb 14

Literature context:


Abstract:

Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.

Identification of Neurotensin Receptor Expressing Cells in the Ventral Tegmental Area across the Lifespan.

  • Woodworth HL
  • eNeuro
  • 2018 Feb 22

Literature context:


Abstract:

Neurotensin (Nts) promotes activation of dopamine (DA) neurons in the ventral tegmental area (VTA) via incompletely understood mechanisms. Nts can signal via the G protein-coupled Nts receptors 1 and 2 (NtsR1 and NtsR2), but the lack of methods to detect NtsR1- and NtsR2-expressing cells has limited mechanistic understanding of Nts action. To overcome this challenge, we generated dual recombinase mice that express FlpO-dependent Cre recombinase in NtsR1 or NtsR2 cells. This strategy permitted temporal control over recombination, such that we could identify NtsR1- or NtsR2-expressing cells and determine whether their distributions differed between the developing and adult brain. Using this system, we found that NtsR1 is transiently expressed in nearly all DA neurons and in many non-DA neurons in the VTA during development. However, NtsR1 expression is more restricted within the adult brain, where only two thirds of VTA DA neurons expressed NtsR1. By contrast, NtsR2 expression remains constant throughout lifespan, but it is predominantly expressed within glia. Anterograde tract tracing revealed that NtsR1 is expressed by mesolimbic, not mesocortical DA neurons, suggesting that VTA NtsR1 neurons may represent a functionally unique subset of VTA DA neurons. Collectively, this work reveals a cellular mechanism by which Nts can directly engage NtsR1-expressing DA neurons to modify DA signaling. Going forward, the dual recombinase strategy developed here will be useful to selectively modulate NtsR1- and NtsR2-expressing cells and to parse their contributions to Nts-mediated behaviors.

Funding information:
  • NIAID NIH HHS - R01 AI087528(United States)
  • NIDDK NIH HHS - F30 DK107163()
  • NIDDK NIH HHS - R01 DK103808()
  • NIGMS NIH HHS - T32 GM092715()

TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus.

  • Tecuatl C
  • Eur. J. Neurosci.
  • 2018 Feb 27

Literature context:


Abstract:

The selective vulnerability of hippocampal area CA1 to ischemia-induced injury is a well-known phenomenon. However, the cellular mechanisms that confer resistance to area CA3 against ischemic damage remain elusive. Here, we show that oxygen-glucose deprivation-reperfusion (OGD-RP), an in vitro model that mimic the pathological conditions of the ischemic stroke, increases the phosphorylation level of tropomyosin receptor kinase B (TrkB) in area CA3. Slices preincubated with brain-derived neurotrophic factor (BDNF) or 7,8-dihydroxyflavone (7,8-DHF) exhibited reduced depression of the electrical activity triggered by OGD-RP. Consistently, blockade of TrkB suppressed the resistance of area CA3 to OGD-RP. The protective effect of TrkB activation was limited to area CA3, as OGD-RP caused permanent suppression of CA1 responses. At the cellular level, TrkB activation leads to phosphorylation of the accessory proteins SHC and Gab as well as the serine/threonine kinase Akt, members of the phosphoinositide 3-kinase/Akt (PI-3-K/Akt) pathway, a cascade involved in cell survival. Hence, acute slices pretreated with the Akt antagonist MK2206 in combination with BDNF lost the capability to resist the damage inflicted with OGD-RP. Consistently, with these results, CA3 pyramidal cells exhibited reduced propidium iodide uptake and caspase-3 activity in slices pretreated with BDNF and exposed to OGD-RP. We propose that PI-3-K/Akt downstream activation mediated by TrkB represents an endogenous mechanism responsible for the resistance of area CA3 to ischemic damage.

Funding information:
  • NIGMS NIH HHS - GM 052880(United States)
  • NIGMS NIH HHS - R01 GM044842()
  • NIGMS NIH HHS - R01 GM066018()
  • NINDS NIH HHS - R01 NS037459()
  • NINDS NIH HHS - R56 NS037459()

Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody.

  • Cantor S
  • Elife
  • 2018 Feb 20

Literature context:


Abstract:

In amyotrophic lateral sclerosis (ALS) and animal models of ALS, including SOD1-G93A mice, disassembly of the neuromuscular synapse precedes motor neuron loss and is sufficient to cause a decline in motor function that culminates in lethal respiratory paralysis. We treated SOD1-G93A mice with an agonist antibody to MuSK, a receptor tyrosine kinase essential for maintaining neuromuscular synapses, to determine whether increasing muscle retrograde signaling would slow nerve terminal detachment from muscle. The agonist antibody, delivered after disease onset, slowed muscle denervation, promoting motor neuron survival, improving motor system output, and extending the lifespan of SOD1-G93A mice. These findings suggest a novel therapeutic strategy for ALS, using an antibody format with clinical precedence, which targets a pathway essential for maintaining attachment of nerve terminals to muscle.

Funding information:
  • National Institute of Neurological Disorders and Stroke - R37 NS36193()
  • National Institute of Neurological Disorders and Stroke - RO1 NS078375()
  • National Institute of Neurological Disorders and Stroke - T32 NS86750()
  • NCI NIH HHS - R01 CA085180(United States)

Small Networks Encode Decision-Making in Primary Auditory Cortex.

  • Francis NA
  • Neuron
  • 2018 Feb 21

Literature context:


Abstract:

Sensory detection tasks enhance representations of behaviorally meaningful stimuli in primary auditory cortex (A1). However, it remains unclear how A1 encodes decision-making. Neurons in A1 layer 2/3 (L2/3) show heterogeneous stimulus selectivity and complex anatomical connectivity, and receive input from prefrontal cortex. Thus, task-related modulation of activity in A1 L2/3 might differ across subpopulations. To study the neural coding of decision-making, we used two-photon imaging in A1 L2/3 of mice performing a tone-detection task. Neural responses to targets showed attentional gain and encoded behavioral choice. To characterize network representation of behavioral choice, we analyzed functional connectivity using Granger causality, pairwise noise correlations, and neural decoding. During task performance, small groups of four to five neurons became sparsely linked, locally clustered, and rostro-caudally oriented, while noise correlations both increased and decreased. Our results suggest that sensory-based decision-making involves small neural networks driven by the sum of sensory input, attentional gain, and behavioral choice.

Funding information:
  • NCI NIH HHS - U54 CA143874(United States)

The Resource Identification Initiative: a cultural shift in publishing.

  • Bandrowski A
  • Brain Behav
  • 2018 Feb 13

Literature context:


Abstract:

A central tenet in support of research reproducibility is the ability to uniquely identify research resources, that is, reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to identify the exact resources that are reported or to answer basic questions such as "How did other studies use resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the methods sections of papers and thereby improve identifiability and scientific reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their manuscripts prior to publication for three resource types: antibodies, model organisms, and tools (i.e., software and databases). RRIDs are assigned by an authoritative database, for example, a model organism database for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central web portal ( http://scicrunch.org/resources). RRIDs meet three key criteria: they are machine readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 papers have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40 with RRIDs appearing in 62 different journals to date. Here, we present an overview of the pilot project and its outcomes to date. We show that authors are able to identify resources and are supportive of the goals of the project. Identifiability of the resources post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on identifiability of research resources.

Funding information:
  • NEI NIH HHS - EY026065(United States)

Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone.

  • Gould EA
  • Elife
  • 2018 Feb 13

Literature context:


Abstract:

Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1-null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1-null mice. Young adult Plp1-null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption.

Funding information:
  • National Institutes of Health - AG053690()
  • National Institutes of Health - DC00566()
  • National Institutes of Health - DC012280()
  • National Institutes of Health - DC014253()
  • National Institutes of Health - NS099042()
  • National Institutes of Health - NS25304()
  • NCI NIH HHS - R33CA81671(United States)

Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals.

  • He Y
  • Neuron
  • 2018 Feb 21

Literature context:


Abstract:

Functional MRI has been used to map brain activity and functional connectivity based on the strength and temporal coherence of neurovascular-coupled hemodynamic signals. Here, single-vessel fMRI reveals vessel-specific correlation patterns in both rodents and humans. In anesthetized rats, fluctuations in the vessel-specific fMRI signal are correlated with the intracellular calcium signal measured in neighboring neurons. Further, the blood-oxygen-level-dependent (BOLD) signal from individual venules and the cerebral-blood-volume signal from individual arterioles show correlations at ultra-slow (<0.1 Hz), anesthetic-modulated rhythms. These data support a model that links neuronal activity to intrinsic oscillations in the cerebral vasculature, with a spatial correlation length of ∼2 mm for arterioles. In complementary data from awake human subjects, the BOLD signal is spatially correlated among sulcus veins and specified intracortical veins of the visual cortex at similar ultra-slow rhythms. These data support the use of fMRI to resolve functional connectivity at the level of single vessels.

Funding information:
  • NIMH NIH HHS - 5P50MH086383-04(United States)

A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia.

  • Girasole AE
  • Neuron
  • 2018 Feb 21

Literature context:


Abstract:

Parkinson's disease is characterized by the progressive loss of midbrain dopamine neurons. Dopamine replacement therapy with levodopa alleviates parkinsonian motor symptoms but is complicated by the development of involuntary movements, termed levodopa-induced dyskinesia (LID). Aberrant activity in the striatum has been hypothesized to cause LID. Here, to establish a direct link between striatal activity and dyskinesia, we combine optogenetics and a method to manipulate dyskinesia-associated neurons, targeted recombination in active populations (TRAP). We find that TRAPed cells are a stable subset of sensorimotor striatal neurons, predominantly from the direct pathway, and that reactivation of TRAPed striatal neurons causes dyskinesia in the absence of levodopa. Inhibition of TRAPed cells, but not a nonspecific subset of direct pathway neurons, ameliorates LID. These results establish that a distinct subset of striatal neurons is causally involved in LID and indicate that successful therapeutic strategies for treating LID may require targeting functionally selective neuronal subtypes.

Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation.

  • Obernier K
  • Cell Stem Cell
  • 2018 Feb 1

Literature context:


Abstract:

Somatic stem cells have been identified in multiple adult tissues. Whether self-renewal occurs symmetrically or asymmetrically is key to understanding long-term stem cell maintenance and generation of progeny for cell replacement. In the adult mouse brain, neural stem cells (NSCs) (B1 cells) are retained in the walls of the lateral ventricles (ventricular-subventricular zone [V-SVZ]). The mechanism of B1 cell retention into adulthood for lifelong neurogenesis is unknown. Using multiple clonal labeling techniques, we show that the vast majority of B1 cells divide symmetrically. Whereas 20%-30% symmetrically self-renew and can remain in the niche for several months before generating neurons, 70%-80% undergo consuming divisions generating progeny, resulting in the depletion of B1 cells over time. This cellular mechanism decouples self-renewal from the generation of progeny. Limited rounds of symmetric self-renewal and consuming symmetric differentiation divisions can explain the levels of neurogenesis observed throughout life.

Funding information:
  • NICHD NIH HHS - R01 HD032116()
  • NICHD NIH HHS - R37 HD032116()
  • NIGMS NIH HHS - P50 GM081879()
  • NIH HHS - DP5 OD012194()
  • NINDS NIH HHS - R01 NS028478()
  • NINDS NIH HHS - R01NS058529(United States)
  • NINDS NIH HHS - R37 NS028478()

Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3.

  • Riquelme D
  • Front Cell Neurosci
  • 2018 Feb 15

Literature context:


Abstract:

TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood.

Funding information:
  • European Research Council - 281967(International)

Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts.

  • Zbesko JC
  • Neurobiol. Dis.
  • 2018 Jan 15

Literature context:


Abstract:

Following stroke, the damaged tissue undergoes liquefactive necrosis, a stage of infarct resolution that lasts for months although the exact length of time is currently unknown. One method of repair involves reactive astrocytes and microglia forming a glial scar to compartmentalize the area of liquefactive necrosis from the rest of the brain. The formation of the glial scar is a critical component of the healing response to stroke, as well as other central nervous system (CNS) injuries. The goal of this study was to evaluate the toxicity of the extracellular fluid present in areas of liquefactive necrosis and determine how effectively it is segregated from the remainder of the brain. To accomplish this goal, we used a mouse model of stroke in conjunction with an extracellular fluid toxicity assay, fluorescent and electron microscopy, immunostaining, tracer injections into the infarct, and multiplex immunoassays. We confirmed that the extracellular fluid present in areas of liquefactive necrosis following stroke is toxic to primary cortical and hippocampal neurons for at least 7 weeks following stroke, and discovered that although glial scars are robust physical and endocytic barriers, they are nevertheless permeable. We found that molecules present in the area of liquefactive necrosis can leak across the glial scar and are removed by a combination of paravascular clearance and microglial endocytosis in the adjacent tissue. Despite these mechanisms, there is delayed atrophy, cytotoxic edema, and neuron loss in regions adjacent to the infarct for weeks following stroke. These findings suggest that one mechanism of neurodegeneration following stroke is the failure of glial scars to impermeably segregate areas of liquefactive necrosis from surviving brain tissue.

Funding information:
  • NIA NIH HHS - P30 AG019610()
  • NIDDK NIH HHS - R01 DK048006(United States)
  • NINDS NIH HHS - F31 NS105455()
  • NINDS NIH HHS - R01 NS096091()
  • NINDS NIH HHS - U24 NS072026()
  • NINR NIH HHS - K99 NR013593()
  • NINR NIH HHS - R00 NR013593()

Parahippocampal and retrosplenial connections of rat posterior parietal cortex.

  • Olsen GM
  • Hippocampus
  • 2018 Jan 10

Literature context:


Abstract:

The posterior parietal cortex has been implicated in spatial functions, including navigation. The hippocampal and parahippocampal region and the retrosplenial cortex are crucially involved in navigational processes and connections between the parahippocampal/retrosplenial domain and the posterior parietal cortex have been described. However, an integrated account of the organization of these connections is lacking. Here, we investigated parahippocampal connections of each posterior parietal subdivision and the neighboring secondary visual cortex using conventional retrograde and anterograde tracers as well as transsynaptic retrograde tracing with a modified rabies virus. The results show that posterior parietal as well as secondary visual cortex entertain overall sparse connections with the parahippocampal region but not with the hippocampal formation. The medial and lateral dorsal subdivisions of posterior parietal cortex receive sparse input from deep layers of all parahippocampal areas. Conversely, all posterior parietal subdivisions project moderately to dorsal presubiculum, whereas rostral perirhinal cortex, postrhinal cortex, caudal entorhinal cortex and parasubiculum all receive sparse posterior parietal input. This indicated that the presubiculum might be a major liaison between parietal and parahippocampal domains. In view of the close association of the presubiculum with the retrosplenial cortex, we included the latter in our analysis. Our data indicate that posterior parietal cortex is moderately connected with the retrosplenial cortex, particularly with rostral area 30. The relative sparseness of the connectivity with the parahippocampal and retrosplenial domains suggests that posterior parietal cortex is only a modest actor in forming spatial representations underlying navigation and spatial memory in parahippocampal and retrosplenial cortex. © 2017 Wiley Periodicals, Inc.

Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex.

  • Tóth K
  • J. Physiol. (Lond.)
  • 2018 Jan 15

Literature context:


Abstract:

KEY POINTS: Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices derived from epileptic patients and were hypersynchronous events characterized by high levels of excitability. Spontaneous population activity emerged in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. These results help us to understand better the role of excitatory and inhibitory neuronal circuits in the generation of population events, and to define the subtle border between physiological and pathological synchronies. ABSTRACT: Interictal activity is a hallmark of epilepsy diagnostics and is linked to neuronal hypersynchrony. Little is known about perturbations in human epileptic neocortical microcircuits, and their role in generating pathological synchronies. To explore hyperexcitability of the human epileptic network, and its contribution to convulsive activity, we investigated an in vitro model of synchronous burst activity spontaneously occurring in postoperative tissue slices derived from patients with or without preoperative clinical and electrographic manifestations of epileptic activity. Human neocortical slices generated two types of synchronies. Interictal-like discharges (classified as epileptiform events) emerged only in epileptic samples, and were hypersynchronous bursts characterized by considerably elevated levels of excitation. Synchronous population activity was initiated in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. However, in pharmacoresistant epileptic tissue, a higher percentage of slices exhibited population activity, with higher local field potential gradient amplitudes. More intracellularly recorded neurons received depolarizing synaptic potentials, discharging more reliably during the events. Light and electron microscopic examinations showed slightly lower neuron densities and higher densities of excitatory synapses in the human epileptic neocortex. Our data suggest that human neocortical microcircuits retain their functionality and plasticity in vitro, and can generate two significantly different synchronies. We propose that population bursts might not be pathological events while interictal-like discharges may reflect the epileptogenicity of the human cortex. Our results show that hyperexcitability characterizes the human epileptic neocortical network, and that it is closely related to the emergence of synchronies.

Funding information:
  • Canadian Institutes of Health Research - 81262(Canada)

Neuronal Dnmt1 Deficiency Attenuates Diet-Induced Obesity in Mice.

  • Bruggeman EC
  • Endocrinology
  • 2018 Jan 1

Literature context:


Abstract:

Aberrant neuronal DNA methylation patterns have been implicated in the promotion of obesity development; however, the role of neuronal DNA methyltransferases (Dnmts), enzymes that catalyze DNA methylation, in energy balance remains poorly understood. We investigated whether neuronal Dnmt1 regulates normal energy homeostasis and obesity development using a neuronal Dnmt1 knockout (ND1KO) mouse model, Dnmt1fl/fl Synapsin1Cre, which specifically deletes Dnmt1 in neurons. Neuronal Dnmt1 deficiency reduced adiposity in chow-fed mice and attenuated obesity in high-fat diet (HFD)-fed male mice. ND1KO male mice had reduced food intake and increased energy expenditure with the HFD. Furthermore, these mice had improved insulin sensitivity, as measured using an insulin tolerance test. The HFD-fed ND1KO mice had smaller fat pads and upregulation of thermogenic genes in brown adipose tissue. These data suggest that neuronal Dnmt1 plays an important role in regulating energy homeostasis. Notably, ND1KO male mice had elevated estrogen receptor-α (ERα) gene expression in the medial hypothalamus, which previously has been shown to control body weight. Immunohistochemistry experiments revealed that ERα protein expression was upregulated specifically in the dorsomedial region of the ventromedial hypothalamus, a region that might mediate the central effect of leptin. We conclude that neuronal Dnmt1 regulates energy homeostasis through pathways controlling food intake and energy expenditure. In addition, ERα expression in the dorsomedial region of the ventromedial hypothalamus might mediate these effects.

Funding information:
  • NHLBI NIH HHS - R01 HL107500()
  • NIDDK NIH HHS - R01 DK107544()

Leukemia inhibitory factor impairs structural and neurochemical development of rat visual cortex in vivo.

  • Engelhardt M
  • Mol. Cell. Neurosci.
  • 2018 Jan 12

Literature context:


Abstract:

Minipump infusions into visual cortex in vivo at the onset of the critical period have revealed that the proinflammatory cytokine leukemia inhibitory factor (LIF) delays the maturation of thalamocortical projection neurons of the lateral geniculate nucleus, and tecto-thalamic projection neurons of the superior colliculus, and cortical layer IV spiny stellates and layer VI pyramidal neurons. Here, we report that P12-20 LIF infusion inhibits somatic maturation of pyramidal neurons and of all interneuron types in vivo. Likewise, DIV 12-20 LIF treatment in organotypic cultures prevents somatic growth GABA-ergic neurons. Further, while NPY expression is increased in the LIF-infused hemispheres, the expression of parvalbumin mRNA and protein, Kv3.1 mRNA, calbindin D-28k protein, and GAD-65 mRNA, but not of GAD-67 mRNA or calretinin protein is substantially reduced. Also, LIF treatment decreases parvalbumin, Kv3.1, Kv3.2 and GAD-65, but not GAD-67 mRNA expression in OTC. Developing cortical neurons are known to depend on neurotrophins. Indeed, LIF alters neurotrophin mRNA expression, and prevents the growth promoting action of neurotophin-4 in GABA-ergic neurons. The results imply that LIF, by altering neurotrophin expression and/or signaling, could counteract neurotrophin-dependent growth and neurochemical differentiation of cortical neurons.

Inhibition of Inwardly Rectifying Potassium (Kir) 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF) Expression in Astrocytes.

  • Kinboshi M
  • Front Mol Neurosci
  • 2018 Jan 24

Literature context:


Abstract:

Inwardly rectifying potassium (Kir) 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown) on expression of brain-derived neurotrophic factor (BDNF), a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine) also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA) targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

Funding information:
  • NINDS NIH HHS - R56 NS021072(United States)

Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes.

  • Mariotti L
  • Nat Commun
  • 2018 Jan 8

Literature context:


Abstract:

The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to generate the functional heterogeneity that characterizes brain circuits. Whether this diversity applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using optogenetics and two-photon functional imaging in the adult mouse neocortex, we here reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasticity. Remarkably, the potentiated response crucially depends on the neuropeptide somatostatin, released by somatostatin interneurons, which activates somatostatin receptors at astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling specificity between interneuron subtypes and astrocytes opening a new perspective into the role of astrocytes as non-neuronal components of inhibitory circuits.

Funding information:
  • NCI NIH HHS - R01 CA137102(United States)

Behavioral Changes in Mice Lacking Interleukin-33.

  • Dohi E
  • eNeuro
  • 2018 Jan 31

Literature context:


Abstract:

Interleukin (IL)-33 is a member of the IL-1 family of cytokines. IL-33 is expressed in nuclei and secreted as alarmin upon cellular damage to deliver a danger signal to the surrounding cells. Previous studies showed that IL-33 is expressed in the brain and that it is involved in neuroinflammatory and neurodegenerative processes in both humans and rodents. Nevertheless, the role of IL-33 in physiological brain function and behavior remains unclear. Here, we have investigated the behaviors of mice lacking IL-33 (Il33-/- mice). IL-33 is constitutively expressed throughout the adult mouse brain, mainly in oligodendrocyte-lineage cells and astrocytes. Notably, Il33-/- mice exhibited reduced anxiety-like behaviors in the elevated plus maze (EPM) and the open field test (OFT), as well as deficits in social novelty recognition, despite their intact sociability, in the three-chamber social interaction test. The immunoreactivity of c-Fos proteins, an indicator of neuronal activity, was altered in several brain regions implicated in anxiety-related behaviors, such as the medial prefrontal cortex (mPFC), amygdala, and piriform cortex (PCX), in Il33-/- mice after the EPM. Altered c-Fos immunoreactivity in Il33-/- mice was not correlated with IL-33 expression in wild-type (WT) mice nor was IL-33 expression affected by the EPM in WT mice. Thus, our study has revealed that Il33-/- mice exhibit multiple behavioral deficits, such as reduced anxiety and impaired social recognition. Our findings also indicate that IL-33 may regulate the development and/or maturation of neuronal circuits, rather than control neuronal activities in adult brains.

Funding information:
  • NIMH NIH HHS - R00 MH093458()
  • Wellcome Trust - 078285(United Kingdom)

Phosphorylated CCAAT/Enhancer Binding Protein β Contributes to Rat HIV-Related Neuropathic Pain: In Vitro and In Vivo Studies.

  • Yi H
  • J. Neurosci.
  • 2018 Jan 17

Literature context:


Abstract:

Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. Here, we used a neuropathic pain model of perineural HIV envelope glycoprotein gp120 application onto the rat sciatic nerve to test the role of phosphorylated C/EBPβ (pC/EBPβ) and its upstream pathway in the spinal cord dorsal horn (SCDH). HIV gp120 induced overexpression of pC/EBPβ in the ipsilateral SCDH compared with contralateral SCDH. Inhibition of C/EBPβ using siRNA against C/EBPβ reduced mechanical allodynia. HIV gp120 also increased TNFα, TNFRI, mitochondrial superoxide (mtO2·-), and pCREB in the ipsilateral SCDH. ChIP-qPCR assay showed that pCREB enrichment on the C/EBPβ gene promoter regions in rats with gp120 was higher than that in sham rats. Intrathecal TNF soluble receptor I (functionally blocking TNFα bioactivity) or knockdown of TNFRI using antisense oligodeoxynucleotide against TNFRI reduced mechanical allodynia, and decreased mtO2·-, pCREB and pC/EBPβ. Intrathecal Mito-tempol (a mitochondria-targeted O2·-scavenger) reduced mechanical allodynia and decreased pCREB and pC/EBPβ. Knockdown of CREB with antisense oligodeoxynucleotide against CREB reduced mechanical allodynia and lowered pC/EBPβ. These results suggested that the pathway of TNFα/TNFRI-mtO2·--pCREB triggers pC/EBPβ in the HIV gp120-induced neuropathic pain state. Furthermore, we confirmed the pathway using both cultured neurons treated with recombinant TNFα in vitro and repeated intrathecal injection of recombinant TNFα in naive rats. This finding provides new insights in the understanding of the HIV neuropathic pain mechanisms and treatment.SIGNIFICANCE STATEMENT Painful HIV-associated sensory neuropathy is a neurological complication of HIV infection. Phosphorylated C/EBPβ (pC/EBPβ) influences AIDS progression, but it is still not clear about the exact role of pC/EBPβ and the detailed upstream factors of pC/EBPβ in HIV-related pain. In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.

Funding information:
  • Canadian Institutes of Health Research - 79634(Canada)
  • NIDA NIH HHS - R01 DA034749()
  • NINDS NIH HHS - R01 NS066792()

Spatial Information in a Non-retinotopic Visual Cortex.

  • Fournier J
  • Neuron
  • 2018 Jan 3

Literature context:


Abstract:

Turtle dorsal cortex (dCx), a three-layered cortical area of the reptilian telencephalon, receives inputs from the retina via the thalamic lateral geniculate nucleus and constitutes the first cortical stage of visual processing. The receptive fields of dCx neurons usually occupy the entire contralateral visual field. Electrophysiological recordings in awake and anesthetized animals reveal that dCx is sensitive to the spatial structure of natural images, that dCx receptive fields are not entirely uniform across space, and that adaptation to repeated stimulation is position specific. Hence, spatial information can be found both at the single-neuron and population scales. Anatomical data are consistent with the absence of a clear retinotopic mapping of thalamocortical projections. The mapping and representation of visual space in this three-layered cortex thus differ from those found in mammalian primary visual cortex. Our results support the notion that dCx performs a global, rather than local, analysis of the visual scene.

Funding information:
  • NCI NIH HHS - P50 CA127003(United States)

Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.

  • Jinnou H
  • Cell Stem Cell
  • 2018 Jan 4

Literature context:


Abstract:

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-containing scaffold into injured neonatal brains likewise promotes migration and maturation of V-SVZ-derived neuroblasts, leading to functional improvements in impaired gait behaviors. Together these results suggest that RG fibers enable postnatal V-SVZ-derived neuroblasts to migrate toward sites of injury, thereby enhancing neuronal regeneration and functional recovery from neonatal brain injuries.

Funding information:
  • NIDDK NIH HHS - R01 DK082659(United States)

Mixed Neurodevelopmental and Neurodegenerative Pathology in Nhe6-Null Mouse Model of Christianson Syndrome.

  • Xu M
  • eNeuro
  • 2018 Jan 20

Literature context:


Abstract:

Christianson syndrome (CS) is an X-linked disorder resulting from loss-of-function mutations in SLC9A6, which encodes the endosomal Na+/H+ exchanger 6 (NHE6). Symptoms include early developmental delay, seizures, intellectual disability, nonverbal status, autistic features, postnatal microcephaly, and progressive ataxia. Neuronal development is impaired in CS, involving defects in neuronal arborization and synaptogenesis, likely underlying diminished brain growth postnatally. In addition to neurodevelopmental defects, some reports have supported neurodegenerative pathology in CS with age. The objective of this study was to determine the nature of progressive changes in the postnatal brain in Nhe6-null mice. We examined the trajectories of brain growth and atrophy in mutant mice from birth until very old age (2 yr). We report trajectories of volume changes in the mutant that likely reflect both brain undergrowth as well as tissue loss. Reductions in volume are first apparent at 2 mo, particularly in the cerebellum, which demonstrates progressive loss of Purkinje cells (PCs). We report PC loss in two distinct Nhe6-null mouse models. More widespread reductions in tissue volumes, namely, in the hippocampus, striatum, and cortex, become apparent after 2 mo, largely reflecting delays in growth with more limited tissue losses with aging. Also, we identify pronounced glial responses, particularly in major fiber tracts such as the corpus callosum, where the density of activated astrocytes and microglia are substantially increased. The prominence of the glial response in axonal tracts suggests a primary axonopathy. Importantly, therefore, our data support both neurodevelopmental and degenerative mechanisms in the pathobiology of CS.

Funding information:
  • NHLBI NIH HHS - HL67067(United States)
  • NIMH NIH HHS - R01 MH102418()
  • NIMH NIH HHS - R01 MH105442()
  • NIMH NIH HHS - R21 MH115392()
  • NIMH NIH HHS - R25 MH101076()
  • NINDS NIH HHS - F31 NS093880()

Microglial TNFα Induces COX2 and PGI2 Synthase Expression in Spinal Endothelial Cells during Neuropathic Pain.

  • Kanda H
  • eNeuro
  • 2018 Jan 29

Literature context:


Abstract:

Prostaglandins (PGs) are typical lipid mediators that play a role in homeostasis and disease. They are synthesized from arachidonic acid by cyclooxygenase 1 (COX1) and COX2. Although COX2 has been reported to be upregulated in the spinal cord after nerve injury, its expression and functional roles in neuropathic pain remain unclear. In this study, we investigated the expression of Cox2, PGI2 synthase (Pgis), and prostaglandin I2 receptor (IP receptor) mRNA in the rat spinal cord after spared nerve injury (SNI). Levels of Cox2 and Pgis mRNA increased in endothelial cells from 24 to 48 h after nerve injury. IP receptor mRNA was constitutively expressed in dorsal horn neurons. A COX2 inhibitor and IP receptor antagonists attenuated pain behavior in the early phase of neuropathic pain. Furthermore, we examined the relationship between COX2 and tumor necrosis factor-α (TNFα) in the spinal cord of a rat SNI model. Levels of TNFα mRNA transiently increased in the spinal microglia 24 h after SNI. The TNF receptors Tnfr1 and Tnfr2 mRNA were colocalized with COX2. Intrathecal injection of TNFα induced Cox2 and Pgis mRNA expression in endothelial cells. These results revealed that microglia-derived TNFα induced COX2 and PGIS expression in spinal endothelial cells and that endothelial PGI2 played a critical role in neuropathic pain via neuronal IP receptor. These findings further suggest that the glia-endothelial cell interaction of the neurovascular unit via transient TNFα is involved in the generation of neuropathic pain.

Neuronal PTEN deletion in adult cortical neurons triggers progressive growth of cell bodies, dendrites, and axons.

  • Gallent EA
  • Exp. Neurol.
  • 2018 Jan 18

Literature context:


Abstract:

Deletion of the phosphatase and tensin (PTEN) gene in neonatal mice leads to enlargement of the cell bodies of cortical motoneurons (CMNs) in adulthood (Gutilla et al., 2016). Here, we assessed whether PTEN deletion in adult mice would trigger growth of mature neurons. PTEN was deleted by injecting AAV-Cre into the sensorimotor cortex of adult transgenic mice with a lox-P flanked exon 5 of the PTEN gene and Cre-dependent reporter gene tdTomato. PTEN-deleted CMN's identified by tdT expression and retrograde labeling with fluorogold (FG) were significantly enlarged four months following PTEN deletion, and continued to increase in size through the latest time intervals examined (12-15 months post-deletion). Sholl analyses of tdT-positive pyramidal neurons revealed increases in dendritic branches at 6 months following adult PTEN deletion, and greater increases at 12 months. 12 months after adult PTEN deletion, axons in the medullary pyramids were significantly larger and G-ratios were higher. Mice with PTEN deletion exhibited no overt neurological symptoms and no seizures. Assessment of motor function on the rotarod and cylinder test revealed slight impairment of coordination with unilateral deletion; however, mice with bilateral PTEN deletion in the motor cortex performed better than controls on the rotarod at 8 and 10 months post-deletion. Our findings demonstrate that robust neuronal growth can be induced in fully mature cortical neurons long after the developmental period has ended and that this continuous growth occurs without obvious functional impairments.

Funding information:
  • NIGMS NIH HHS - R01 GM049650(United States)

Drp1 Mitochondrial Fission in D1 Neurons Mediates Behavioral and Cellular Plasticity during Early Cocaine Abstinence.

  • Chandra R
  • Neuron
  • 2017 Dec 20

Literature context:


Abstract:

Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.

Funding information:
  • NCI NIH HHS - R01 CA140198(United States)
  • NIAAA NIH HHS - R01 AA024845()
  • NIDA NIH HHS - R01 DA037257()
  • NIDA NIH HHS - R01 DA038613()
  • NIGMS NIH HHS - R25 GM055036()
  • NIGMS NIH HHS - SC2 GM109811()

ApoE4 Accelerates Early Seeding of Amyloid Pathology.

  • Liu CC
  • Neuron
  • 2017 Dec 6

Literature context:


Abstract:

Accumulation and aggregation of amyloid-β (Aβ) in the brain is an initiating step in the pathogenesis of Alzheimer's disease (AD). The ε4 allele of apolipoprotein E (apoE) gene is the strongest genetic risk factor for late-onset AD. Although there is strong evidence showing that apoE4 enhances amyloid pathology, it is not clear what the critical stage(s) is during amyloid development in which apoE4 has the strongest impact. Using apoE inducible mouse models, we show that increased expression of astrocytic apoE4, but not apoE3, during the seeding stage of amyloid development enhanced amyloid deposition and neuritic dystrophy in amyloid model mice. ApoE4, but not apoE3, significantly increased brain Aβ half-life measured by in vivo microdialysis. Furthermore, apoE4 expression increased whereas apoE3 reduced amyloid-related gliosis in the mouse brains. Together, our results demonstrate that apoE4 has the greatest impact on amyloid during the seeding stage, likely by perturbing Aβ clearance and enhancing Aβ aggregation.

Funding information:
  • NCI NIH HHS - R01 CA087546(United States)
  • NIA NIH HHS - P50 AG016574()
  • NIA NIH HHS - R01 AG027924()
  • NIA NIH HHS - R01 AG046205()
  • NIA NIH HHS - RF1 AG051504()
  • NIA NIH HHS - RF1 AG056130()
  • NINDS NIH HHS - P01 NS074969()

Infrabarrels Are Layer 6 Circuit Modules in the Barrel Cortex that Link Long-Range Inputs and Outputs.

  • Crandall SR
  • Cell Rep
  • 2017 Dec 12

Literature context:


Abstract:

The rodent somatosensory cortex includes well-defined examples of cortical columns-the barrel columns-that extend throughout the cortical depth and are defined by discrete clusters of neurons in layer 4 (L4) called barrels. Using the cell-type-specific Ntsr1-Cre mouse line, we found that L6 contains infrabarrels, readily identifiable units that align with the L4 barrels. Corticothalamic (CT) neurons and their local axons cluster within the infrabarrels, whereas corticocortical (CC) neurons are densest between infrabarrels. Optogenetic experiments showed that CC cells received robust input from somatosensory thalamic nuclei, whereas CT cells received much weaker thalamic inputs. We also found that CT neurons are intrinsically less excitable, revealing that both synaptic and intrinsic mechanisms contribute to the low firing rates of CT neurons often reported in vivo. In summary, infrabarrels are discrete cortical circuit modules containing two partially separated excitatory networks that link long-distance thalamic inputs with specific outputs.

Funding information:
  • NIBIB NIH HHS - 5R01EB003872-05(United States)
  • NIGMS NIH HHS - P20 GM103645()
  • NINDS NIH HHS - F32 NS084763()
  • NINDS NIH HHS - K99 NS096108()
  • NINDS NIH HHS - R01 NS050434()
  • NINDS NIH HHS - R01 NS100016()

Extracellular Lactate Dehydrogenase A Release From Damaged Neurons Drives Central Nervous System Angiogenesis.

  • Lin H
  • EBioMedicine
  • 2017 Dec 19

Literature context:


Abstract:

Angiogenesis, a prominent feature of pathology, is known to be guided by factors secreted by living cells around a lesion. Although many cells are disrupted in a response to injury, the relevance of degenerating cells in pathological angiogenesis is unclear. Here, we show that the release of lactate dehydrogenase A (LDHA) from degenerating neurons drives central nervous system (CNS) angiogenesis. Silencing neuronal LDHA expression suppressed angiogenesis around experimental autoimmune encephalomyelitis (EAE)- and controlled cortical impact-induced lesions. Extracellular LDHA-mediated angiogenesis was dependent on surface vimentin expression and vascular endothelial growth factor receptor (VEGFR) phosphorylation in vascular endothelial cells. Silencing vimentin expression in vascular endothelial cells prevented angiogenesis around EAE lesions and improved survival in a mouse model of glioblastoma. These results elucidate novel mechanisms that may mediate pathologic angiogenesis and identify a potential molecular target for the treatment of CNS diseases involving angiogenesis.

Funding information:
  • Intramural NIH HHS - ZIA AR041159-05(United States)

Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders.

  • Klinefelter K
  • Mamm. Genome
  • 2017 Dec 5

Literature context:


Abstract:

Polychlorinated biphenyls (PCBs) are persistent organic pollutants that remain a human health concern with newly discovered sources of contamination and ongoing bioaccumulation and biomagnification. Children exposed during early brain development are at highest risk of neurological deficits, but highly exposed adults reportedly have an increased risk of Parkinson's disease. Our previous studies found allelic differences in the aryl hydrocarbon receptor and cytochrome P450 1A2 (CYP1A2) affect sensitivity to developmental PCB exposure, resulting in cognitive deficits and motor dysfunction. High-affinity Ahr b Cyp1a2(-/-) mice were most sensitive compared with poor-affinity Ahr d Cyp1a2(-/-) and wild-type Ahr b Cyp1a2(+/+) mice. Our follow-up studies assessed biochemical, histological, and gene expression changes to identify the brain regions and pathways affected. We also measured PCB and metabolite levels in tissues to determine if genotype altered toxicokinetics. We found evidence of AHR-mediated toxicity with reduced thymus and spleen weights and significantly reduced thyroxine at P14 in PCB-exposed pups. In the brain, the greatest changes were seen in the cerebellum where a foliation defect was over-represented in Cyp1a2(-/-) mice. In contrast, we found no difference in tyrosine hydroxylase immunostaining in the striatum. Gene expression patterns varied across the three genotypes, but there was clear evidence of AHR activation. Distribution of parent PCB congeners also varied by genotype with strikingly high levels of PCB 77 in poor-affinity Ahr d Cyp1a2(-/-) while Ahr b Cyp1a2(+/+) mice effectively sequestered coplanar PCBs in the liver. Together, our data suggest that the AHR pathway plays a role in developmental PCB neurotoxicity, but we found little evidence that developmental exposure is a risk factor for Parkinson's disease.

Funding information:
  • National Institute of Environmental Health Sciences - ES013661()
  • National Institute of Environmental Health Sciences - ES05605()
  • National Institute of Environmental Health Sciences - R15ES020053()
  • National Institute of General Medical Sciences - P20GM103436()
  • National Science Foundation - DUE-STEP-096928()
  • National Science Foundation - RSF-034-07()
  • NCI NIH HHS - P30 CA006516(United States)
  • Northern Kentucky University - College of Arts & Sciences()

Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats.

  • Colón JM
  • Exp. Neurol.
  • 2017 Dec 20

Literature context:


Abstract:

No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window.

Funding information:
  • NIGMS NIH HHS - P20 GM103642()
  • NIGMS NIH HHS - R25 GM061838()
  • NIGMS NIH HHS - T34 GM007821()
  • NIMHD NIH HHS - G12 MD007600()

Identification of somatic mutations in postmortem human brains by whole genome sequencing and their implications for psychiatric disorders.

  • Nishioka M
  • Psychiatry Clin. Neurosci.
  • 2017 Dec 29

Literature context:


Abstract:

AIM: Somatic mutations in the human brain are hypothesized to contribute to the functional diversity of brain cells as well as the pathophysiology of neuropsychiatric diseases. However, there are still few reports on somatic mutations in non-neoplastic human brain tissues. This study attempted to unveil the landscape of somatic mutations in the human brain. METHODS: We explored the landscape of somatic mutations in human brain tissues derived from three individuals with no neuropsychiatric diseases by whole-genome deep sequencing at a depth of around 100. The candidate mutations underwent multi-layered filtering, and were validated by ultra-deep target amplicon sequencing at a depth of around 200 000. RESULTS: Thirty-one somatic mutations were identified in the human brain, demonstrating the utility of whole-genome sequencing of bulk brain tissue. The mutations were enriched in neuron-expressed genes, and two-thirds of the identified somatic single nucleotide variants in the brain tissues were cytosine-to-thymine transitions, half of which were in CpG dinucleotides. CONCLUSION: Our developed filtering and validation approaches will be useful to identify somatic mutations in the human brain. The vulnerability of neuron-expressed genes to mutational events suggests their potential relevance to neuropsychiatric diseases.

Funding information:
  • NIGMS NIH HHS - GM073872(United States)

Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination.

  • Sanchez MA
  • Exp. Neurol.
  • 2017 Dec 20

Literature context:


Abstract:

Sonic hedgehog (Shh) regulates a wave of oligodendrocyte production for extensive myelination during postnatal development. During this postnatal period of oligodendrogenesis, we fate-labeled cells exhibiting active Shh signaling to examine their contribution to the regenerative response during remyelination. Bitransgenic mouse lines were generated for induced genetic fate-labeling of cells actively transcribing Shh or Gli1. Gli1 transcription is an effective readout for canonical Shh signaling. ShhCreERT2 mice and Gli1CreERT2 mice were crossed to either R26tdTomato mice to label cells with red fluorescence, or, R26IAP mice to label membranes with alkaline phosphatase. When tamoxifen (TMX) was given on postnatal days 6-9 (P6-9), Shh ligand synthesis was prevalent in neurons of ShhCreERT2; R26tdTomato mice and ShhCreERT2;R26IAP mice. In Gli1CreERT2 crosses, TMX from P6-9 detected Gli1 transcription in cells that populated the corpus callosum (CC) during postnatal myelination. Delaying TMX to P14-17, after the peak of oligodendrogenesis, significantly reduced labeling of Shh synthesizing neurons and Gli1 expressing cells in the CC. Importantly, Gli1CreERT2;R26tdTomato mice given TMX from P6-9 showed Gli1 fate-labeled cells in the adult (P56) CC, including cycling progenitor cells identified by EdU incorporation and NG2 immunolabeling. Furthermore, after cuprizone demyelination of the adult CC, Gli1 fate-labeled cells incorporated EdU and were immunolabeled by NG2 early during remyelination while forming myelin-like membranes after longer periods for remyelination to progress. These studies reveal a postnatal cell population with transient Shh signaling that contributes to oligodendrogenesis during CC myelination, and gives rise to cells that continue to proliferate in adulthood and contribute to CC remyelination.

Intra-arterial transplantation of human bone marrow mesenchymal stem cells (hBMMSCs) improves behavioral deficits and alters gene expression in rodent stroke model.

  • Vibhuti
  • J. Neurochem.
  • 2017 Dec 20

Literature context:


Abstract:

Stroke is a multi-factorial polygenic disease and is a major cause of death and adult disability. Administration of bone marrow stem cells protects ischemic rat brain by facilitating recovery of neurological functions. But the molecular mechanism of stem cells action and their effect on gene expression is not well explored. In this study, we have transplanted 1 × 106 human bone marrow mesenchymal stem cells (hBMMSCs) in middle cerebral artery occluded (MCAo) adult male Wistar rats through intracarotid artery route at 24 h after surgery. Motor behavioral tests (rotarod and open field) were performed to assess the changes in motor functions at day 0 and day1, 4, 8 and 14. The expression of studied genes at mRNA and protein level was quantified by using Q-PCR and western blotting, respectively. Further, we have assessed the methylation pattern of promoter of these genes by using methylation-specific PCR. Data were analyzed statistically and correlated. A significant improvement in behavioral deficits was observed in stem cells treated group after 14th day post stroke. Significantly (p < 0.05) increased mRNA and protein levels of brain derived neurotrophic factor and ANP genes in hBMMSCs treated group along with decrease in methylation level at their promoter was observed. On the other hand, significantly decreased mRNA and protein level of TSP1 and WNK1 in hBMMSCs treated group was observed. In conclusion, hBMMSCs administration significantly improves the behavioral deficits by improving motor and locomotor coordination. The promoter of TSP1 and WNK1 genes was found to be hyper-methylated in hBMMSCs group resulting in their decreased expression while the promoter of ANP and brain derived neurotrophic factor was found to be hypo-methylated. This study might shed a light on how hBMMSCs affect the gene expression by modulating methylation status.

Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata).

  • Ikeda MZ
  • J. Comp. Neurol.
  • 2017 Dec 1

Literature context:


Abstract:

A fast, neuromodulatory role for estrogen signaling has been reported in many regions of the vertebrate brain. Regional differences in the cellular distribution of aromatase (estrogen synthase) in several species suggest that mechanisms for neuroestrogen signaling differ between and even within brain regions. A more comprehensive understanding of neuroestrogen signaling depends on characterizing the cellular identities of neurons that express aromatase. Calcium-binding proteins such as parvalbumin and calbindin are molecular markers for interneuron subtypes, and are co-expressed with aromatase in human temporal cortex. Songbirds like the zebra finch have become important models to understand the brain synthesis of steroids like estrogens and the implications for neurobiology and behavior. Here, we investigated the regional differences in cytoarchitecture and cellular identities of aromatase-expressing neurons in the auditory and sensorimotor forebrain of zebra finches. Aromatase was co-expressed with parvalbumin in the caudomedial nidopallium (NCM) and HVC shelf (proper name) but not in the caudolateral nidopallium (NCL) or hippocampus. By contrast, calbindin was not co-expressed with aromatase in any region investigated. Notably, aromatase-expressing neurons were found in dense somato-somatic clusters, suggesting a coordinated release of local neuroestrogens from clustered neurons. Aromatase clusters were also more abundant and tightly packed in the NCM of males as compared to females. Overall, this study provides new insights into neuroestrogen regulation at the network level, and extends previous findings from human cortex by identifying a subset of aromatase neurons as putative inhibitory interneurons.

Experimental febrile seizures impair interastrocytic gap junction coupling in juvenile mice.

  • Khan D
  • J. Neurosci. Res.
  • 2017 Nov 30

Literature context:


Abstract:

Prolonged and focal febrile seizures (FSs) have been associated with the development of temporal lobe epilepsy (TLE), although the underlying mechanism and the contribution of predisposing risk factors are still poorly understood. Using a kainate model of TLE, we previously provided strong evidence that interruption of astrocyte gap junction-mediated intercellular communication represents a crucial event in epileptogenesis. To elucidate this aspect further, we induced seizures in immature mice by hyperthermia (HT) to study the consequences of FSs on the hippocampal astrocytic network. Changes in interastrocytic coupling were assessed by tracer diffusion studies in acute slices from mice 5 days after experimental FS induction. The results reveal that HT-induced FSs cause a pronounced reduction of astrocyte gap junctional coupling in the hippocampus by more than 50%. Western blot analysis indicated that reduced connexin43 protein expression and/or changes in the phosphorylation status account for this astrocyte dysfunction. Remarkably, uncoupling occurred in the absence of neuronal death and reactive gliosis. These data provide a mechanistic link between FSs and the subsequent development of TLE and further strengthen the emerging view that astrocytes have a central role in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc.

Divergent functions of the left and right central amygdala in visceral nociception.

  • Sadler KE
  • Pain
  • 2017 Nov 7

Literature context:


Abstract:

The left and right central amygdalae (CeA) are limbic regions involved in somatic and visceral pain processing. These 2 nuclei are asymmetrically involved in somatic pain modulation; pain-like responses on both sides of the body are preferentially driven by the right CeA, and in a reciprocal fashion, nociceptive somatic stimuli on both sides of the body predominantly alter molecular and physiological activities in the right CeA. Unknown, however, is whether this lateralization also exists in visceral pain processing and furthermore what function the left CeA has in modulating nociceptive information. Using urinary bladder distension (UBD) and excitatory optogenetics, a pronociceptive function of the right CeA was demonstrated in mice. Channelrhodopsin-2-mediated activation of the right CeA increased visceromotor responses (VMRs), while activation of the left CeA had no effect. Similarly, UBD-evoked VMRs increased after unilateral infusion of pituitary adenylate cyclase-activating polypeptide in the right CeA. To determine intrinsic left CeA involvement in bladder pain modulation, this region was optogenetically silenced during noxious UBD. Halorhodopsin (NpHR)-mediated inhibition of the left CeA increased VMRs, suggesting an ongoing antinociceptive function for this region. Finally, divergent left and right CeA functions were evaluated during abdominal mechanosensory testing. In naive animals, channelrhodopsin-2-mediated activation of the right CeA induced mechanical allodynia, and after cyclophosphamide-induced bladder sensitization, activation of the left CeA reversed referred bladder pain-like behaviors. Overall, these data provide evidence for functional brain lateralization in the absence of peripheral anatomical asymmetries.

Funding information:
  • NCCIH NIH HHS - R15 AT008060()
  • NIDDK NIH HHS - F31 DK104538()

Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn.

  • Tran M
  • J. Comp. Neurol.
  • 2017 Nov 1

Literature context:


Abstract:

In both acute and chronic pain conditions, women tend to be more sensitive than men. This sex difference may be regulated by estrogens, such as estradiol, that are synthesized in the spinal cord and brainstem and act locally to influence pain processing. To identify a potential cellular source of local estrogen, here we examined the expression of aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol. Our studies focused on primary afferent neurons and on their central targets in the spinal cord and medulla as well as in the nucleus of the solitary tract, the target of nodose ganglion-derived visceral afferents. Immunohistochemical staining in an aromatase reporter mouse revealed that many neurons in laminae I and V of the spinal cord dorsal horn and caudal spinal trigeminal nucleus and in the nucleus of the solitary tract express aromatase. The great majority of these cells also express inhibitory interneuron markers. We did not find sex differences in aromatase expression and neither the pattern nor the number of neurons changed in a sciatic nerve transection model of neuropathic pain or in the Complete Freund's adjuvant model of inflammatory pain. A few aromatase neurons express Fos after cheek injection of capsaicin, formalin, or chloroquine. In total, given their location, these aromatase neurons are poised to engage nociceptive circuits, whether it is through local estrogen synthesis or inhibitory neurotransmitter release.

Funding information:
  • NINDS NIH HHS - R35 NS097306()
  • NINDS NIH HHS - R37 NS014627()

Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice.

  • Giaime E
  • Neuron
  • 2017 Nov 15

Literature context:


Abstract:

LRRK2 mutations are the most common genetic cause of Parkinson's disease, but LRRK2's normal physiological role in the brain is unclear. Here, we show that inactivation of LRRK2 and its functional homolog LRRK1 results in earlier mortality and age-dependent, selective neurodegeneration. Loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and of noradrenergic neurons in the locus coeruleus is accompanied with increases in apoptosis, whereas the cerebral cortex and cerebellum are unaffected. Furthermore, selective age-dependent neurodegeneration is only present in LRRK-/-, not LRRK1-/- or LRRK2-/- brains, and it is accompanied by increases in α-synuclein and impairment of the autophagy-lysosomal pathway. Quantitative electron microscopy (EM) analysis revealed age-dependent increases of autophagic vacuoles in the SNpc of LRRK-/- mice before the onset of DA neuron loss. These findings revealed an essential role of LRRK in the survival of DA neurons and in the regulation of the autophagy-lysosomal pathway in the aging brain.

Funding information:
  • NINDS NIH HHS - P50 NS094733()
  • NINDS NIH HHS - R01 NS071251()
  • NINDS NIH HHS - R37 NS071251()

Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy.

  • LoCoco PM
  • Elife
  • 2017 Nov 10

Literature context:


Abstract:

Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here, we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.

Funding information:
  • NIMH NIH HHS - T32 MH065214(United States)

α2δ-1 Signaling Drives Cell Death, Synaptogenesis, Circuit Reorganization, and Gabapentin-Mediated Neuroprotection in a Model of Insult-Induced Cortical Malformation.

  • Lau LA
  • eNeuro
  • 2017 Nov 8

Literature context:


Abstract:

Developmental cortical malformations (DCMs) result from pre- and perinatal insults, as well as genetic mutations. Hypoxia, viral infection, and traumatic injury are the most common environmental causes of DCMs, and are associated with the subsyndromes focal polymicrogyria and focal cortical dysplasia (FCD) Type IIId, both of which have a high incidence of epilepsy. Understanding the molecular signals that lead to the formation of a hyperexcitable network in DCMs is critical to devising novel treatment strategies. In a previous study using the freeze-lesion (FL) murine model of DCM, we found that levels of thrombospondin (TSP) and the calcium channel auxiliary subunit α2δ-1 were elevated. TSP binds to α2δ-1 to drive the formation of excitatory synapses during development, suggesting that overactivation of this pathway may lead to exuberant excitatory synaptogenesis and network hyperexcitability seen in DCMs. In that study, antagonizing TSP/α2δ-1 signaling using the drug gabapentin (GBP) reduced many FL-induced pathologies. Here, we used mice with a genetic deletion of α2δ-1 to determine how α2δ-1 contributes to cell death, elevated excitatory synapse number, and in vitro network function after FL and to examine the molecular specificity of GBP's effects. We identified a critical role for α2δ-1 in FL-induced pathologies and in mediating the neuroprotective effects of GBP. Interestingly, genetic deletion of α2δ-1 did not eliminate GBP's effects on synaptogenesis, suggesting that GBP can have α2δ-1-independent effects. Taken together these studies suggests that inhibiting α2δ-1 signaling may have therapeutic promise to reduce cell death and network reorganization associated with insult-induced DCMs.

Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer's disease neurons.

  • Tammineni P
  • Hum. Mol. Genet.
  • 2017 Nov 15

Literature context:


Abstract:

Lysosomal proteolysis is essential for the quality control of intracellular components and the maintenance of cellular homeostasis. Lysosomal alterations have been implicated as one of the main cellular defects contributing to the onset and progression of Alzheimer's disease (AD). However, the mechanism underlying lysosomal deficits in AD remains poorly understood. Here, we reveal that lysosomal deficits are attributed to retromer dysfunction induced by altered retromer trafficking in the axon of AD-related mutant human amyloid precursor protein (hAPP) transgenic (Tg) mouse neurons. We demonstrate that retrograde transport of retromer is impaired, leading to its significant reduction in the soma and abnormal retention within late endosomes in distal axons of mutant hAPP neurons. Therefore, retromer-mediated endosome-to-Golgi retrieval of cation-independent mannose-6-phosphate receptors (CI-MPR) in the soma is disrupted in mutant hAPP neurons, causing defects in lysosome biogenesis. Such defects result in protease deficiency in lysosomes and impaired lysosomal proteolysis, as evidenced by aberrant accumulation of sequestered substrates within lysosomes. Intriguingly, enhancement of retrograde transport in mutant hAPP neurons facilitates the trafficking of axonal retromer toward the soma and thus enhances protease transport to lysosomes, thereby restoring lysosomal proteolytic activity. Taken together, our study provides new insights into the regulation of retromer trafficking through retrograde axonal transport to fulfil its function in promoting lysosome biogenesis in the soma, suggesting a potential approach for rescuing lysosomal proteolysis deficits in AD.

Funding information:
  • NIA NIH HHS - R00 AG033658()
  • NINDS NIH HHS - R01 NS089737()
  • NINDS NIH HHS - R21 NS102780()

Vesicular Glutamate Transporter 1 Knockdown in Infralimbic Prefrontal Cortex Augments Neuroendocrine Responses to Chronic Stress in Male Rats.

  • Myers B
  • Endocrinology
  • 2017 Oct 1

Literature context:


Abstract:

Chronic stress-associated pathologies frequently associate with alterations in the structure and activity of the medial prefrontal cortex (mPFC). However, the influence of infralimbic cortex (IL) projection neurons on hypothalamic-pituitary-adrenal (HPA) axis activity is unknown, as is the involvement of these cells in chronic stress-induced endocrine alterations. In the current study, a lentiviral-packaged vector coding for a small interfering RNA (siRNA) targeting vesicular glutamate transporter (vGluT) 1 messenger RNA (mRNA) was microinjected into the IL of male rats. vGluT1 is responsible for presynaptic vesicular glutamate packaging in cortical neurons, and knockdown reduces the amount of glutamate available for synaptic release. After injection, rats were either exposed to chronic variable stress (CVS) or remained in the home cage as unstressed controls. Fifteen days after the initiation of CVS, all animals were exposed to a novel acute stressor (30-minute restraint) with blood collection for the analysis of adrenocorticotropic hormone (ACTH) and corticosterone. Additionally, brains were collected for in situ hybridization of corticotrophin-releasing hormone mRNA. In previously unstressed rats, vGluT1 siRNA significantly enhanced ACTH and corticosterone secretion. Compared with CVS animals receiving the green fluorescent protein control vector, the vGluT1 siRNA further increased basal and stress-induced corticosterone release. Further analysis revealed enhanced adrenal responsiveness in CVS rats treated with vGluT1 siRNA. Collectively, our results suggest that IL glutamate output inhibits HPA responses to acute stress and restrains corticosterone secretion during chronic stress, possibly at the level of the adrenal. Together, these findings pinpoint a neurochemical mechanism linking mPFC dysfunction with aberrant neuroendocrine responses to chronic stress.

Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills.

  • Wang X
  • Cell
  • 2017 Oct 5

Literature context:


Abstract:

Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.

Gonadal Hormone-Dependent Sexual Differentiation of a Female-Biased Sexually Dimorphic Cell Group in the Principal Nucleus of the Bed Nucleus of the Stria Terminalis in Mice.

  • Morishita M
  • Endocrinology
  • 2017 Oct 1

Literature context:


Abstract:

We recently reported a female-biased sexually dimorphic area in the mouse brain in the boundary region between the preoptic area and the bed nucleus of the stria terminalis (BNST). We reexamined this area and found that it is a ventral part of the principal nucleus of the BNST (BNSTp). The BNSTp is a male-biased sexually dimorphic nucleus, but the ventral part of the BNSTp (BNSTpv) exhibits female-biased sex differences in volume and neuron number. The volume and neuron number of the BNSTpv were increased in males by neonatal orchiectomy and decreased in females by treatment with testosterone, dihydrotestosterone, or estradiol within 5 days after birth. Sex differences in the volume and neuron number of the BNSTpv emerged before puberty. These sex differences became prominent in adulthood with increasing volume in females and loss of neurons in males during the pubertal/adolescent period. Prepubertal orchiectomy did not affect the BNSTpv, although prepubertal ovariectomy reduced the volume increase and induced loss of neurons in the female BNSTpv. In contrast, the volume and neuron number of male-biased sexually dimorphic nuclei that are composed of mainly calbindin neurons and are located in the preoptic area and BNST were decreased by prepubertal orchiectomy but not affected by prepubertal ovariectomy. Testicular testosterone during the postnatal period may defeminize the BNSTpv via binding directly to the androgen receptor and indirectly to the estrogen receptor after aromatization, although defeminization may proceed independently of testicular hormones in the pubertal/adolescent period. Ovarian hormones may act to feminize the BNSTpv during the pubertal/adolescent period.

Functional Convergence at the Retinogeniculate Synapse.

  • Litvina EY
  • Neuron
  • 2017 Oct 11

Literature context:


Abstract:

Precise connectivity between retinal ganglion cells (RGCs) and thalamocortical (TC) relay neurons is thought to be essential for the transmission of visual information. Consistent with this view, electrophysiological measurements have previously estimated that 1-3 RGCs converge onto a mouse geniculate TC neuron. Recent advances in connectomics and rabies tracing have yielded much higher estimates of retinogeniculate convergence, although not all identified contacts may be functional. Here we use optogenetics and a computational simulation to determine the number of functionally relevant retinogeniculate inputs onto TC neurons in mice. We find an average of ten RGCs converging onto a mature TC neuron, in contrast to >30 inputs before developmental refinement. However, only 30% of retinogeniculate inputs exceed the threshold for dominating postsynaptic activity. These results signify a greater role for the thalamus in visual processing and provide a functional perspective of anatomical connectivity data.

The X-Linked Autism Protein KIAA2022/KIDLIA Regulates Neurite Outgrowth via N-Cadherin and δ-Catenin Signaling.

  • Gilbert J
  • eNeuro
  • 2017 Oct 31

Literature context:


Abstract:

Our previous work showed that loss of the KIAA2022 gene protein results in intellectual disability with language impairment and autistic behavior (KIDLIA, also referred to as XPN). However, the cellular and molecular alterations resulting from a loss of function of KIDLIA and its role in autism with severe intellectual disability remain unknown. Here, we show that KIDLIA plays a key role in neuron migration and morphogenesis. We found that KIDLIA is distributed exclusively in the nucleus. In the developing rat brain, it is expressed only in the cortical plate and subplate region but not in the intermediate or ventricular zone. Using in utero electroporation, we found that short hairpin RNA (shRNA)-mediated knockdown of KIDLIA leads to altered neuron migration and a reduction in dendritic growth and disorganized apical dendrite projections in layer II/III mouse cortical neurons. Consistent with this, in cultured rat neurons, a loss of KIDLIA expression also leads to suppression of dendritic growth and branching. At the molecular level, we found that KIDLIA suppression leads to an increase in cell-surface N-cadherin and an elevated association of N-cadherin with δ-catenin, resulting in depletion of free δ-catenin in the cytosolic compartment. The reduced availability of cytosolic δ-catenin leads to elevated RhoA activity and reduced actin dynamics at the dendritic growth cone. Furthermore, in neurons with KIDLIA knockdown, overexpression of δ-catenin or inhibition of RhoA rescues actin dynamics, dendritic growth, and branching. These findings provide the first evidence on the role of the novel protein KIDLIA in neurodevelopment and autism with severe intellectual disability.

Funding information:
  • NIDA NIH HHS - K01 DA029044(United States)

Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy.

  • Li P
  • Neuron
  • 2017 Oct 11

Literature context:


Abstract:

Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.

Dexmedetomidine prolongs levobupivacaine analgesia via inhibition of inflammation and p38 MAPK phosphorylation in rat dorsal root ganglion.

  • Yamakita S
  • Neuroscience
  • 2017 Oct 11

Literature context:


Abstract:

Following tissue injury, phosphorylation of p38 MAPK in the primary afferent neurons drives sensitization of peripheral nerve. Dexmedetomidine extends the duration of reginal analgesia by local anesthetics. The effect of regional analgesia on the peripheral nerve sensitization is not known. The aim of this study is to investigate the effect of regional analgesia by levobupivacaine with or without dexmedetomidine on the p38 MAPK phosphorylation in the dorsal root ganglion (DRG) and inflammatory reaction in the peripheral tissue. A plantar incision was made in the hind paws of Sprague-Dawley rats. Prior to incision, levobupivacaine with or without dexmedetomidine was injected to the plantar aspect of the paws and ankles. A behavioral study was performed to investigate pain hypersensitivity. Phosphorylation of p38 MAPK in the DRG was assessed by immunohistochemistry and Western blotting. Macrophage accumulation, NGF, and TNF-α in the DRG and plantar tissue were measured using immunohistochemistry, real-time PCR and ELISA. Pain hypersensitivity was induced immediately after the plantar incision. Treatment with levobupivacaine inhibited the development of pain hypersensitivity for two hours. Adjunctive dexmedetomidine extended the anti-hyperalgesic duration for four hours. Levobupivacaine without dexmedetomidine could not inhibit p38 MAPK phosphorylation in the DRG completely. However, Levobupivacaine and dexmedetomidine completely inhibited p38 MAPK phosphorylation, and reduced macrophage accumulation and TNF-α amount in the plantar tissue. Inhibition of p38 MAPK phosphorylation via TNF-α suggests dexmedetomidine has a peripheral mechanism of anti-inflammatory action when used asan adjunct to local anesthetics, and provides a molecular basis for the prevention of peripheral sensitization following surgery.

The Role of Sirt1 in Epileptogenesis.

  • Hall AM
  • eNeuro
  • 2017 Oct 30

Literature context:


Abstract:

The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults, including trauma, stroke, tumors, infections, and long seizures [status epilepticus (SE)], create a neuronal state of increased metabolic demand or decreased energy supply. Neurons express molecules that monitor their metabolic state, including sirtuins (Sirts). Sirtuins deacetylate cytoplasmic proteins and nuclear histones, and their epigenetic modulation of the chromatin governs the expression of many genes, influencing neuronal properties. Thus, sirtuins are poised to enduringly modulate neuronal properties following SE, potentially contributing to epileptogenesis, a hypothesis supported by the epilepsy-attenuating effects of blocking a downstream target of Sirt1, Neuron-Restrictive Silencer Factor (NRSF) also know as REST (RE1-Silencing Transcription factor). Here we used an adult male rat model of epileptogenesis provoked by kainic acid-induced SE (KA-SE). We assessed KA-SE-provoked Sirt1 activity, infused a Sirt1 inhibitor (EX-527) after KA-SE, and examined for epileptogenesis using continuous digital video-EEG. Sirt1 activity, measured using chromatin immunoprecipitation for Sirt1 binding at a target gene, increased rapidly after SE. Post hoc infusion of the Sirt1 inhibitor prevented Sirt1-mediated repression of a target gene. Blocking Sirt1 activity transiently after KA-SE did not significantly influence the time- course and all of the parameters of epilepsy development. Specifically, latency to first seizure and seizure number, duration, and severity (using the Racine scale and EEG measures) as well as the frequency and duration of interictal spike series, were all unchanged. KA-SE provoked a robust inflammatory response and modest cell loss, yet neither was altered by blocking Sirt1. In conclusion, blocking Sirt1 activity after KA-SE does not abrogate epilepsy development, suggesting that the mechanisms of such acquired epileptogenesis are independent of Sirt1 function.

Funding information:
  • NINDS NIH HHS - R01 NS035439()
  • NINDS NIH HHS - R01 NS078279()

Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice.

  • Li Y
  • J. Neurochem.
  • 2017 Oct 3

Literature context:


Abstract:

Post-stroke angiogenesis facilitates neurovascular remodeling process and promotes neurological recovery. Proangiogenic effects of Salvianolic acids (Sals) have been reported in various ischemic disorders. However, the underlying mechanisms are still poorly understood. Previous studies of our laboratory have demonstrated that activating Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway is involved in the protection against cerebral ischemia/reperfusion injury. In this study, we investigated the impacts of Sals on angiogenesis and long-term neurological recovery after ischemic stroke as well as the potential mechanisms. Male mice subjected to permanent distal middle cerebral artery occlusion were administrated with Sals, 5-bromo-2'-deoxyuridine, and JAK2 inhibitor AG490 once daily from day 1 to day 14 after distal middle cerebral artery occlusion. Compared with the control group, Sals treatment significantly improved neurological recovery at day 14 and 28 after ischemic stroke. Sals enhanced post-stroke angiogenesis, pericytes and astrocytic endfeet covered ratio in the peri-infarct area. The JAK2/STAT3 signaling pathway was activated by Sals in the angiogenesis process, and inhibition of JAK2/STAT3 signaling blocked the effects of Sals on post-stroke angiogenesis and neurological recovery as well as abolished the mediation of proangiogenic factors. In summary, these data suggest that Sals administration enhances cerebral angiogenesis and promotes neurological recovery after ischemic stroke, mediated by the activation of JAK2/STAT3 signaling pathway.

The Anterior Insular Cortex→Central Amygdala Glutamatergic Pathway Is Critical to Relapse after Contingency Management.

  • Venniro M
  • Neuron
  • 2017 Oct 11

Literature context:


Abstract:

Despite decades of research on neurobiological mechanisms of psychostimulant addiction, the only effective treatment for many addicts is contingency management, a behavioral treatment that uses alternative non-drug reward to maintain abstinence. However, when contingency management is discontinued, most addicts relapse to drug use. The brain mechanisms underlying relapse after cessation of contingency management are largely unknown, and, until recently, an animal model of this human condition did not exist. Here we used a novel rat model, in which the availability of a mutually exclusive palatable food maintains prolonged voluntary abstinence from intravenous methamphetamine self-administration, to demonstrate that the activation of monosynaptic glutamatergic projections from anterior insular cortex to central amygdala is critical to relapse after the cessation of contingency management. We identified the anterior insular cortex-to-central amygdala projection as a new addiction- and motivation-related projection and a potential target for relapse prevention.

Funding information:
  • Intramural NIH HHS - ZIA DA000434-17()

Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation.

  • Farhy-Tselnicker I
  • Neuron
  • 2017 Oct 11

Literature context:


Abstract:

The generation of precise synaptic connections between developing neurons is critical to the formation of functional neural circuits. Astrocyte-secreted glypican 4 induces formation of active excitatory synapses by recruiting AMPA glutamate receptors to the postsynaptic cell surface. We now identify the molecular mechanism of how glypican 4 exerts its effect. Glypican 4 induces release of the AMPA receptor clustering factor neuronal pentraxin 1 from presynaptic terminals by signaling through presynaptic protein tyrosine phosphatase receptor δ. Pentraxin then accumulates AMPA receptors on the postsynaptic terminal forming functional synapses. Our findings reveal a signaling pathway that regulates synaptic activity during central nervous system development and demonstrates a role for astrocytes as organizers of active synaptic connections by coordinating both pre and post synaptic neurons. As mutations in glypicans are associated with neurological disorders, such as autism and schizophrenia, this signaling cascade offers new avenues to modulate synaptic function in disease.

Funding information:
  • NINDS NIH HHS - R01 NS089791()
  • Wellcome Trust - P30 NS072031()

Visual system pathology in humans and animal models of blast injury.

  • DeWalt GJ
  • J. Comp. Neurol.
  • 2017 Sep 1

Literature context:


Abstract:

Injury from blast exposure is becoming a more prevalent cause of death and disability worldwide. The devastating neurological impairments that result from blasts are significant and lifelong. Progress in the development of effective therapies to treat injury has been slowed by its heterogeneous pathology and the dearth of information regarding the cellular mechanisms involved. Within the last decade, a number of studies have documented visual dysfunction following injury. This brief review examines damage to the visual system in both humans and animal models of blast injury. The in vivo use of the retina as a surrogate to evaluate brain injury following exposure to blast is also highlighted.

A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions.

  • Leinweber M
  • Neuron
  • 2017 Sep 13

Literature context:


Abstract:

The cortex is organized as a hierarchical processing structure. Feedback from higher levels of the hierarchy, known as top-down signals, have been shown to be involved in attentional and contextual modulation of sensory responses. Here we argue that top-down input to the primary visual cortex (V1) from A24b and the adjacent secondary motor cortex (M2) signals a prediction of visual flow based on motor output. A24b/M2 sends a dense and topographically organized projection to V1 that targets most neurons in layer 2/3. By imaging the activity of A24b/M2 axons in V1 of mice learning to navigate a 2D virtual environment, we found that their activity was strongly correlated with locomotion and resulting visual flow feedback in an experience-dependent manner. When mice were trained to navigate a left-right inverted virtual environment, correlations of neural activity with behavior reversed to match visual flow. These findings are consistent with a predictive coding interpretation of visual processing.

Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters.

  • Haenraets K
  • J. Neurochem.
  • 2017 Sep 12

Literature context:


Abstract:

Recombinant adeno-associated virus (rAAV) vector-mediated gene transfer into genetically defined neuron subtypes has become a powerful tool to study the neuroanatomy of neuronal circuits in the brain and to unravel their functions. More recently, this methodology has also become popular for the analysis of spinal cord circuits. To date, a variety of naturally occurring AAV serotypes and genetically modified capsid variants are available but transduction efficiency in spinal neurons, target selectivity, and the ability for retrograde tracing are only incompletely characterized. Here, we have compared the transduction efficiency of seven commonly used AAV serotypes after intraspinal injection. We specifically analyzed local transduction of different types of dorsal horn neurons, and retrograde transduction of dorsal root ganglia (DRG) neurons and of neurons in the rostral ventromedial medulla (RVM) and the somatosensory cortex (S1). Our results show that most of the tested rAAV vectors have similar transduction efficiency in spinal neurons. All serotypes analyzed were also able to transduce DRG neurons and descending RVM and S1 neurons via their spinal axon terminals. When comparing the commonly used rAAV serotypes to the recently developed serotype 2 capsid variant rAAV2retro, a > 20-fold increase in transduction efficiency of descending supraspinal neurons was observed. Conversely, transgene expression in retrogradely transduced neurons was strongly reduced when the human synapsin 1 (hSyn1) promoter was used instead of the strong ubiquitous hybrid cytomegalovirus enhancer/chicken β-actin promoter (CAG) or cytomegalovirus (CMV) promoter fragments. We conclude that the use of AAV2retro greatly increases transduction of neurons connected to the spinal cord via their axon terminals, while the hSyn1 promoter can be used to minimize transgene expression in retrogradely connected neurons of the DRG or brainstem. Cover Image for this issue: doi. 10.1111/jnc.13813.

Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage.

  • Rossetti T
  • Neuron
  • 2017 Sep 27

Literature context:


Abstract:

The abundant synaptic protein CaMKII is necessary for long-term potentiation (LTP) and memory. However, whether CaMKII is required only during initial processes or whether it also mediates memory storage remains unclear. The most direct test of a storage role is the erasure test. In this test, a putative memory molecule is inhibited after learning. The key prediction is that this should produce persistent memory erasure even after the inhibitory agent is removed. We conducted this test using transient viral (HSV) expression of dominant-negative CaMKII-alpha (K42M) in the hippocampus. This produced persistent erasure of conditioned place avoidance. As an additional test, we found that expression of activated CaMKII (T286D/T305A/T306A) impaired place avoidance, a result not expected if a process other than CaMKII stores memory. Our behavioral results, taken together with prior experiments on LTP, strongly support a critical role of CaMKII in LTP maintenance and memory storage.

Funding information:
  • NIDA NIH HHS - R01 DA043195()
  • NINDS NIH HHS - R01 NS103168()
  • NINDS NIH HHS - R56 NS096710()
  • NINDS NIH HHS - U01 NS090583()

Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons.

  • Chu HY
  • Neuron
  • 2017 Sep 13

Literature context:


Abstract:

The motor symptoms of Parkinson's disease (PD) are linked to abnormally correlated and coherent activity in the cortex and subthalamic nucleus (STN). However, in parkinsonian mice we found that cortico-STN transmission strength had diminished by 50%-75% through loss of axo-dendritic and axo-spinous synapses, was incapable of long-term potentiation, and less effectively patterned STN activity. Optogenetic, chemogenetic, genetic, and pharmacological interrogation suggested that downregulation of cortico-STN transmission in PD mice was triggered by increased striato-pallidal transmission, leading to disinhibition of the STN and increased activation of STN NMDA receptors. Knockdown of STN NMDA receptors, which also suppresses proliferation of GABAergic pallido-STN inputs in PD mice, reduced loss of cortico-STN transmission and patterning and improved motor function. Together, the data suggest that loss of dopamine triggers a maladaptive shift in the balance of synaptic excitation and inhibition in the STN, which contributes to parkinsonian activity and motor dysfunction.

RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2.

  • Zu T
  • Neuron
  • 2017 Sep 13

Literature context:


Abstract:

Several microsatellite-expansion diseases are characterized by the accumulation of RNA foci and RAN proteins, raising the possibility of a mechanistic connection. We explored this question using myotonic dystrophy type 2, a multisystemic disease thought to be primarily caused by RNA gain-of-function effects. We demonstrate that the DM2 CCTG⋅CAGG expansion expresses sense and antisense tetrapeptide poly-(LPAC) and poly-(QAGR) RAN proteins, respectively. In DM2 autopsy brains, LPAC is found in neurons, astrocytes, and glia in gray matter, and antisense QAGR proteins accumulate within white matter. LPAC and QAGR proteins are toxic to cells independent of RNA gain of function. RNA foci and nuclear sequestration of CCUG transcripts by MBNL1 is inversely correlated with LPAC expression. These data suggest a model that involves nuclear retention of expansion RNAs by RNA-binding proteins (RBPs) and an acute phase in which expansion RNAs exceed RBP sequestration capacity, are exported to the cytoplasm, and undergo RAN translation. VIDEO ABSTRACT.

Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

  • Clasadonte J
  • Neuron
  • 2017 Sep 13

Literature context:


Abstract:

Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions.

Cytoarchitecture and neurocytology of rabbit cingulate cortex.

  • Vogt BA
  • Brain Struct Funct
  • 2017 Sep 29

Literature context:


Abstract:

The rabbit cingulate cortex is highly differentiated in contrast to rodents and numerous recent advances suggest the rabbit area map needs revision. Immunohistochemistry was used to assess cytoarchitecture with neuron-specific nuclear binding protein (NeuN) and neurocytology with intermediate neurofilament proteins, parvalbumin and glutamic acid decarboxylase. Key findings include: (1) Anterior cingulate cortex (ACC) area 32 has dorsal and ventral divisions. (2) Area 33 is part of ACC. (3) Midcingulate cortex (MCC) has anterior and posterior divisions and this was verified with extensive quantitative analysis and a horizontal series of sections. (4) NeuN, also known as Fox-3, is not limited to somata and formed nodules, granular clusters and striations in the apical dendrites of pyramidal neurons. (5) Area 30 forms a complex of anterior and posterior parts with further medial and lateral divisions. (6) Area 29b has two divisions and occupies substantially more volume than in rat. (7) Area 29a begins with a subsplenial component and extends relatively further caudal than in rat. As similar areal designations are often used among species, direct comparisons were made of rabbit areas with those in rat and monkey. The dichotomy of MCC is of particular interest to studies of pain as anterior MCC is most frequently activated in human acute pain studies and the rabbit can be used to study this subregion. Finally, the area 30 complex is not primarily dysgranular as in rat and is more differentiated than in any other mammal including human. The large and highly differentiated rabbit cingulate cortex provides a unique model for assessing cingulate cortex, pain processing and RNA splicing functions.

Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula.

  • Hammoum I
  • J. Comp. Neurol.
  • 2017 Sep 1

Literature context:


Abstract:

The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)-developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula-in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M-cone subtype, but-surprisingly-an increase in S-cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin- and calretinin-positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME-like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases.

Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain.

  • Jernberg JN
  • J. Neurochem.
  • 2017 Sep 21

Literature context:


Abstract:

While the brain's high energy demands are largely met by glucose, brain is also equipped with the ability to oxidize fatty acids for energy and metabolism. The brain expresses the carnitine palmitoyltransferases (CPTs) that mediate carnitine-dependent entry of long-chain acyl-CoAs into the mitochondrial matrix for β-oxidation - CPT1a and CPT2 located on the outer and inner mitochondrial membranes, respectively. Their developmental profile, regional distribution and activity as well as cell type expression remain unknown. We determined that brain CPT1a RNA and total protein expression were unchanged throughout post-natal development (PND0, PND7, PND14, PND21 and PND50); however, CPT2 RNA peaked at PND 21 and remained unchanged through PND50 in all regions studied (cortex, hippocampus, midbrain, and cerebellum). Both long-chain acyl CoA dehydrogenase and medium acyl-CoA dehydrogenase showed a similar developmental profile to CPT2. Acylcarnitines, generated as a result of CPT1a activity, significantly increased with age and peaked at PND21 in all brain regions, concurrent with the increased expression of enzymes involved in mitochondrial β-oxidation. The CPT system is highly enriched in vivo in hippocampus and cerebellum, relative to cortex and midbrain, and is exclusively present in astrocytes and neural progenitor cells, while absent in neurons, microglia, and oligodendrocytes. Using radiolabeled oleate, we demonstrate regional differences in brain fatty acid oxidation that may be blocked by the irreversible CPT1a inhibitor etomoxir. This study contributes to the field of knowledge in brain cell-specific metabolic pathways, which are important for understanding normal brain development and aging, as well as pathophysiology of neurological diseases. Read the Editorial Comment for this article on page 347.

Funding information:
  • NINDS NIH HHS - K08 NS069815()

Prosapip1-Dependent Synaptic Adaptations in the Nucleus Accumbens Drive Alcohol Intake, Seeking, and Reward.

  • Laguesse S
  • Neuron
  • 2017 Sep 27

Literature context:


Abstract:

The mammalian target of rapamycin complex 1 (mTORC1), a transducer of local dendritic translation, participates in learning and memory processes as well as in mechanisms underlying alcohol-drinking behaviors. Using an unbiased RNA-seq approach, we identified Prosapip1 as a novel downstream target of mTORC1 whose translation and consequent synaptic protein expression are increased in the nucleus accumbens (NAc) of mice excessively consuming alcohol. We demonstrate that alcohol-dependent increases in Prosapip1 levels promote the formation of actin filaments, leading to changes in dendritic spine morphology of NAc medium spiny neurons (MSNs). We further demonstrate that Prosapip1 is required for alcohol-dependent synaptic localization of GluA2 lacking AMPA receptors in NAc shell MSNs. Finally, we present data implicating Prosapip1 in mechanisms underlying alcohol self-administration and reward. Together, these data suggest that Prosapip1 in the NAc is a molecular transducer of structural and synaptic alterations that drive and/or maintain excessive alcohol use.

Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice.

  • Chen KS
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context:


Abstract:

The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.

Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

  • Li X
  • Cell Stem Cell
  • 2017 Aug 3

Literature context:


Abstract:

Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state.

Autophagy impairment by caspase-1-dependent inflammation mediates memory loss in response to β-Amyloid peptide accumulation.

  • Álvarez-Arellano L
  • J. Neurosci. Res.
  • 2017 Aug 13

Literature context:


Abstract:

β-Amyloid peptide accumulation in the cortex and in the hippocampus results in neurodegeneration and memory loss. Recently, it became evident that the inflammatory response triggered by β-Amyloid peptides promotes neuronal cell death and degeneration. In addition to inflammation, β-Amyloid peptides also induce alterations in neuronal autophagy, eventually leading to neuronal cell death. Thus, here we evaluated whether the inflammatory response induced by the β-Amyloid peptides impairs memory via disrupting the autophagic flux. We show that male mice overexpressing β-Amyloid peptides (5XFAD) but lacking caspase-1, presented reduced β-Amyloid plaques in the cortex and in the hippocampus; restored brain autophagic flux and improved learning and memory capacity. At the molecular level, inhibition of the inflammatory response in the 5XFAD mice restored LC3-II levels and prevented the accumulation of oligomeric p62 and ubiquitylated proteins. Furthermore, caspase-1 deficiency reinstates activation of the AMPK/Raptor pathway while down-regulating AKT/mTOR pathway. Consistent with this, we found an inverse correlation between the increase of autophagolysosomes in the cortex of 5XFAD mice lacking caspase-1 and the presence of mitochondria with altered morphology. Together our results indicate that β-Amyloid peptide-induced caspase-1 activation, disrupts autophagy in the cortex and in the hippocampus resulting in neurodegeneration and memory loss.

Funding information:
  • NCATS NIH HHS - UL1 TR001439(United States)

Decreased Axon Caliber Underlies Loss of Fiber Tract Integrity, Disproportional Reductions in White Matter Volume, and Microcephaly in Angelman Syndrome Model Mice.

  • Judson MC
  • J. Neurosci.
  • 2017 Aug 2

Literature context:


Abstract:

Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder.SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction.

Funding information:
  • NICHD NIH HHS - P30 HD003110()
  • NINDS NIH HHS - F32 NS077686()
  • NINDS NIH HHS - P30 NS045892()
  • NINDS NIH HHS - R01 NS039444()
  • NINDS NIH HHS - R01 NS085093()

ASCL1 Reorganizes Chromatin to Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells.

  • Park NI
  • Cell Stem Cell
  • 2017 Aug 3

Literature context:


Abstract:

Glioblastomas exhibit a hierarchical cellular organization, suggesting that they are driven by neoplastic stem cells that retain partial yet abnormal differentiation potential. Here, we show that a large subset of patient-derived glioblastoma stem cells (GSCs) express high levels of Achaete-scute homolog 1 (ASCL1), a proneural transcription factor involved in normal neurogenesis. ASCL1hi GSCs exhibit a latent capacity for terminal neuronal differentiation in response to inhibition of Notch signaling, whereas ASCL1lo GSCs do not. Increasing ASCL1 levels in ASCL1lo GSCs restores neuronal lineage potential, promotes terminal differentiation, and attenuates tumorigenicity. ASCL1 mediates these effects by functioning as a pioneer factor at closed chromatin, opening new sites to activate a neurogenic gene expression program. Directing GSCs toward terminal differentiation may provide therapeutic applications for a subset of GBM patients and strongly supports efforts to restore differentiation potential in GBM and other cancers.

Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence.

  • Chai H
  • Neuron
  • 2017 Aug 2

Literature context:


Abstract:

Astrocytes are ubiquitous in the brain and are widely held to be largely identical. However, this view has not been fully tested, and the possibility that astrocytes are neural circuit specialized remains largely unexplored. Here, we used multiple integrated approaches, including RNA sequencing (RNA-seq), mass spectrometry, electrophysiology, immunohistochemistry, serial block-face-scanning electron microscopy, morphological reconstructions, pharmacogenetics, and diffusible dye, calcium, and glutamate imaging, to directly compare adult striatal and hippocampal astrocytes under identical conditions. We found significant differences in electrophysiological properties, Ca2+ signaling, morphology, and astrocyte-synapse proximity between striatal and hippocampal astrocytes. Unbiased evaluation of actively translated RNA and proteomic data confirmed significant astrocyte diversity between hippocampal and striatal circuits. We thus report core astrocyte properties, reveal evidence for specialized astrocytes within neural circuits, and provide new, integrated database resources and approaches to explore astrocyte diversity and function throughout the adult brain. VIDEO ABSTRACT.

Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity.

  • Guo J
  • Dev. Cell
  • 2017 Aug 7

Literature context:


Abstract:

Appropriate growth and synaptic integration of GABAergic inhibitory interneurons are essential for functional neural circuits in the brain. Here, we demonstrate that disruption of primary cilia function following the selective loss of ciliary GTPase Arl13b in interneurons impairs interneuronal morphology and synaptic connectivity, leading to altered excitatory/inhibitory activity balance. The altered morphology and connectivity of cilia mutant interneurons and the functional deficits are rescued by either chemogenetic activation of ciliary G-protein-coupled receptor (GPCR) signaling or the selective induction of Sstr3, a ciliary GPCR, in Arl13b-deficient cilia. Our results thus define a specific requirement for primary cilia-mediated GPCR signaling in interneuronal connectivity and inhibitory circuit formation.

Funding information:
  • NIDDK NIH HHS - P30 DK074038()
  • NIMH NIH HHS - R01 MH060929()
  • NINDS NIH HHS - P30 NS045892()
  • NINDS NIH HHS - R01 NS090029()
  • NINDS NIH HHS - R56 NS090029()

Inferior Olivary TMEM16B Mediates Cerebellar Motor Learning.

  • Zhang Y
  • Neuron
  • 2017 Aug 30

Literature context:


Abstract:

Ca2+-activated ion channels shape membrane excitability and Ca2+ dynamics in response to cytoplasmic Ca2+ elevation. Compared to the Ca2+-activated K+ channels, known as BK and SK channels, the physiological importance of Ca2+-activated Cl- channels (CaCCs) in neurons has been largely overlooked. Here we report that CaCCs coexist with BK and SK channels in inferior olivary (IO) neurons that send climbing fibers to innervate cerebellar Purkinje cells for the control of motor learning and timing. Ca2+ influx through the dendritic high-threshold voltage-gated Ca2+ channels activates CaCCs, which contribute to membrane repolarization of IO neurons. Loss of TMEM16B expression resulted in the absence of CaCCs in IO neurons, leading to markedly diminished action potential firing of IO neurons in TMEM16B knockout mice. Moreover, these mutant mice exhibited severe cerebellar motor learning deficits. Our findings thus advance the understanding of the neurophysiology of CaCCs and the ionic basis of IO neuron excitability.

Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories.

  • Roy DS
  • Cell
  • 2017 Aug 24

Literature context:


Abstract:

The formation and retrieval of a memory is thought to be accomplished by activation and reactivation, respectively, of the memory-holding cells (engram cells) by a common set of neural circuits, but this hypothesis has not been established. The medial temporal-lobe system is essential for the formation and retrieval of episodic memory for which individual hippocampal subfields and entorhinal cortex layers contribute by carrying out specific functions. One subfield whose function is poorly known is the subiculum. Here, we show that dorsal subiculum and the circuit, CA1 to dorsal subiculum to medial entorhinal cortex layer 5, play a crucial role selectively in the retrieval of episodic memories. Conversely, the direct CA1 to medial entorhinal cortex layer 5 circuit is essential specifically for memory formation. Our data suggest that the subiculum-containing detour loop is dedicated to meet the requirements associated with recall such as rapid memory updating and retrieval-driven instinctive fear responses.

An efficient and cost-effective method of generating postnatal (P2-5) mouse primary hippocampal neuronal cultures.

  • Kaar A
  • J. Neurosci. Methods
  • 2017 Jul 15

Literature context:


Abstract:

BACKGROUND: Primary culture of postnatal central neurons is a widely used methodology for applications such as the investigation of neuronal development, protein trafficking/distribution and cellular signalling. However, successful production and maintenance of such cultures, particularly from postnatal animals, can be challenging. In attempting to surmount these difficulties, several disparate culturing methodologies have been developed. Such methodologies are centred on the identification and optimisation of critical steps and, as such, the protocols and reagents utilised can differ quite markedly from protocol to protocol, often with the suggestion that the use of a (usually expensive) proprietary reagent(s), lengthy substrate preparation and/or cell isolation techniques is/are necessary for successful culture preparation. NEW METHOD: Herein, we present a simple and inexpensive protocol for the preparation of primary hippocampal neurons from postnatal (2-5 day old) mice, which remain viable for experimental use for over one month. RESULTS: Neurons cultured using this method follow well established developmental norms and display typical responses to standard physiological stimuli such as depolarisation and certain pharmacological agents. COMPARISON WITH EXISTING METHODS/CONCLUSION: By using a novel trituration technique, simplified methodology and non-proprietary reagents, we have developed a reliable protocol that enables the cost effective and efficient production of high quality postnatal mouse hippocampal cultures. This method, if required, can also be utilised to prepare neurons both from other regions of the brain as well as from other species such as rat.

TTC19 Plays a Husbandry Role on UQCRFS1 Turnover in the Biogenesis of Mitochondrial Respiratory Complex III.

  • Bottani E
  • Mol. Cell
  • 2017 Jul 6

Literature context:


Abstract:

Loss-of-function mutations in TTC19 (tetra-tricopeptide repeat domain 19) have been associated with severe neurological phenotypes and mitochondrial respiratory chain complex III deficiency. We previously demonstrated the mitochondrial localization of TTC19 and its link with complex III biogenesis. Here we provide detailed insight into the mechanistic role of TTC19, by investigating a Ttc19?/? mouse model that shows progressive neurological and metabolic decline, decreased complex III activity, and increased production of reactive oxygen species. By using both the Ttc19?/? mouse model and a range of human cell lines, we demonstrate that TTC19 binds to the fully assembled complex III dimer, i.e., after the incorporation of the iron-sulfur Rieske protein (UQCRFS1). The in situ maturation of UQCRFS1 produces N-terminal polypeptides, which remain bound to holocomplex III. We show that, in normal conditions, these UQCRFS1 fragments are rapidly removed, but when TTC19 is absent they accumulate within complex III, causing its structural and functional impairment.

Cell-type specific differences in promoter activity of the ALS-linked C9orf72 mouse ortholog.

  • Langseth AJ
  • Sci Rep
  • 2017 Jul 18

Literature context:


Abstract:

A hexanucleotide repeat expansion in the C9orf72 gene is the most common cause of inherited forms of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Both loss-of-function and gain-of-function mechanisms have been proposed to underlie this disease, but the pathogenic pathways are not fully understood. To better understand the involvement of different cell types in the pathogenesis of ALS, we systematically analyzed the distribution of promoter activity of the mouse ortholog of C9orf72 in the central nervous system. We demonstrate that C9orf72 promoter activity is widespread in both excitatory and inhibitory neurons as well as in oligodendrocytes and oligodendrocyte precursor cells. In contrast, few microglia and astrocytes exhibit detectable C9orf72 promoter activity. Although at a gross level, the distribution of C9orf72 promoter activity largely follows overall cellular density, we found that it is selectively enriched in subsets of neurons and glial cells that degenerate in ALS. Specifically, we show that C9orf72 promoter activity is enriched in corticospinal and spinal motor neurons as well as in oligodendrocytes in brain regions that are affected in ALS. These results suggest that cell autonomous changes in both neurons and glia may contribute to C9orf72-mediated disease, as has been shown for mutations in superoxide dismutase-1 (SOD1).

Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia.

  • De Biase LM
  • Neuron
  • 2017 Jul 19

Literature context:


Abstract:

Microglia play critical roles in tissue homeostasis and can also modulate neuronal function and synaptic connectivity. In contrast to astrocytes and oligodendrocytes, which arise from multiple progenitor pools, microglia arise from yolk sac progenitors and are widely considered to be equivalent throughout the CNS. However, little is known about basic properties of deep brain microglia, such as those within the basal ganglia (BG). Here, we show that microglial anatomical features, lysosome content, membrane properties, and transcriptomes differ significantly across BG nuclei. Region-specific phenotypes of BG microglia emerged during the second postnatal week and were re-established following genetic or pharmacological microglial ablation and repopulation in the adult, indicating that local cues play an ongoing role in shaping microglial diversity. These findings demonstrate that microglia in the healthy brain exhibit a spectrum of distinct functional states and provide a critical foundation for defining microglial contributions to BG circuit function.

Valnoctamide Inhibits Cytomegalovirus Infection in Developing Brain and Attenuates Neurobehavioral Dysfunctions and Brain Abnormalities.

  • Ornaghi S
  • J. Neurosci.
  • 2017 Jul 19

Literature context:


Abstract:

Cytomegalovirus (CMV) is the most common infectious cause of brain defects and neurological dysfunction in developing human babies. Due to the teratogenicity and toxicity of available CMV antiviral agents, treatment options during early development are markedly limited. Valnoctamide (VCD), a neuroactive mood stabilizer with no known teratogenic activity, was recently demonstrated to have anti-CMV potential. However, it is not known whether this can be translated into an efficacious therapeutic effect to improve CMV-induced adverse neurological outcomes. Using multiple models of CMV infection in the developing mouse brain, we show that subcutaneous low-dose VCD suppresses CMV by reducing the level of virus available for entry into the brain and by acting directly within the brain to block virus replication and dispersal. VCD during the first 3 weeks of life restored timely acquisition of neurological milestones in neonatal male and female mice and rescued long-term motor and behavioral outcomes in juvenile male mice. CMV-mediated brain defects, including decreased brain size, cerebellar hypoplasia, and neuronal loss, were substantially attenuated by VCD. No adverse side effects on neurodevelopment of uninfected control mice receiving VCD were detected. Treatment of CMV-infected human fetal astrocytes with VCD reduced both viral infectivity and replication by blocking viral particle attachment to the cell, a mechanism that differs from available anti-CMV drugs. These data suggest that VCD during critical periods of neurodevelopment can effectively suppress CMV replication in the brain and safely improve both immediate and long-term neurological outcomes.SIGNIFICANCE STATEMENT Cytomegalovirus (CMV) can irreversibly damage the developing brain. No anti-CMV drugs are available for use during fetal development, and treatment during the neonatal period has substantial limitations. We studied the anti-CMV actions of valnoctamide (VCD), a psychiatric sedative that appears to lack teratogenicity and toxicity, in the newborn mouse brain, a developmental period that parallels that of an early second-trimester human fetus. In infected mice, subcutaneous VCD reaches the brain and suppresses viral replication within the CNS, rescuing the animals from CMV-induced brain defects and neurological problems. Treatment of uninfected control animals exerts no detectable adverse effects. VCD also blocks CMV replication in human fetal brain cells.

Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

  • Semerci F
  • Elife
  • 2017 Jul 12

Literature context:


Abstract:

Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

Funding information:
  • NCI NIH HHS - P30 CA125123()
  • NCRR NIH HHS - S10 RR024574()
  • NIAID NIH HHS - P30 AI036211()
  • NICHD NIH HHS - U54 HD083092()
  • NIDCD NIH HHS - R01 DC006185()
  • NIDCD NIH HHS - R01 DC014832()
  • NIH HHS - S10 OD016167()

Reduced Slc6a15 in Nucleus Accumbens D2-Neurons Underlies Stress Susceptibility.

  • Chandra R
  • J. Neurosci.
  • 2017 Jul 5

Literature context:


Abstract:

Previous research demonstrates that Slc6a15, a neutral amino acid transporter, is associated with depression susceptibility. However, no study examined Slc6a15 in the ventral striatum [nucleus accumbens (NAc)] in depression. Given our previous characterization of Slc6a15 as a striatal dopamine receptor 2 (D2)-neuron-enriched gene, we examined the role of Slc6a15 in NAc D2-neurons in mediating susceptibility to stress in male mice. First, we showed that Slc6a15 mRNA was reduced in NAc of mice susceptible to chronic social defeat stress (CSDS), a paradigm that produces behavioral and molecular adaptations that resemble clinical depression. Consistent with our preclinical data, we observed Slc6a15 mRNA reduction in NAc of individuals with major depressive disorder (MDD). The Slc6a15 reduction in NAc occurred selectively in D2-neurons. Next, we used Cre-inducible viruses combined with D2-Cre mice to reduce or overexpress Slc6a15 in NAc D2-neurons. Slc6a15 reduction in D2-neurons caused enhanced susceptibility to a subthreshold social defeat stress (SSDS) as observed by reduced social interaction, while a reduction in social interaction following CSDS was not observed when Slc6a15 expression in D2-neurons was restored. Finally, since both D2-medium spiny neurons (MSNs) and D2-expressing choline acetyltransferase (ChAT) interneurons express Slc6a15, we examined Slc6a15 protein in these interneurons after CSDS. Slc6a15 protein was unaltered in ChAT interneurons. Consistent with this, reducing Slc5a15 selectively in NAc D2-MSNs, using A2A-Cre mice that express Cre selectively in D2-MSNs, caused enhanced susceptibility to SSDS. Collectively, our data demonstrate that reduced Slc6a15 in NAc occurs in MDD individuals and that Slc6a15 reduction in NAc D2-neurons underlies stress susceptibility.SIGNIFICANCE STATEMENT Our study demonstrates a role for reduced Slc6a15, a neutral amino acid transporter, in nucleus accumbens (NAc) in depression and stress susceptibility. The reduction of Slc6a15 occurs selectively in the NAc D2-neurons. Genetic reduction of Slc6a15 induces susceptibility to a subthreshold stress, while genetic overexpression in D2-neurons prevents social avoidance after chronic social defeat stress.

Funding information:
  • NIMH NIH HHS - R01 MH106500()

BACE1 Deficiency Causes Abnormal Neuronal Clustering in the Dentate Gyrus.

  • Hou H
  • Stem Cell Reports
  • 2017 Jul 11

Literature context:


Abstract:

BACE1 is validated as Alzheimer's β-secretase and a therapeutic target for Alzheimer's disease. In examining BACE1-null mice, we discovered that BACE1 deficiency develops abnormal clusters of immature neurons, forming doublecortin-positive neuroblasts, in the developing dentate gyrus, mainly in the subpial zone (SPZ). Such clusters were rarely observed in wild-type SPZ and not reported in other mouse models. To understand their origins and fates, we examined how neuroblasts in BACE1-null SPZ mature and migrate during early postnatal development. We show that such neuroblasts are destined to form Prox1-positive granule cells in the dentate granule cell layer, and mainly mature to form excitatory neurons, but not inhibitory neurons. Mechanistically, higher levels of reelin potentially contribute to abnormal neurogenesis and timely migration in BACE1-null SPZ. Altogether, we demonstrate that BACE1 is a critical regulator in forming the dentate granule cell layer through timely maturation and migration of SPZ neuroblasts.

Funding information:
  • NIA NIH HHS - R01 AG046929()
  • NINDS NIH HHS - R01 NS074256()

Barrington's nucleus: Neuroanatomic landscape of the mouse "pontine micturition center".

  • Verstegen AMJ
  • J. Comp. Neurol.
  • 2017 Jul 1

Literature context:


Abstract:

Barrington's nucleus (Bar) is thought to contain neurons that trigger voiding and thereby function as the "pontine micturition center." Lacking detailed information on this region in mice, we examined gene and protein markers to characterize Bar and the neurons surrounding it. Like rats and cats, mice have an ovoid core of medium-sized Bar neurons located medial to the locus coeruleus (LC). Bar neurons express a GFP reporter for Vglut2, develop from a Math1/Atoh1 lineage, and exhibit immunoreactivity for NeuN. Many neurons in and around this core cluster express a reporter for corticotrophin-releasing hormone (BarCRH ). Axons from BarCRH neurons project to the lumbosacral spinal cord and ramify extensively in two regions: the dorsal gray commissural and intermediolateral nuclei. BarCRH neurons have unexpectedly long dendrites, which may receive synaptic input from the cerebral cortex and other brain regions beyond the core afferents identified previously. Finally, at least five populations of neurons surround Bar: rostral-dorsomedial cholinergic neurons in the laterodorsal tegmental nucleus; lateral noradrenergic neurons in the LC; medial GABAergic neurons in the pontine central gray; ventromedial, small GABAergic neurons that express FoxP2; and dorsolateral glutamatergic neurons that express FoxP2 in the pLC and form a wedge dividing Bar from the dorsal LC. We discuss the implications of this new information for interpreting existing data and future experiments targeting BarCRH neurons and their synaptic afferents to study micturition and other pelvic functions.

Funding information:
  • NHLBI NIH HHS - T32 HL007901()
  • NIDDK NIH HHS - P20 DK103086()
  • NIDDK NIH HHS - R01 DK113030()
  • NINDS NIH HHS - R25 NS070682()

Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.

  • Latchoumane CV
  • Neuron
  • 2017 Jul 19

Literature context:


Abstract:

While the interaction of the cardinal rhythms of non-rapid-eye-movement (NREM) sleep-the thalamo-cortical spindles, hippocampal ripples, and the cortical slow oscillations-is thought to be critical for memory consolidation during sleep, the role spindles play in this interaction is elusive. Combining optogenetics with a closed-loop stimulation approach in mice, we show here that only thalamic spindles induced in-phase with cortical slow oscillation up-states, but not out-of-phase-induced spindles, improve consolidation of hippocampus-dependent memory during sleep. Whereas optogenetically stimulated spindles were as efficient as spontaneous spindles in nesting hippocampal ripples within their excitable troughs, stimulation in-phase with the slow oscillation up-state increased spindle co-occurrence and frontal spindle-ripple co-occurrence, eventually resulting in increased triple coupling of slow oscillation-spindle-ripple events. In-phase optogenetic suppression of thalamic spindles impaired hippocampus-dependent memory. Our results suggest a causal role for thalamic sleep spindles in hippocampus-dependent memory consolidation, conveyed through triple coupling of slow oscillations, spindles, and ripples.

Opening a New Time Window for Treatment of Stroke by Targeting HDAC2.

  • Lin YH
  • J. Neurosci.
  • 2017 Jul 12

Literature context:


Abstract:

Narrow therapeutic window limits treatments with thrombolysis and neuroprotection for most stroke patients. Widening therapeutic window remains a critical challenge. Understanding the key mechanisms underlying the pathophysiological events in the peri-infarct area where secondary injury coexists with neuroplasticity over days to weeks may offer an opportunity for expanding the therapeutic window. Here we show that ischemia-induced histone deacetylase 2 (HDAC2) upregulation from 5 to 7 d after stroke plays a crucial role. In this window phase, suppressing HDAC2 in the peri-infarct cortex of rodents by HDAC inhibitors, knockdown or knock-out of Hdac2 promoted recovery of motor function from stroke via epigenetically enhancing cells survival and neuroplasticity of surviving neurons as well as reducing neuroinflammation, whereas overexpressing HDAC2 worsened stroke-induced functional impairment of both WT and Hdac2 conditional knock-out mice. More importantly, inhibiting other isoforms of HDACs had no effect. Thus, the intervention by precisely targeting HDAC2 in this window phase is a novel strategy for the functional recovery of stroke survivors.SIGNIFICANCE STATEMENT Narrow time window phase impedes current therapies for stroke patients. Understanding the key mechanisms underlying secondary injury may open a new window for pharmacological interventions to promote recovery from stroke. Our study indicates that ischemia-induced histone deacetylase 2 upregulation from 5 to 7 d after stroke mediates the secondary functional loss by reducing survival and neuroplasticity of peri-infarct neurons as well as augmenting neuroinflammation. Thus, precisely targeting histone deacetylase 2 in the window phase provides a novel therapeutic strategy for stroke recovery.

A clickable neurosteroid photolabel reveals selective Golgi compartmentalization with preferential impact on proximal inhibition.

  • Jiang X
  • Neuropharmacology
  • 2017 Jul 7

Literature context:


Abstract:

Anesthetic, GABA-active neurosteroids potently augment GABAA receptor function, leading to important behavioral consequences. Neurosteroids and their synthetic analogues are also models for a wide variety of cell-permeant neuroactive compounds. Cell permeation and compartmentalization raise the possibility that these compounds' actions are influenced by their cellular partitioning, but these contributions are not typically considered experimentally or therapeutically. To examine the interplay between cellular accumulation and pharmacodynamics of neurosteroids, we synthesized a novel chemical biology analogue (bio-active, clickable photolabel) of GABA-active neurosteroids. We discovered that the analogue selectively photo-labels neuronal Golgi in rat hippocampal neurons. The active analogue's selective distribution was distinct from endogenous cholesterol and not completely shared by some non-GABA active, neurosteroid-like analogues. On the other hand, the distribution was not enantioselective and did not require energy, in contrast to other recent precedents from the literature. We demonstrate that the soma-selective accumulation can act as a sink or source for steroid actions at plasma-membrane GABA receptors, altering steady-state and time course of effects at somatic GABAA receptors relative to dendritic receptors. Our results suggest a novel mechanism for compartment-selective drug actions at plasma-membrane receptors.

Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons.

  • Welsbie DS
  • Neuron
  • 2017 Jun 21

Literature context:


Abstract:

Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases.

Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats.

  • Nichols NL
  • J. Neurosci.
  • 2017 Jun 14

Literature context:


Abstract:

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A ), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p < 0.001), BDNF and phosphorylated ERK expression were increased in spared phrenic motor neurons (p < 0.05), consistent with increased Q-pathway contributions to pLTF. Our results increase understanding of respiratory plasticity and its potential to preserve/restore breathing capacity in ALS.SIGNIFICANCE STATEMENT Since neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), end life via respiratory failure, the ability to harness respiratory motor plasticity to improve breathing capacity could increase the quality and duration of life. In a rat ALS model (SOD1G93A ) we previously demonstrated that spinal respiratory motor plasticity elicited by acute intermittent hypoxia is enhanced at disease end-stage, suggesting greater potential to preserve/restore breathing capacity. Here we demonstrate that enhanced intermittent hypoxia-induced phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients.

Funding information:
  • NHLBI NIH HHS - K99 HL119606()
  • NHLBI NIH HHS - R00 HL119606()
  • NHLBI NIH HHS - R01 HL069064()
  • NHLBI NIH HHS - R01 HL080209()
  • NHLBI NIH HHS - R37 HL069064()
  • NHLBI NIH HHS - T32 HL007654()
  • NINDS NIH HHS - P01 NS057778()

Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty.

  • Mohr MA
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

The anteroventral periventricular nucleus (AVPV) orchestrates the neuroendocrine-positive feedback response that triggers ovulation in female rodents. The AVPV is larger and more cell-dense in females than in males, and during puberty, only females develop the capacity to show a positive feedback response. We previously reported a potential new mechanism to explain this female-specific gain of function during puberty, namely a female-biased sex difference in the pubertal addition of new cells to the rat AVPV. Here we first asked whether this sex difference is due to greater cell proliferation and/or survival in females. Female and male rats received the cell birthdate marker 5-bromo-2'-deoxyuridine (BrdU; 200 mg/kg, ip) on postnatal day (P) 30; brains were collected at short and long intervals after BrdU administration to assess cell proliferation and survival, respectively. Overall, females had more BrdU-immunoreactive cells in the AVPV than did males, with no sex differences in the rate of cell attrition over time. Thus, the sex difference in pubertal addition of AVPV cells appears to be due to greater cell proliferation in females. Next, to determine the phenotype of pubertally born AVPV cells, daily BrdU injections were given to female rats on P28-56, and tissue was collected on P77 to assess colocalization of BrdU and markers for mature neurons or glia. Of the pubertally born AVPV cells, approximately 15% differentiated into neurons, approximately 19% into astrocytes, and approximately 23% into microglia. Thus, both neuro- and gliogenesis occur in the pubertal female rat AVPV and potentially contribute to maturation of female reproductive function.

Funding information:
  • NIMH NIH HHS - R01 MH059950(United States)

Mechanisms for Selective Single-Cell Reactivation during Offline Sharp-Wave Ripples and Their Distortion by Fast Ripples.

  • Valero M
  • Neuron
  • 2017 Jun 21

Literature context:


Abstract:

Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples.

Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice.

  • Sompol P
  • J. Neurosci.
  • 2017 Jun 21

Literature context:


Abstract:

Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.

Funding information:
  • NIA NIH HHS - R01 AG027297()
  • NIA NIH HHS - R21 AG051945()
  • NIA NIH HHS - T32 AG000242()

Chronic-Stress-Induced Behavioral Changes Associated with Subregion-Selective Serotonin Cell Death in the Dorsal Raphe.

  • Natarajan R
  • J. Neurosci.
  • 2017 Jun 28

Literature context:


Abstract:

The current study examined the neurochemical mechanisms and neuroanatomical changes underlying coexisting behavioral effects associated with chronic-stress-induced alterations in serotonin (5HT) neurons. Chronic unpredictable stress (CUS) to adult male rats produced depression-like changes with cognitive dysfunction and selective cell death in the interfascicular nucleus of the dorsal raphe (DRif), resulting in decreased 5HTergic innervation of medial prefrontal cortex (mPFC). Twenty-one days of CUS decreased basal plasma levels of corticosterone and produced a shorter latency to immobility and longer durations of immobility in the force-swim test that persisted for 1 month after CUS. Deficits in acquisition, recall, perseveration, and reversal learning were evident 1 month after CUS. MK801 treatment during CUS blocked the changes in the forced-swim test and deficits in memory recall. These behavioral changes were associated with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive soma and the eventual loss of 5HT neurons in the DRif and its projections to the mPFC as evidenced by fewer labeled cells in the DRif after retrograde tracer injections into the mPFC of stressed rats. Similar to the effects of MK801 on behavior, MK801 pretreatment during stress blocked the CUS-induced decreases in 5HT soma within the DRif and its projections to the mPFC. Finally, the depression-like behaviors were blocked by acute injection of the 5HT2A/C agonist (-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride into the mPFC before forced-swim testing. These results identify a cause and mechanism of 5HTergic dysfunction of the mPFC and associated mood and cognitive behaviors.SIGNIFICANCE STATEMENT Chronic stress causes persistent mood and cognitive changes typically associated with dysregulated serotonin (5HT) transmission in the medial prefrontal cortex (mPFC), but the cause of this dysregulation is unknown. Prior studies have focused on 5HTergic terminals in this region, but this study shows that chronic stress causes NMDA-receptor-dependent and subregion-specific cell death of 5HT neurons in the dorsal raphe. The consequent decreased 5HT innervation of the mPFC was associated with mood and cognitive changes that persisted long after the termination of stress. These findings identify a mechanism of subregion-selective death of 5HT neurons in the dorsal raphe, a defined neuroanatomical pathway, and a behavioral phenotype that mirror stress-associated diseases such as major depressive disorder.

Funding information:
  • NIDA NIH HHS - R01 DA007606()

Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

  • Jossin Y
  • Dev. Cell
  • 2017 Jun 5

Literature context:


Abstract:

Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1fl/fl), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells.

Funding information:
  • NCI NIH HHS - R01 CA131047()
  • NCI NIH HHS - R01 CA179914()
  • NICHD NIH HHS - T32 HD007183()
  • NINDS NIH HHS - R01 NS080194()

Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity.

  • Denroche HC
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Leptin signaling in the central nervous system, and particularly the arcuate hypothalamic nucleus, is important for regulating energy and glucose homeostasis. However, the roles of extra-arcuate leptin responsive neurons are less defined. In the current study, we generated mice with widespread inactivation of the long leptin receptor isoform in the central nervous system via Synapsin promoter-driven Cre (Lepr(flox/flox) Syn-cre mice). Within the hypothalamus, leptin signaling was disrupted in the lateral hypothalamic area (LHA) and ventral premammillary nucleus (PMV) but remained intact in the arcuate hypothalamic nucleus and ventromedial hypothalamic nucleus, dorsomedial hypothalamic nucleus, and nucleus of the tractus solitarius. To investigate the role of LHA/PMV neuronal leptin signaling, we examined glucose and energy homeostasis in Lepr(flox/flox) Syn-cre mice and Lepr(flox/flox) littermates under basal and diet-induced obese conditions and tested the role of LHA/PMV neurons in leptin-mediated glucose lowering in streptozotocin-induced diabetes. Lepr(flox/flox) Syn-cre mice did not have altered body weight or blood glucose levels but were hyperinsulinemic and had enhanced glucagon secretion in response to experimental hypoglycemia. Surprisingly, when placed on a high-fat diet, Lepr(flox/flox) Syn-cre mice were protected from weight gain, glucose intolerance, and diet-induced hyperinsulinemia. Peripheral leptin administration lowered blood glucose in streptozotocin-induced diabetic Lepr(flox/flox) Syn-cre mice as effectively as in Lepr(flox/flox) littermate controls. Collectively these findings suggest that leptin signaling in LHA/PMV neurons is not critical for regulating glucose levels but has an indispensable role in the regulation of insulin and glucagon levels and, may promote the development of diet-induced hyperinsulinemia and weight gain.

Funding information:
  • NIGMS NIH HHS - R01 GM050291(United States)

Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis.

  • Andreone BJ
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

The blood-brain barrier (BBB) provides a constant homeostatic brain environment that is essential for proper neural function. An unusually low rate of vesicular transport (transcytosis) has been identified as one of the two unique properties of CNS endothelial cells, relative to peripheral endothelial cells, that maintain the restrictive quality of the BBB. However, it is not known how this low rate of transcytosis is achieved. Here we provide a mechanism whereby the regulation of CNS endothelial cell lipid composition specifically inhibits the caveolae-mediated transcytotic route readily used in the periphery. An unbiased lipidomic analysis reveals significant differences in endothelial cell lipid signatures from the CNS and periphery, which underlie a suppression of caveolae vesicle formation and trafficking in brain endothelial cells. Furthermore, lipids transported by Mfsd2a establish a unique lipid environment that inhibits caveolae vesicle formation in CNS endothelial cells to suppress transcytosis and ensure BBB integrity.

Funding information:
  • NINDS NIH HHS - DP1 NS092473()
  • NINDS NIH HHS - F31 NS090669()
  • NINDS NIH HHS - R35 NS097344()

Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Cav1.2 Ca2+ Channels at Excitatory Synapses.

  • Wang S
  • J. Neurosci.
  • 2017 May 3

Literature context:


Abstract:

Voltage-gated Cav1.2 and Cav1.3 (L-type) Ca2+ channels regulate neuronal excitability, synaptic plasticity, and learning and memory. Densin-180 (densin) is an excitatory synaptic protein that promotes Ca2+-dependent facilitation of voltage-gated Cav1.3 Ca2+ channels in transfected cells. Mice lacking densin (densin KO) exhibit defects in synaptic plasticity, spatial memory, and increased anxiety-related behaviors-phenotypes that more closely match those in mice lacking Cav1.2 than Cav1.3. Therefore, we investigated the functional impact of densin on Cav1.2. We report that densin is an essential regulator of Cav1.2 in neurons, but has distinct modulatory effects compared with its regulation of Cav1.3. Densin binds to the N-terminal domain of Cav1.2, but not that of Cav1.3, and increases Cav1.2 currents in transfected cells and in neurons. In transfected cells, densin accelerates the forward trafficking of Cav1.2 channels without affecting their endocytosis. Consistent with a role for densin in increasing the number of postsynaptic Cav1.2 channels, overexpression of densin increases the clustering of Cav1.2 in dendrites of hippocampal neurons in culture. Compared with wild-type mice, the cell surface levels of Cav1.2 in the brain, as well as Cav1.2 current density and signaling to the nucleus, are reduced in neurons from densin KO mice. We conclude that densin is an essential regulator of neuronal Cav1 channels and ensures efficient Cav1.2 Ca2+ signaling at excitatory synapses.SIGNIFICANCE STATEMENT The number and localization of voltage-gated Cav Ca2+ channels are crucial determinants of neuronal excitability and synaptic transmission. We report that the protein densin-180 is highly enriched at excitatory synapses in the brain and enhances the cell surface trafficking and postsynaptic localization of Cav1.2 L-type Ca2+ channels in neurons. This interaction promotes coupling of Cav1.2 channels to activity-dependent gene transcription. Our results reveal a mechanism that may contribute to the roles of Cav1.2 in regulating cognition and mood.

Funding information:
  • NIDCD NIH HHS - R01 DC009433()
  • NIDCD NIH HHS - R55 DC009433()
  • NIMH NIH HHS - R01 MH063232()
  • NINDS NIH HHS - R01 NS017660()
  • NINDS NIH HHS - R01 NS028710()
  • NINDS NIH HHS - R01 NS084190()

Serotonergic Projections Govern Postnatal Neuroblast Migration.

  • García-González D
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

In many vertebrates, postnatally generated neurons often migrate long distances to reach their final destination, where they help shape local circuit activity. Concerted action of extrinsic stimuli is required to regulate long-distance migration. Some migratory principles are evolutionarily conserved, whereas others are species and cell type specific. Here we identified a serotonergic mechanism that governs migration of postnatally generated neurons in the mouse brain. Serotonergic axons originating from the raphe nuclei exhibit a conspicuous alignment with subventricular zone-derived neuroblasts. Optogenetic axonal activation provides functional evidence for serotonergic modulation of neuroblast migration. Furthermore, we show that the underlying mechanism involves serotonin receptor 3A (5HT3A)-mediated calcium influx. Thus, 5HT3A receptor deletion in neuroblasts impaired speed and directionality of migration and abolished calcium spikes. We speculate that serotonergic modulation of postnatally generated neuroblast migration is evolutionarily conserved as indicated by the presence of serotonergic axons in migratory paths in other vertebrates.

Truncated TrkB.T1-Mediated Astrocyte Dysfunction Contributes to Impaired Motor Function and Neuropathic Pain after Spinal Cord Injury.

  • Matyas JJ
  • J. Neurosci.
  • 2017 Apr 5

Literature context:


Abstract:

Following spinal cord injury (SCI), astrocytes demonstrate long-lasting reactive changes, which are associated with the persistence of neuropathic pain and motor dysfunction. We previously demonstrated that upregulation of trkB.T1, a truncated isoform of the brain-derived neurotrophic factor receptor (BDNF), contributes to gliosis after SCI, but little is known about the effects of trkB.T1 on the function of astrocytes. As trkB.T1 is the sole isoform of trkB receptors expressed on astrocytes, we examined the function of trkB.T1-driven astrocytes in vitro and in vivo Immunohistochemistry showed that trkB.T1+ cells were significantly upregulated 7 d after injury, with sustained elevation in white matter through 8 weeks. The latter increase was predominantly found in astrocytes. TrkB.T1 was also highly expressed by neurons and microglia/macrophages at 7 d after injury and declined by 8 weeks. RNA sequencing of cultured astrocytes derived from trkB.T1+/+ (WT) and trkB.T1-/- (KO) mice revealed downregulation of migration and proliferation pathways in KO astrocytes. KO astrocytes also exhibited slower migration/proliferation in vitro in response to FBS or BDNF compared with WT astrocytes. Reduced proliferation of astrocytes was also confirmed after SCI in astrocyte-specific trkB.T1 KO mice; using mechanical allodynia and pain-related measurements on the CatWalk, these animals also showed reduced hyperpathic responses, along with improved motor coordination. Together, our data indicate that trkB.T1 in astrocytes contributes to neuropathic pain and neurological dysfunction following SCI, suggesting that trkB.T1 may provide a novel therapeutic target for SCI.SIGNIFICANCE STATEMENT Neuropathic pain after spinal cord injury (SCI) may in part be caused by upregulation of the brain-derived neurotrophic factor (BDNF) receptor trkB.T1, a truncated isoform of BDNF. TrkB.T1 is the only isoform of tropomyosin-related receptor kinase type B (trkB) receptors expressed on astrocytes. Here, we showed that trkB.T1 is significantly increased in the injured mouse spinal cord, where it is predominantly found in astrocytes. RNA sequencing of cultured astrocytes demonstrated downregulation of migration and proliferation pathways in trkB.T1 KO astrocytes. This was validated in vivo, where deletion of trkB.T1 in astrocytes reduced cell proliferation and migration. After SCI, astrocyte-specific trkB.T1 KO mice showed reduced hyperpathic responses and improved motor coordination. Therefore, the trkB.T1 receptor plays a significant pathophysiological role after SCI, and may provide a novel therapeutic target for SCI.

Funding information:
  • NINDS NIH HHS - R01 NS094527()
  • NINR NIH HHS - R01 NR013601()

Assembly of Excitatory Synapses in the Absence of Glutamatergic Neurotransmission.

  • Sando R
  • Neuron
  • 2017 Apr 19

Literature context:


Abstract:

Synaptic excitation mediates a broad spectrum of structural changes in neural circuits across the brain. Here, we examine the morphologies, wiring, and architectures of single synapses of projection neurons in the murine hippocampus that developed in virtually complete absence of vesicular glutamate release. While these neurons had smaller dendritic trees and/or formed fewer contacts in specific hippocampal subfields, their stereotyped connectivity was largely preserved. Furthermore, loss of release did not disrupt the morphogenesis of presynaptic terminals and dendritic spines, suggesting that glutamatergic neurotransmission is unnecessary for synapse assembly and maintenance. These results underscore the instructive role of intrinsic mechanisms in synapse formation.

Funding information:
  • NIGMS NIH HHS - R01 GM117049()
  • NIMH NIH HHS - R01 MH085776()
  • NINDS NIH HHS - R01 NS087026()

Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis.

  • Dumitru I
  • Neuron
  • 2017 Apr 5

Literature context:


Abstract:

Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.

Deficiency in Neuronal TGF-β Signaling Leads to Nigrostriatal Degeneration and Activation of TGF-β Signaling Protects against MPTP Neurotoxicity in Mice.

  • Tesseur I
  • J. Neurosci.
  • 2017 Apr 26

Literature context:


Abstract:

Transforming growth factor-β (TGF-β) plays an important role in the development and maintenance of embryonic dopaminergic (DA) neurons in the midbrain. To study the function of TGF-β signaling in the adult nigrostriatal system, we generated transgenic mice with reduced TGF-β signaling in mature neurons. These mice display age-related motor deficits and degeneration of the nigrostriatal system. Increasing TGF-β signaling in the substantia nigra through adeno-associated virus expressing a constitutively active type I receptor significantly reduces 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration and motor deficits. These results suggest that TGF-β signaling is critical for adult DA neuron survival and that modulating this signaling pathway has therapeutic potential in Parkinson disease.SIGNIFICANCE STATEMENT We show that reducing Transforming growth factor-β (TGF-β) signaling promotes Parkinson disease-related pathologies and motor deficits, and increasing TGF-β signaling reduces neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a parkinsonism-inducing agent. Our results provide a rationale to pursue a means of increasing TGF-β signaling as a potential therapy for Parkinson's disease.

Funding information:
  • NIA NIH HHS - R01 AG020603()
  • NIA NIH HHS - R21 AG023708()
  • NINDS NIH HHS - R01 NS092868()

The Glycoside Oleandrin Reduces Glioma Growth with Direct and Indirect Effects on Tumor Cells.

  • Garofalo S
  • J. Neurosci.
  • 2017 Apr 5

Literature context:


Abstract:

Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na+/K+-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrin's protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment.SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor.

HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons.

  • Lizen B
  • J. Comp. Neurol.
  • 2017 Apr 1

Literature context:


Abstract:

Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NCRR NIH HHS - 5P20RR018788(United States)

Intrastriatally Infused Exogenous CDNF Is Endocytosed and Retrogradely Transported to Substantia Nigra.

  • Mätlik K
  • eNeuro
  • 2017 Mar 9

Literature context:


Abstract:

Cerebral dopamine neurotrophic factor (CDNF) protects the nigrostriatal dopaminergic (DA) neurons in rodent models of Parkinson's disease and restores DA circuitry when delivered after these neurons have begun to degenerate. These DA neurons have been suggested to transport striatal CDNF retrogradely to the substantia nigra (SN). However, in cultured cells the binding and internalization of extracellular CDNF has not been reported. The first aim of this study was to examine the cellular localization and pharmacokinetic properties of recombinant human CDNF (rhCDNF) protein after its infusion into rat brain parenchyma. Second, we aimed to study whether the transport of rhCDNF from the striatum to the SN results from its retrograde transport via DA neurons or from its anterograde transport via striatal GABAergic projection neurons. We show that after intrastriatal infusion, rhCDNF diffuses rapidly and broadly, and is cleared with a half-life of 5.5 h. Confocal microscopy analysis of brain sections at 2 and 6 h after infusion of rhCDNF revealed its widespread unspecific internalization by cortical and striatal neurons, exhibiting different patterns of subcellular rhCDNF distribution. Electron microscopy analysis showed that rhCDNF is present inside the endosomes and multivesicular bodies. In addition, we present data that after intrastriatal infusion the rhCDNF found in the SN is almost exclusively localized to the DA neurons, thus showing that it is retrogradely transported.

Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.

  • Espuny-Camacho I
  • Neuron
  • 2017 Mar 8

Literature context:


Abstract:

Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.

Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain.

  • Milosevic A
  • J. Comp. Neurol.
  • 2017 Mar 1

Literature context:


Abstract:

P11 (S100a10), a member of the S100 family of proteins, has widespread distribution in the vertebrate body, including in the brain, where it has a key role in membrane trafficking, vesicle secretion, and endocytosis. Recently, our laboratory has shown that a constitutive knockout of p11 (p11-KO) in mice results in a depressive-like phenotype. Furthermore, p11 has been implicated in major depressive disorder (MDD) and in the actions of antidepressants. Since depression affects multiple brain regions, and the role of p11 has only been determined in a few of these areas, a detailed analysis of p11 expression in the brain is warranted. Here we demonstrate that, although widespread in the brain, p11 expression is restricted to distinct regions, and specific neuronal and nonneuronal cell types. Furthermore, we provide comprehensive mapping of p11 expression using in situ hybridization, immunocytochemistry, and whole-tissue volume imaging. Overall, expression spans multiple brain regions, structures, and cell types, suggesting a complex role of p11 in depression. J. Comp. Neurol. 525:955-975, 2017. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NINDS NIH HHS - R01 NS085232(United States)

Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues.

  • Lischinsky JE
  • Elife
  • 2017 Mar 13

Literature context:


Abstract:

The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes.

Funding information:
  • NICHD NIH HHS - P30 HD040677()
  • NIDA NIH HHS - R01 DA020140()
  • NIDCD NIH HHS - R01 DC012050()

Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

  • Bifari F
  • Cell Stem Cell
  • 2017 Mar 2

Literature context:


Abstract:

Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2+ neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex.

Funding information:
  • NINDS NIH HHS - R01 NS036715(United States)

Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis.

  • Pasetto L
  • J. Neurosci.
  • 2017 Feb 8

Literature context:


Abstract:

Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1G93A mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1G93A mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1G93A mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also for sporadic ALS. This approach aims to address the neuroinflammatory reaction that is a major hallmark of ALS. However, given the complexity of the disease, a combination of therapeutic approaches may be necessary.

MiR-124 Promotes Newborn Olfactory Bulb Neuron Dendritic Morphogenesis and Spine Density.

  • Li G
  • J. Mol. Neurosci.
  • 2017 Feb 7

Literature context:


Abstract:

Using microarray analysis, we detected microRNA-124 (miR-124) to be abundantly expressed in the olfactory bulb (OB). miR-124 regulates adult neurogenesis in the subventricular zone (SVZ). However, much less is known about its role in newborn OB neurons. Here, using both gain-of-function and loss-of-function approaches, we demonstrate that brain-specific miR-124 affects dendritic morphogenesis and spine density in newborn OB neurons. Functional Annotation Clustering of miR-124 targets was enriched in "cell morphogenesis involved in neuron differentiation."

Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease.

  • Fu H
  • Neuron
  • 2017 Feb 8

Literature context:


Abstract:

The earliest stages of Alzheimer's disease (AD) are characterized by the formation of mature tangles in the entorhinal cortex and disorientation and confusion when navigating familiar places. The medial entorhinal cortex (MEC) contains specialized neurons called grid cells that form part of the spatial navigation system. Here we show in a transgenic mouse model expressing mutant human tau predominantly in the EC that the formation of mature tangles in old mice was associated with excitatory cell loss and deficits in grid cell function, including destabilized grid fields and reduced firing rates, as well as altered network activity. Overt tau pathology in the aged mice was accompanied by spatial memory deficits. Therefore, tau pathology initiated in the entorhinal cortex could lead to deficits in grid cell firing and underlie the deterioration of spatial cognition seen in human AD.

Funding information:
  • NIA NIH HHS - R01 AG050425()
  • NINDS NIH HHS - R01 NS074593()
  • NINDS NIH HHS - R01 NS074874()
  • NINDS NIH HHS - R01 NS081555()

Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons.

  • Ripamonti S
  • Elife
  • 2017 Feb 23

Literature context:


Abstract:

Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.

A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins.

  • François A
  • Neuron
  • 2017 Feb 22

Literature context:


Abstract:

Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds. VIDEO ABSTRACT.

Soluble cpg15 from Astrocytes Ameliorates Neurite Outgrowth Recovery of Hippocampal Neurons after Mouse Cerebral Ischemia.

  • Zhao JJ
  • J. Neurosci.
  • 2017 Feb 8

Literature context:


Abstract:

The present study focuses on the function of cpg15, a neurotrophic factor, in ischemic neuronal recovery using transient global cerebral ischemic (TGI) mouse model and oxygen-glucose deprivation (OGD)-treated primary cultured cells. The results showed that expression of cpg15 proteins in astrocytes, predominantly the soluble form, was significantly increased in mouse hippocampus after TGI and in the cultured astrocytes after OGD. Addition of the medium from the cpg15-overexpressed astrocytic culture into the OGD-treated hippocampal neuronal cultures reduces the neuronal injury, whereas the recovery of neurite outgrowths of OGD-injured neurons was prevented when cpg15 in the OGD-treated astrocytes was knocked down, or the OGD-treated-astrocytic medium was immunoadsorbed by cpg15 antibody. Furthermore, lentivirus-delivered knockdown of cpg15 expression in mouse hippocampal astrocytes diminishes the dendritic branches and exacerbates injury of neurons in CA1 region after TGI. In addition, treatment with inhibitors of MEK1/2, PI3K, and TrkA decreases, whereas overexpression of p-CREB, but not dp-CREB, increases the expression of cpg15 in U118 or primary cultured astrocytes. Also, it is observed that the Flag-tagged soluble cpg15 from the astrocytes transfected with Flag-tagged cpg15-expressing plasmids adheres to the surface of neuronal bodies and the neurites. In conclusion, our results suggest that the soluble cpg15 from astrocytes induced by ischemia could ameliorate the recovery of the ischemic-injured hippocampal neurons via adhering to the surface of neurons. The upregulated expression of cpg15 in astrocytes may be activated via MAPK and PI3K signal pathways, and regulation of CREB phosphorylation.SIGNIFICANCE STATEMENT Neuronal plasticity plays a crucial role in the amelioration of neurological recovery of ischemic injured brain, which remains a challenge for clinic treatment of cerebral ischemia. cpg15 as a synaptic plasticity-related factor may participate in promoting the recovery process; however, the underlying mechanisms are still largely unknown. The objective of this study is to reveal the function and mechanism of neuronal-specific cpg15 expressed in astrocytes after ischemia induction, in promoting the recovery of injured neurons. Our findings provided new mechanistic insight into the neurological recovery, which might help develop novel therapeutic options for cerebral ischemia via astrocytic-targeting interference of gene expression.

Loss of Plasticity in the D2-Accumbens Pallidal Pathway Promotes Cocaine Seeking.

  • Heinsbroek JA
  • J. Neurosci.
  • 2017 Jan 25

Literature context:


Abstract:

Distinct populations of D1- and D2-dopamine receptor-expressing medium spiny neurons (D1-/D2-MSNs) comprise the nucleus accumbens, and activity in D1-MSNs promotes, whereas activity in D2-MSNs inhibits, motivated behaviors. We used chemogenetics to extend D1-/D2-MSN cell specific regulation to cue-reinstated cocaine seeking in a mouse model of self-administration and relapse, and found that either increasing activity in D1-MSNs or decreasing activity in D2-MSNs augmented cue-induced reinstatement. Both D1- and D2-MSNs provide substantial GABAergic innervation to the ventral pallidum, and chemogenetic inhibition of ventral pallidal neurons blocked the augmented reinstatement elicited by chemogenetic regulation of either D1- or D2-MSNs. Because D1- and D2-MSNs innervate overlapping populations of ventral pallidal neurons, we next used optogenetics to examine whether changes in synaptic plasticity in D1- versus D2-MSN GABAergic synapses in the ventral pallidum could explain the differential regulation of VP activity. In mice trained to self-administer cocaine, GABAergic LTD was abolished in D2-, but not in D1-MSN synapses. A μ opioid receptor antagonist restored GABA currents in D2-, but not D1-MSN synapses of cocaine-trained mice, indicating that increased enkephalin tone on presynaptic μ opioid receptors was responsible for occluding the LTD. These results identify a behavioral function for D1-MSN innervation of the ventral pallidum, and suggest that losing LTDGABA in D2-MSN, but not D1-MSN input to ventral pallidum may promote cue-induced reinstatement of cocaine-seeking. SIGNIFICANCE STATEMENT: More than 90% of ventral striatum is composed of two cell types, those expressing dopamine D1 or D2 receptors, which exert opposing roles on motivated behavior. Both cell types send GABAergic projections to the ventral pallidum and were found to differentially promote cue-induced reinstatement of cocaine seeking via the ventral pallidum. Furthermore, after cocaine self-administration, synaptic plasticity was selectively lost in D2, but not D1 inputs to the ventral pallidum. The selective impairment in D2 afferents may promote the influence of D1 inputs to drive relapse to cocaine seeking.

Funding information:
  • NIDA NIH HHS - P50 DA015369()
  • NIDA NIH HHS - R01 DA003906()
  • NIDA NIH HHS - R37 DA003906()

Role of Dorsomedial Striatum Neuronal Ensembles in Incubation of Methamphetamine Craving after Voluntary Abstinence.

  • Caprioli D
  • J. Neurosci.
  • 2017 Jan 25

Literature context:


Abstract:

We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2 family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation. SIGNIFICANCE STATEMENT: In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving.

Patterns of cell death in the perinatal mouse forebrain.

  • Mosley M
  • J. Comp. Neurol.
  • 2017 Jan 1

Literature context:


Abstract:

The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NICHD NIH HHS - R01 HD082373(United States)

The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn.

  • Abraira VE
  • Cell
  • 2017 Jan 12

Literature context:


Abstract:

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.

Funding information:
  • NCRR NIH HHS - S10 RR028832()
  • NIDA NIH HHS - P30 DA035756()
  • NIDA NIH HHS - R01 DA034022()
  • NIDA NIH HHS - R21 DA023643()
  • NIDCR NIH HHS - R01 DE022750()
  • NINDS NIH HHS - F32 NS077836()
  • NINDS NIH HHS - P01 NS079419()
  • NINDS NIH HHS - P30 NS072030()
  • NINDS NIH HHS - R35 NS097344()
  • NINDS NIH HHS - T32 NS007292()

Organization of the Claustrum-to-Entorhinal Cortical Connection in Mice.

  • Kitanishi T
  • J. Neurosci.
  • 2017 Jan 11

Literature context:


Abstract:

The claustrum, a subcortical structure situated between the insular cortex and striatum, is reciprocally connected with almost all neocortical regions. Based on this connectivity, the claustrum has been postulated to integrate multisensory information and, in turn, coordinate widespread cortical activity. Although studies have identified how sensory information is mapped onto the claustrum, the function of individual topographically arranged claustro-cortical pathways has been little explored. Here, we investigated the organization and function of identified claustro-cortical pathways in mice using multiple anatomical and optogenetic techniques. Retrograde and anterograde tracing demonstrated that the density of anterior claustrum-to-cortical projection differs substantially depending on the target cortical areas. One of the major targets was the medial entorhinal cortex (MEC) and the MEC-projecting claustral neurons were largely segregated from the neurons projecting to primary cortices M1, S1, or V1. Exposure to a novel environment induced c-Fos expression in a substantial number of MEC-projecting claustral neurons and some M1/S1/V1-projecting claustral neurons. Optogenetic silencing of the MEC-projecting claustral neurons during contextual fear conditioning impaired later memory retrieval without affecting basal locomotor activity or anxiety-related behavior. These results suggest that the dense, anterior claustro-MEC pathway that is largely separated from other claustro-cortical pathways is activated by novel context and modulates the MEC function in contextual memory. SIGNIFICANCE STATEMENT: The claustrum is a poorly understood subcortical structure reciprocally connected with widespread neocortical regions. We investigated the organization and function of identified claustro-cortical projections in mice using pathway-specific approaches. Anatomical tracing showed that the density of anterior claustrum-to-cortical projection is dependent on the target cortical areas and that the medial entorhinal cortex (MEC) is one of the major projection targets. Novel context exposure activated multiple claustro-cortical pathways and a large fraction of the activated neurons projected to the MEC. Optogenetic silencing of the claustro-MEC pathway during contextual fear learning suppressed subsequent memory retrieval. These results suggest that the dense claustro-MEC pathway is activated by novel context and modulates MEC function in contextual memory.

Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice.

  • Jiang BC
  • J. Neurosci.
  • 2017 Jan 18

Literature context:


Abstract:

DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under neuropathic pain condition remain largely unknown. Here we investigated how chemokine receptor CXCR3 is regulated by DNA methylation and how it contributes to neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased Cxcr3 mRNA and protein expression in the neurons of the spinal cord. Meanwhile, the CpG (5'-cytosine-phosphate-guanine-3') island in the Cxcr3 gene promoter region was demethylated, and the expression of DNA methyltransferase 3b (DNMT3b) was decreased. SNL also increased the binding of CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer binding protein α (C/EBPα) with Cxcr3 promoter and decreased the binding of DNMT3b with Cxcr3 promoter in the spinal cord. C/EBPα expression was increased in spinal neurons after SNL, and inhibition of C/EBPα by intrathecal small interfering RNA attenuated SNL-induced pain hypersensitivity and reduced Cxcr3 expression. Furthermore, SNL-induced mechanical allodynia and heat hyperalgesia were markedly reduced in Cxcr3-/- mice. Spinal inhibition of Cxcr3 by shRNA or CXCR3 antagonist also attenuated established neuropathic pain. Moreover, CXCL10, the ligand of CXCR3, was increased in spinal neurons and astrocytes after SNL. Superfusing spinal cord slices with CXCL10 enhanced spontaneous EPSCs and potentiated NMDA-induced and AMPA-induced currents of lamina II neurons. Finally, intrathecal injection of CXCL10 induced CXCR3-dependent pain hypersensitivity in naive mice. Collectively, our results demonstrated that CXCR3, increased by DNA demethylation and the enhanced interaction with C/EBPα, can be activated by CXCL10 to facilitate excitatory synaptic transmission and contribute to the maintenance of neuropathic pain. SIGNIFICANCE STATEMENT: Peripheral nerve injury induces changes of gene expression in the spinal cord that may contribute to the pathogenesis of neuropathic pain. CXCR3 is a chemokine receptor. Whether it is involved in neuropathic pain and how it is regulated after nerve injury remain largely unknown. Our study demonstrates that spinal nerve ligation downregulates the expression of DNMT3b, which may cause demethylation of Cxcr3 gene promoter and facilitate the binding of CCAAT/enhancer binding protein α with Cxcr3 promoter and further increase CXCR3 expression in spinal neurons. The upregulated CXCR3 may contribute to neuropathic pain by facilitating central sensitization. Our study reveals an epigenetic mechanism underlying CXCR3 expression and also suggests that targeting the expression or activation of CXCR3 signaling may offer new therapeutics for neuropathic pain.

Suppressing N-Acetyl-l-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy.

  • Sohn J
  • J. Neurosci.
  • 2017 Jan 11

Literature context:


Abstract:

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. SIGNIFICANCE STATEMENT: This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits.

Funding information:
  • NINDS NIH HHS - R01 NS094559()
  • NINDS NIH HHS - R21 NS096004()

Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala.

  • Han W
  • Cell
  • 2017 Jan 12

Literature context:


Abstract:

Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.

Funding information:
  • NCATS NIH HHS - UL1 TR001863()
  • NCI NIH HHS - R01 CA180030()
  • NIDCD NIH HHS - R01 DC014859()
  • NIDDK NIH HHS - R01 DK084052()
  • NIDDK NIH HHS - R01 DK103176()
  • NINDS NIH HHS - R01 NS048476()

Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease.

  • Atherton JF
  • Elife
  • 2016 Dec 20

Literature context:


Abstract:

The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course.

Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins.

  • Tarusawa E
  • BMC Biol.
  • 2016 Dec 2

Literature context:


Abstract:

BACKGROUND: The specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections. RESULTS: We show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity. CONCLUSIONS: Our results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.

Funding information:
  • HHMI - (United States)

Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability.

  • Ruder L
  • Neuron
  • 2016 Dec 7

Literature context:


Abstract:

Locomotion is an essential animal behavior used for translocation. The spinal cord acts as key executing center, but how it coordinates many body parts located across distance remains poorly understood. Here we employed mouse genetic and viral approaches to reveal organizational principles of long-projecting spinal circuits and their role in quadrupedal locomotion. Using neurotransmitter identity, developmental origin, and projection patterns as criteria, we uncover that spinal segments controlling forelimbs and hindlimbs are bidirectionally connected by symmetrically organized direct synaptic pathways that encompass multiple genetically tractable neuronal subpopulations. We demonstrate that selective ablation of descending spinal neurons linking cervical to lumbar segments impairs coherent locomotion, by reducing postural stability and speed during exploratory locomotion, as well as perturbing interlimb coordination during reinforced high-speed stepping. Together, our results implicate a highly organized long-distance projection system of spinal origin in the control of postural body stabilization and reliability during quadrupedal locomotion.

Funding information:
  • NEI NIH HHS - T32 EY007143(United States)

Sudden death due to paralysis and synaptic and behavioral deficits when Hip14/Zdhhc17 is deleted in adult mice.

  • Sanders SS
  • BMC Biol.
  • 2016 Dec 7

Literature context:


Abstract:

BACKGROUND: Palmitoylation, the addition of palmitate to proteins by palmitoyl acyltransferases (PATs), is an important regulator of synaptic protein localization and function. Many palmitoylated proteins and PATs have been implicated in neuropsychiatric diseases, including Huntington disease, schizophrenia, amyotrophic lateral sclerosis, Alzheimer disease, and X-linked intellectual disability. HIP14/DHHC17 is the most conserved PAT that palmitoylates many synaptic proteins. Hip14 hypomorphic mice have behavioral and synaptic deficits. However, the phenotype is developmental; thus, a model of post-developmental loss of Hip14 was generated to examine the role of HIP14 in synaptic function in the adult. RESULTS: Ten weeks after Hip14 deletion (iHip14 Δ/Δ ), mice die suddenly from rapidly progressive paralysis. Prior to death the mice exhibit motor deficits, increased escape response during tests of anxiety, anhedonia, a symptom indicative of depressive-like behavior, and striatal synaptic deficits, including reduced probability of transmitter release and increased amplitude but decreased frequency of spontaneous post-synaptic currents. The mice also have increased brain weight due to microgliosis and astrogliosis in the cortex. CONCLUSIONS: Behavioral changes and electrophysiological measures suggest striatal dysfunction in iHip14 Δ/Δ mice, and increased cortical volume due to astrogliosis and microgliosis suggests a novel role for HIP14 in glia. These data suggest that HIP14 is essential for maintenance of life and neuronal integrity in the adult mouse.

Spatial organization of astrocytes in ferret visual cortex.

  • López-Hidalgo M
  • J. Comp. Neurol.
  • 2016 Dec 1

Literature context:


Abstract:

Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the "tiling" of the brain with non-overlapping territories. There are some documented species and brain region-specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two-photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo-recipient cortical layers ("kissing" astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit-specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561-3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

Transarterial regional hypothermia provides robust neuroprotection in a rat model of permanent middle cerebral artery occlusion with transient collateral hypoperfusion.

  • Kurisu K
  • Brain Res.
  • 2016 Nov 15

Literature context:


Abstract:

The robust neuroprotective effects of transarterial regional hypothermia have been demonstrated in the typical transient middle cerebral artery occlusion (tMCAO) model, but have not yet been tested in other ischemic stroke models, even though clinical ischemic conditions are diverse. In order to clarify these effects in a different ischemic stroke model, we employed a rat model of permanent MCAO (pMCAO) with transient collateral hypoperfusion (tCHP), which was achieved by direct MCA ligation through craniotomy and 1-h bilateral common carotid artery occlusion at the beginning of pMCAO. The infusion of 20ml/kg of 4°C cold saline (CS) or 37°C warm saline (WS) into the ipsilateral internal carotid artery (ICA) was performed for 15min in intra- or post-tCHP. Neurological scores, infarct/edema volumes, and neuronal apoptosis and reactive gliosis were compared between the CS and WS groups and a non-infusion control group after 48h of reperfusion. Although brain temperatures were only reduced by 2-3°C for 15min, the CS group had significantly better neurological scores, smaller infarct/edema volumes, and less penumbral neuronal apoptosis and reactive gliosis than the control and WS groups. The post-tCHP CS group exhibited prominent neuroprotective effects, even though infarct volumes and neuronal apoptosis were reduced less than those in the intra-tCHP CS group. In conclusion, we demonstrated the neuroprotective effects of transarterial regional hypothermia in an ischemic model of pMCAO with tCHP. Even though MCAO is persistent, cold infusion via the ICA is neuroprotective for the penumbra, suggesting the wider therapeutic application of this therapy.

Funding information:
  • NHLBI NIH HHS - U54 HL127365(United States)
  • NIGMS NIH HHS - 8P41GM103540(United States)

Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval.

  • Xu C
  • Cell
  • 2016 Nov 3

Literature context:


Abstract:

Memories about sensory experiences are tightly linked to the context in which they were formed. Memory contextualization is fundamental for the selection of appropriate behavioral reactions needed for survival, yet the underlying neuronal circuits are poorly understood. By combining trans-synaptic viral tracing and optogenetic manipulation, we found that the ventral hippocampus (vHC) and the amygdala, two key brain structures encoding context and emotional experiences, interact via multiple parallel pathways. A projection from the vHC to the basal amygdala mediates fear behavior elicited by a conditioned context, whereas a parallel projection from a distinct subset of vHC neurons onto midbrain-projecting neurons in the central amygdala is necessary for context-dependent retrieval of cued fear memories. Our findings demonstrate that two fundamentally distinct roles of context in fear memory retrieval are processed by distinct vHC output pathways, thereby allowing for the formation of robust contextual fear memories while preserving context-dependent behavioral flexibility.

Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent.

  • Farrell JS
  • Elife
  • 2016 Nov 22

Literature context:


Abstract:

Seizures are often followed by sensory, cognitive or motor impairments during the postictal phase that show striking similarity to transient hypoxic/ischemic attacks. Here we show that seizures result in a severe hypoxic attack confined to the postictal period. We measured brain oxygenation in localized areas from freely-moving rodents and discovered a severe hypoxic event (pO2 < 10 mmHg) after the termination of seizures. This event lasted over an hour, is mediated by hypoperfusion, generalizes to people with epilepsy, and is attenuated by inhibiting cyclooxygenase-2 or L-type calcium channels. Using inhibitors of these targets we separated the seizure from the resulting severe hypoxia and show that structure specific postictal memory and behavioral impairments are the consequence of this severe hypoperfusion/hypoxic event. Thus, epilepsy is much more than a disease hallmarked by seizures, since the occurrence of postictal hypoperfusion/hypoxia results in a separate set of neurological consequences that are currently not being treated and are preventable.

Funding information:
  • NINDS NIH HHS - R01 NS039600(United States)

Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats.

  • Shepherd DJ
  • Front Neurosci
  • 2016 Nov 2

Literature context:


Abstract:

Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis.

Funding information:
  • NINDS NIH HHS - NS072030(United States)

Ablation of Newly Generated Hippocampal Granule Cells Has Disease-Modifying Effects in Epilepsy.

  • Hosford BE
  • J. Neurosci.
  • 2016 Oct 26

Literature context:


Abstract:

Hippocampal granule cells generated in the weeks before and after an epileptogenic brain injury can integrate abnormally into the dentate gyrus, potentially mediating temporal lobe epileptogenesis. Previous studies have demonstrated that inhibiting granule cell production before an epileptogenic brain insult can mitigate epileptogenesis. Here, we extend upon these findings by ablating newly generated cells after the epileptogenic insult using a conditional, inducible diphtheria-toxin receptor expression strategy in mice. Diphtheria-toxin receptor expression was induced among granule cells born up to 5 weeks before pilocarpine-induced status epilepticus and these cells were then eliminated beginning 3 d after the epileptogenic injury. This treatment produced a 50% reduction in seizure frequency, but also a 20% increase in seizure duration, when the animals were examined 2 months later. These findings provide the first proof-of-concept data demonstrating that granule cell ablation therapy applied at a clinically relevant time point after injury can have disease-modifying effects in epilepsy. SIGNIFICANCE STATEMENT: These findings support the long-standing hypothesis that newly generated dentate granule cells are pro-epileptogenic and contribute to the occurrence of seizures. This work also provides the first evidence that ablation of newly generated granule cells can be an effective therapy when begun at a clinically relevant time point after an epileptogenic insult. The present study also demonstrates that granule cell ablation, while reducing seizure frequency, paradoxically increases seizure duration. This paradoxical effect may reflect a disruption of homeostatic mechanisms that normally act to reduce seizure duration, but only when seizures occur frequently.

Warm-Sensitive Neurons that Control Body Temperature.

  • Tan CL
  • Cell
  • 2016 Sep 22

Literature context:


Abstract:

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/I001042/1(United Kingdom)

Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval.

  • Ishikawa R
  • Elife
  • 2016 Sep 26

Literature context:


Abstract:

Forgetting of recent fear memory is promoted by treatment with memantine (MEM), which increases hippocampal neurogenesis. The approaches for treatment of post-traumatic stress disorder (PTSD) using rodent models have focused on the extinction and reconsolidation of recent, but not remote, memories. Here we show that, following prolonged re-exposure to the conditioning context, enhancers of hippocampal neurogenesis, including MEM, promote forgetting of remote contextual fear memory. However, these interventions are ineffective following shorter re-exposures. Importantly, we find that long, but not short re-exposures activate gene expression in the hippocampus and induce hippocampus-dependent reconsolidation of remote contextual fear memory. Furthermore, remote memory retrieval becomes hippocampus-dependent after the long-time recall, suggesting that remote fear memory returns to a hippocampus dependent state after the long-time recall, thereby allowing enhanced forgetting by increased hippocampal neurogenesis. Forgetting of traumatic memory may contribute to the development of PTSD treatment.

Secretagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons.

  • Garas FN
  • Elife
  • 2016 Sep 26

Literature context:


Abstract:

Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called 'direct pathway', whereas PV+/Scgn- interneurons preferentially targeted 'indirect pathway' SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.

Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms.

  • Qu Z
  • Elife
  • 2016 Sep 22

Literature context:


Abstract:

Many animals display morning and evening bimodal activities in the day/night cycle. However, little is known regarding the potential components involved in the regulation of bimodal behavioral rhythms in mammals. Here, we identified that the zinc finger protein gene Zbtb20 plays a crucial role in the regulation of bimodal activities in mice. Depletion of Zbtb20 in nerve system resulted in the loss of early evening activity, but the increase of morning activity. We found that Zbtb20-deficient mice exhibited a pronounced decrease in the expression of Prokr2 and resembled phenotypes of Prok2 and Prokr2-knockout mice. Injection of adeno-associated virus-double-floxed Prokr2 in suprachiasmatic nucleus could partly restore evening activity in Nestin-Cre; Zbtb20fl/fl (NS-ZB20KO) mice. Furthermore, loss of Zbtb20 in Foxg1 loci, but intact in the suprachiasmatic nucleus, was not responsible for the unimodal activity of NS-ZB20KO mice. Our study provides evidence that ZBTB20-mediated PROKR2 signaling is critical for the evening behavioral rhythms.

Funding information:
  • NINDS NIH HHS - R01 NS073875(United States)

Immunocytochemical heterogeneity of somatostatin-expressing GABAergic interneurons in layers II and III of the mouse cingulate cortex: A combined immunofluorescence/design-based stereologic study.

  • Riedemann T
  • J. Comp. Neurol.
  • 2016 Aug 1

Literature context:


Abstract:

Many neurological diseases including major depression and schizophrenia manifest as dysfunction of the GABAergic system within the cingulate cortex. However, relatively little is known about the properties of GABAergic interneurons in the cingulate cortex. Therefore, we investigated the neurochemical properties of GABAergic interneurons in the cingulate cortex of FVB-Tg(GadGFP)45704Swn/J mice expressing green fluorescent protein (GFP) in a subset of GABAergic interneurons (GFP-expressing inhibitory interneurons [GINs]) by means of immunocytochemical and design-based stereologic techniques. We found that GINs represent around 12% of all GABAergic interneurons in the cingulate cortex. In contrast to other neocortical areas, GINs were only found in cortical layers II and III. More than 98% of GINs coexpressed the neuropeptide somatostatin (SOM), but only 50% of all SOM + neurons were GINs. By analyzing the expression of calretinin (CR), calbindin (CB), parvalbumin, and various neuropeptides, we identified several distinct GIN subgroups. In particular, we observed coexpression of SOM with CR and CB. In addition, we found neuropeptide Y expression almost exclusively in those GINs that coexpressed SOM and CR. Thus, with respect to the expression of calcium-binding proteins and neuropeptides, GINs are surprisingly heterogeneous in the mouse cingulate cortex, and the minority of GINs express only one marker protein or peptide. Furthermore, our observation of overlap between the SOM + and CR + interneuron population was in contrast to earlier findings of non-overlapping SOM + and CR + interneuron populations in the human cortex. This might indicate that findings in mouse models of neuropsychiatric diseases may not be directly transferred to human patients. J. Comp. Neurol. 524:2281-2299, 2016. © 2015 Wiley Periodicals, Inc.

Funding information:
  • NEI NIH HHS - EY 15224(United States)

Molecular features distinguish ten neuronal types in the mouse superficial superior colliculus.

  • Byun H
  • J. Comp. Neurol.
  • 2016 Aug 1

Literature context:


Abstract:

The superior colliculus (SC) is a midbrain center involved in controlling head and eye movements in response to inputs from multiple sensory modalities. Visual inputs arise from both the retina and visual cortex and converge onto the superficial layer of the SC (sSC). Neurons in the sSC send information to deeper layers of the SC and to thalamic nuclei that modulate visually guided behaviors. Presently, our understanding of sSC neurons is impeded by a lack of molecular markers that define specific cell types. To better understand the identity and organization of sSC neurons, we took a systematic approach to investigate gene expression within four molecular families: transcription factors, cell adhesion molecules, neuropeptides, and calcium binding proteins. Our analysis revealed 12 molecules with distinct expression patterns in mouse sSC: cadherin 7, contactin 3, netrin G2, cadherin 6, protocadherin 20, retinoid-related orphan receptor β, brain-specific homeobox/POU domain protein 3b, Ets variant gene 1, substance P, somatostatin, vasoactive intestinal polypeptide, and parvalbumin. Double labeling experiments, by either in situ hybridization or immunostaining, demonstrated that the 12 molecular markers collectively define 10 different sSC neuronal types. The characteristic positions of these cell types divide the sSC into four distinct layers. The 12 markers identified here will serve as valuable tools to examine molecular mechanisms that regulate development of sSC neuronal types. These markers could also be used to examine the connections between specific cell types that form retinocollicular, corticocollicular, or colliculothalamic pathways. J. Comp. Neurol. 524:2300-2321, 2016. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NINDS NIH HHS - R01 NS073857(United States)

Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex.

  • Zhang X
  • Cell
  • 2016 Aug 25

Literature context:


Abstract:

Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.

Simultaneous Detection of Both GDNF and GFRα1 Expression Patterns in the Mouse Central Nervous System.

  • Ortega-de San Luis C
  • Front Neuroanat
  • 2016 Jul 22

Literature context:


Abstract:

Glial cell line-derived neurotrophic factor (GDNF) is proposed as a therapeutic tool in Parkinson's disease, addiction-related disorders, and neurodegenerative conditions affecting motor neurons (MNs). Despite the high amount of work about GDNF therapeutic application, the neuronal circuits requiring GDNF trophic support in the brain and spinal cord (SC) are poorly characterized. Here, we defined GDNF and GDNF family receptor-α 1 (GFRα1) expression pattern in the brain and SC of newborn and adult mice. We performed systematic and simultaneous detection of EGFP and LacZ expressing alleles in reporter mice and asked whether modifications of this signaling pathway lead to a significant central nervous system (CNS) alteration. GFRα1 was predominantly expressed by neurons but also by an unexpected population of non-neuronal cells. GFRα1 expression pattern was wider in neonatal than in adult CNS and GDNF expression was restricted in comparison with GFRα1 at both developmental time points. The use of confocal microscopy to imaging X-gal deposits and EGFP allowed us to identify regions containing cells that expressed both proteins and to discriminate between auto and non-autotrophic signaling. We also suggested long-range GDNF-GFRα1 circuits taking advantage of the ability of the EGFP genetically encoded reporter to label long distance projecting axons. The complete elimination of either the ligand or the receptor during development did not produce major abnormalities, suggesting a preponderant role for GDNF signaling during adulthood. In the SC, our results pointed to local modulatory interneurons as the main target of GDNF produced by Clarke's column (CC) cells. Our work increases the understanding on how GDNF signals in the CNS and establish a crucial framework for posterior studies addressing either the biological role of GDNF or the optimization of trophic factor-based therapies.

Funding information:
  • NEI NIH HHS - EY002520(United States)

Rapid Eye Movement Sleep Deprivation Produces Long-Term Detrimental Effects in Spatial Memory and Modifies the Cellular Composition of the Subgranular Zone.

  • Soto-Rodriguez S
  • Front Cell Neurosci
  • 2016 Jun 15

Literature context:


Abstract:

Sleep deprivation (SD) affects spatial memory and proliferation in the dentate gyrus. It is unknown whether these deleterious effects persist in the long run. The aim of this study was to evaluate the proliferation, differentiation and maturation of neural progenitors as well as spatial memory 21 days after suffering SD. Sixty-day old male Balb/C mice were exposed to 72-h REM-SD. Spatial memory, cell fate, apoptosis and expression levels of insulin-like growth factor 1 receptor (IGF-1R) were evaluated in the hippocampus at 0, 14, and 21 days after SD or control conditions. After 21-days recovery period, memory performance was assessed with the Barnes maze, we found a significant memory impairment in SD mice vs. control (94.0 ± 10.2 s vs. 25.2 ± 4.5 s; p < 0.001). The number of BrdU+ cells was significantly decreased in the SD groups at day 14 (controls = 1.6 ± 0.1 vs. SD mice = 1.2 ± 0.1 cells/field; p = 0.001) and at day 21 (controls = 0.2 ± 0.03 vs. SD mice = 0.1 ± 0.02 cells/field; p < 0.001). A statistically significant decrease was observed in neuronal differentiation (1.4 ± 0.1 cells/field vs. 0.9 ± 0.1 cells/field, p = 0.003). Apoptosis was significantly increased at day 14 after SD (0.53 ± 0.06 TUNEL+ cells/field) compared to controls (0.19 ± 0.03 TUNEL+ cells/field p < 0.001) and at 21-days after SD (SD mice 0.53 ± 0.15 TUNEL+ cells/field; p = 0.035). At day 0, IGF-1R expression showed a statistically significant reduction in SD animals (64.6 ± 12.2 units) when compared to the control group (102.0 ± 9.8 units; p = 0.043). However, no statistically significant differences were found at days 14 and 21 after SD. In conclusion, a single exposition to SD for 72-h can induce deleterious effects that persist for at least 3 weeks. These changes are characterized by spatial memory impairment, reduction in the number of hippocampal BrdU+ cells and persistent apoptosis rate. In contrast, changes IGF-1R expression appears to be a transient event. Highlight Sleep deprivation affects spatial memory and proliferation in the dentate gyrus. To date it is unknown whether these deleterious effects are persistent over a long period of time. We analyzed the effects of sleep deprivation in the hippocampus after 21 days of recovery sleep. Our findings indicate that after sleep recovery, the detrimental effects of SD can be observed for at least 2 weeks, as shown by a reduction in memory performance, changes in the hippocampal cellular composition and higher apoptotic rate over a long period of time.

Funding information:
  • NIMH NIH HHS - R01 MH100217(United States)

Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice.

  • Singh VB
  • Sci Rep
  • 2016 May 31

Literature context:


Abstract:

Human Immunodeficiency Virus type-1 (HIV)-associated neurocognitive disorder is characterized by recruitment of activated/infected leukocytes into the CNS via disrupted Blood Brain Barrier (BBB) that contributes to persistent neuro-inflammation. In this report, humanized NOD/scid-IL2Rγc(null) mice were used to establish that impaired Sonic hedgehog (Shh) signaling is associated with loss of BBB function and neurological damage, and that modulating Shh signaling can rescue these detrimental effects. Plasma viral load, p24 levels and CD4(+) T cells were measured as markers of productive HIV infection. These mice also showed impaired exclusion of Evans blue dye from the brain, increased plasma levels of S100B, an astrocytic protein, and down-regulation of tight junction proteins Occludin and Claudin5, collectively indicating BBB dysfunction. Further, brain tissue from HIV(+) mice indicated reduced synaptic density, neuronal atrophy, microglial activation, and astrocytosis. Importantly, reduced expression of Shh and Gli1 was also observed in these mice, demonstrating diminished Shh signaling. Administration of Shh mimetic, smoothened agonist (SAG) restored BBB integrity and also abated the neuropathology in infected mice. Together, our results suggest a neuroprotective role for Shh signaling in the context of HIV infection, underscoring the therapeutic potential of SAG in controlling HAND pathogenesis.

The temporal profile of retinal cell genesis in the marmoset monkey.

  • Hendrickson A
  • J. Comp. Neurol.
  • 2016 Apr 15

Literature context:


Abstract:

The New World marmoset monkey (Callithrix jacchus) has a relatively short gestational period compared with other primates but possesses a retina at a similar stage of maturation by birth. Previous studies have highlighted that the complex fovea of the marmoset undergoes a more rapid postnatal development in comparison with the Macaca monkey, reaching a mature stage earlier than these species. In this current study, we examined the prenatal proliferation profile of cells in the entire retina employing the thymidine analogs and also determined their phenotype by double-label immunocytochemistry using type-specific markers. Akin to other primate species, we demonstrate a centroperipheral gradient in the emergence of both neurons and Müller glia with cones, ganglion cells, and horizontal cells generated first in the fovea at fetal day (Fd)70-74 and with the last generated at the retinal edge at Fd115. Rods, bipolar cells, amacrine cells, displaced amacrine cells, and Müller glia were generated between Fd76 and Fd135 along the same gradient. Similar to foveal development, marmoset neuronal generation was rapid, only taking 51% of gestation whereas in Macaca this takes 81%.

Funding information:
  • NICHD NIH HHS - HD058056(United States)

An optimized dosing regimen of cimaglermin (neuregulin 1β3, glial growth factor 2) enhances molecular markers of neuroplasticity and functional recovery after permanent ischemic stroke in rats.

  • Iaci JF
  • J. Neurosci. Res.
  • 2016 Mar 17

Literature context:


Abstract:

Cimaglermin (neuregulin 1β3, glial growth factor 2) is a neuregulin growth factor family member in clinical development for chronic heart failure. Previously, in a permanent middle cerebral artery occlusion (pMCAO) rat stroke model, systemic cimaglermin treatment initiated up to 7 days after ischemia onset promoted recovery without reduced lesion volume. Presented here to extend the evidence are two studies that use a rat stroke model to evaluate the effects of cimaglermin dose level and dose frequency initiated 24 hr after pMCAO. Forelimb- and hindlimb-placing scores (proprioceptive behavioral tests), body-swing symmetry, and infarct volume were compared between treatment groups (n = 12/group). Possible mechanisms underlying cimaglermin-mediated neurologic recovery were examined through axonal growth and synapse formation histological markers. Cimaglermin was evaluated over a wider dose range (0.02, 0.1, or 1.0 mg/kg) than doses previously shown to be effective but used the same dosing regimen (2 weeks of daily intravenous administration, then 1 week without treatment). The dose-frequency study used the dose-ranging study's most effective dose (1.0 mg/kg) to compare daily, once per week, and twice per week dosing for 3 weeks (then 1 week without treatment). Dose- and frequency-dependent functional improvements were observed with cimaglermin without reduced lesion volume. Cimaglermin treatment significantly increased growth-associated protein 43 expression in both hemispheres (particularly somatosensory and motor cortices) and also increased synaptophysin expression. These data indicate that cimaglermin enhances recovery after stroke. Immunohistochemical changes were consistent with axonal sprouting and synapse formation but not acute neuroprotection. Cimaglermin represents a potential clinical development candidate for ischemic stroke treatment.

Funding information:
  • NCRR NIH HHS - P30 RR031151(United States)

Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex.

  • Naumann RK
  • J. Comp. Neurol.
  • 2016 Mar 1

Literature context:


Abstract:

To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex.

Funding information:
  • NICHD NIH HHS - U54 HD087101(United States)

Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.

  • Herculano-Houzel S
  • J. Comp. Neurol.
  • 2016 Feb 15

Literature context:


Abstract:

Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans.

The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring.

  • Wu WL
  • Brain Behav. Immun.
  • 2016 Feb 4

Literature context:


Abstract:

Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal-placental-fetal axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (Il6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of Il6 in Chrna7 mutant mice. We found that the basal level of Il6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7(+/-) offspring. The Chrna7(+/-) offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA.

The Resource Identification Initiative: A Cultural Shift in Publishing.

  • Bandrowski A
  • J. Comp. Neurol.
  • 2016 Jan 1

Literature context:


Abstract:

A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to identify the exact resources that are reported or to answer basic questions such as "How did other studies use resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the Methods sections of articles and thereby improve identifiability and scientific reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their articles prior to publication for three resource types: antibodies, model organisms, and tools (i.e., software and databases). RRIDs are assigned by an authoritative database, for example, a model organism database for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central Web portal (http://scicrunch.org/resources). RRIDs meet three key criteria: they are machine-readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 articles have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40, with RRIDs appearing in 62 different journals to date. Here we present an overview of the pilot project and its outcomes to date. We show that authors are able to identify resources and are supportive of the goals of the project. Identifiability of the resources post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on identifiability of research resources.

Funding information:
  • HHMI - R35NS097974(United States)

The Resource Identification Initiative: A cultural shift in publishing.

  • Bandrowski A
  • F1000Res
  • 2015 Dec 15

Literature context:


Abstract:

A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to allow humans and algorithms to identify the exact resources that are reported or answer basic questions such as "What other studies used resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the methods sections of papers and thereby improve identifiability and reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their manuscripts prior to publication for three resource types: antibodies, model organisms, and tools (including software and databases). RRIDs represent accession numbers assigned by an authoritative database, e.g., the model organism databases, for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central web portal ( www.scicrunch.org/resources). RRIDs meet three key criteria: they are machine readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 papers have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40. Here, we present an overview of the pilot project and its outcomes to date. We show that authors are generally accurate in performing the task of identifying resources and supportive of the goals of the project. We also show that identifiability of the resources pre- and post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on reproducibility relating to research resources.

Funding information:
  • NIDA NIH HHS - HHSN271200577531C()
  • NIDA NIH HHS - U24 DA039832()
  • NIDDK NIH HHS - U24 DK097771()

Degeneration of proprioceptive sensory nerve endings in mice harboring amyotrophic lateral sclerosis-causing mutations.

  • Vaughan SK
  • J. Comp. Neurol.
  • 2015 Dec 1

Literature context:


Abstract:

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets the motor system. Although much is known about the effects of ALS on motor neurons and glial cells, little is known about its effect on proprioceptive sensory neurons. This study examines proprioceptive sensory neurons in mice harboring mutations associated with ALS, in SOD1(G93A) and TDP43(A315T) transgenic mice. In both transgenic lines, we found fewer proprioceptive sensory neurons containing fluorescently tagged cholera toxin in their soma five days after injecting this retrograde tracer into the tibialis anterior muscle. We asked whether this is due to neuronal loss or selective degeneration of peripheral nerve endings. We found no difference in the total number and size of proprioceptive sensory neuron soma between symptomatic SOD1(G93A) and control mice. However, analysis of proprioceptive nerve endings in muscles revealed early and significant alterations at Ia/II proprioceptive nerve endings in muscle spindles before the symptomatic phase of the disease. Although these changes occur alongside those at α-motor axons in SOD1(G93A) mice, Ia/II sensory nerve endings degenerate in the absence of obvious alterations in α-motor axons in TDP43(A315T) transgenic mice. We next asked whether proprioceptive nerve endings are similarly affected in the spinal cord and found that nerve endings terminating on α-motor neurons are affected during the symptomatic phase and after peripheral nerve endings begin to degenerate. Overall, we show that Ia/II proprioceptive sensory neurons are affected by ALS-causing mutations, with pathological changes starting at their peripheral nerve endings.

Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons.

  • Larabee CM
  • BMC Neurosci
  • 2015 Nov 13

Literature context:


Abstract:

BACKGROUND: UbcM2 is a ubiquitin-conjugating enzyme with roles in the turnover of damaged and misfolded proteins, cell cycle progression, development, and regulation of the antioxidant transcription factor, Nrf2. Recent screens have identified binding partners of the enzyme that are associated with various neurodegenerative diseases, and our previous studies have shown that UbcM2 is enriched in retina and brain. RESULTS: In the current study, we characterized UbcM2 protein expression in various structures and cell types in the murine brain. Immunofluorescence analysis of paraffin-embedded brain sections revealed that UbcM2 is ubiquitously expressed throughout the brain, is enriched in hindbrain and cortex, and is robustly expressed in neurons. In contrast, the enzyme is undetectable in most astrocytes and microglia. As dysfunction of the ubiquitin proteasome system (UPS) has been linked to many age-related neurological diseases, we compared UbcM2 expression levels in young versus aged wild-type mice and found a global decrease in expression in aged brains, with reductions of 10 % or greater in five substructures (cerebellar granule cell layer, primary motor cortex, olfactory nucleus, superior colliculus, and secondary visual cortex). CONCLUSIONS: These studies represent the first protein expression profiling of a ubiquitin-conjugating enzyme in the brain and support the notion that deficits in protein degradation and proteostasis associated with neurodegenerative diseases may be, in part, attributable to age-dependent reductions in the enzymatic machinery of the UPS.

Funding information:
  • NIDCD NIH HHS - R01 DC006640(United States)

Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: A pathway that could contribute to recovery after spinal cord injury.

  • Liao CC
  • J. Comp. Neurol.
  • 2015 Oct 1

Literature context:


Abstract:

Dorsal column lesions at a high cervical level deprive the cuneate nucleus and much of the somatosensory system of its major cutaneous inputs. Over weeks of recovery, much of the hand representations in the contralateral cortex are reactivated. One possibility for such cortical reactivation by hand afferents is that preserved second-order spinal cord neurons reach the cuneate nucleus through pathways that circumvent the dorsal column lesions, contributing to cortical reactivation in an increasingly effective manner over time. To evaluate this possibility, we first injected anatomical tracers into the cuneate nucleus and plotted the distributions of labeled spinal cord neurons and fibers in control monkeys. Large numbers of neurons in the dorsal horn of the cervical spinal cord were labeled, especially ipsilaterally in lamina IV. Labeled fibers were distributed in the cuneate fasciculus and lateral funiculus. In three other squirrel monkeys, unilateral dorsal column lesions were placed at the cervical segment 4 level and tracers were injected into the ipsilateral cuneate nucleus. Two weeks later, a largely unresponsive hand representation in contralateral somatosensory cortex confirmed the effectiveness of the dorsal column lesion. However, tracer injections in the cuneate nucleus labeled only about 5% of the normal number of dorsal horn neurons, mainly in lamina IV, below the level of lesions. Our results revealed a small second-order pathway to the cuneate nucleus that survives high cervical dorsal column lesions by traveling in the lateral funiculus. This could be important for cortical reactivation by hand afferents, and recovery of hand use.

Evaluation of the expression pattern of rAAV2/1, 2/5, 2/7, 2/8, and 2/9 serotypes with different promoters in the mouse visual cortex.

  • Scheyltjens I
  • J. Comp. Neurol.
  • 2015 Oct 1

Literature context:


Abstract:

This study compared the expression pattern, laminar distribution, and cell specificity of several rAAV serotypes (2/1, 2/5, 2/7, 2/8, and 2/9) injected in the primary visual cortex (V1) of adult C57Bl/6J mice. In order to obtain specific expression in certain neuron subtypes, different promoter sequences were evaluated for excitatory cell specificity: a universal cytomegalovirus (CMV) promoter, and two versions of the excitatory neuron-specific Ca(2+) /calmodulin-dependent kinase subunit α (CaMKIIα) promoter, CaMKIIα 0.4 and CaMKIIα 1.3. The spatial distribution as well as the cell type specificity was immunohistochemically verified. Depending on the rAAV serotype used, the transduced volume expressing reporter protein differed substantially (rAAV2/5 ≫ 2/7 ≈ 2/9 ≈ 2/8 ≫ 2/1). Excitatory neuron-specific targeting was promoter-dependent, with a surprising difference between the 1.3 kb and 0.4 kb CaMKIIα promoters. While CaMKIIα 1.3 and CMV carrying vectors were comparable, with 78% of the transduced neurons being excitatory for CMV and 82% for CaMKIIα 1.3, the shorter CaMKIIα 0.4 version resulted in 95% excitatory specificity. This study therefore puts forward the CaMKIIα 0.4 promoter as the best choice to target excitatory neurons with rAAVs. Together, these results can be used as an aid to select the most optimal vector system to deliver transgenes into specific rodent neocortical circuits, allowing further elucidation of their functions.

Funding information:
  • NIA NIH HHS - R21 AG024372(United States)

Convergence of Lemniscal and Local Excitatory Inputs on Large GABAergic Tectothalamic Neurons.

  • Ito T
  • J. Comp. Neurol.
  • 2015 Oct 15

Literature context:


Abstract:

Large GABAergic (LG) neurons form a distinct cell type in the inferior colliculus (IC), identified by the presence of dense VGLUT2-containing axosomatic terminals. Although some of the axosomatic terminals originate from local and commissural IC neurons, it has been unclear whether LG neurons also receive axosomatic inputs from the lower auditory brainstem nuclei, i.e., cochlear nuclei (CN), superior olivary complex (SOC), and nuclei of the lateral lemniscus (NLL). In this study we injected recombinant viral tracers that force infected cells to express GFP in a Golgi-like manner into the lower auditory brainstem nuclei to determine whether these nuclei directly innervate LG cell somata. Labeled axons from CN, SOC, and NLL terminated as excitatory axosomatic endings, identified by colabeling of GFP and VGLUT2, on single LG neurons in the IC. Each excitatory axon made only a few axosomatic contacts on each LG neuron. Inputs to a single LG cell are unlikely to be from a single brainstem nucleus, since lesions of individual nuclei failed to eliminate most VGLUT2-positive terminals on the LG neurons. The estimated number of inputs on a single LG cell body was almost proportional to the surface area of the cell body. Double injections of different viruses into IC and a brainstem nucleus showed that LG neurons received inputs from both. These results demonstrated that both ascending and intrinsic sources converge on the LG somata to control inhibitory tectothalamic projections.

Mice lacking circadian clock components display different mood-related behaviors and do not respond uniformly to chronic lithium treatment.

  • Schnell A
  • Chronobiol. Int.
  • 2015 Oct 15

Literature context:


Abstract:

Genomic studies suggest an association of circadian clock genes with bipolar disorder (BD) and lithium response in humans. Therefore, we tested mice mutant in various clock genes before and after lithium treatment in the forced swim test (FST), a rodent behavioral test used for evaluation of depressive-like states. We find that expression of circadian clock components, including Per2, Cry1 and Rev-erbα, is affected by lithium treatment, and thus, these clock components may contribute to the beneficial effects of lithium therapy. In particular, we observed that Cry1 is important at specific times of the day to transmit lithium-mediated effects. Interestingly, the pathways involving Per2 and Cry1, which regulate the behavior in the FST and the response to lithium, are distinct as evidenced by the phosphorylation of GSK3β after lithium treatment and the modulation of dopamine levels in the striatum. Furthermore, we observed the co-existence of depressive and mania-like symptoms in Cry1 knock-out mice, which resembles the so-called mixed state seen in BD patients. Taken together our results strengthen the concept that a defective circadian timing system may impact directly or indirectly on mood-related behaviors.

Anatomical evidence that the uninjured adjacent L4 nerve plays a significant role in the development of peripheral neuropathic pain after L5 spinal nerve ligation in rats.

  • Shehab S
  • J. Comp. Neurol.
  • 2015 Aug 15

Literature context:


Abstract:

Rats develop hyperalgesia and allodynia in the hind paw after L5 spinal nerve ligation. Phosphorylated extracellular regulated kinase (pERK) was used as a pain marker to investigate the potential role of adjacent uninjured L4 nerve in the development of heat hyperalgesia after L5 nerve injury. Left L5 nerve was ligated and sectioned in rats. Three days later, rats were randomly assigned to five groups; each had both hind paws immersed in water at different temperatures (no heat, 37, 42, 47, and 52 °C) under sevoflurane anesthesia for 2 minutes. Five minutes after stimulation the rats were sacrificed and sections of L3-L6 spinal segments were stained immunocytochemically with pERK antibody. pERK immunoreactivity, which is not detectable in the normal spinal cord, was discernible in neurons (not glia) of the superficial dorsal horn after noxious heat stimuli. pERK-positive neurons clearly overlapped in laminae I-II with normal unmyelinated and thin myelinated afferents labeled with calcitonin gene-related peptide and isolectin B4, and injured unmyelinated afferents labeled with vasoactive intestinal polypeptide. There was a linear increase in pERK immunoreactivity on both sides with an increase in temperature. Importantly, the number of positive pERK neurons was significantly higher in the ipsilateral side of L4 spinal segment, which receives innervation from uninjured L4 nerve, compared with the contralateral control side, which receives both uninjured L4 and L5 spinal nerves. The data demonstrate that the uninjured L4 nerve plays an important role in the development of heat hyperalgesia at the spinal cord level after L5 nerve injury.

Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice.

  • Solomon MB
  • Endocrinology
  • 2015 Aug 18

Literature context:


Abstract:

Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.

Funding information:
  • NIGMS NIH HHS - R01 GM075252(United States)

Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons.

  • Shields LY
  • Cell Death Dis
  • 2015 Apr 16

Literature context:


Abstract:

Disrupting particular mitochondrial fission and fusion proteins leads to the death of specific neuronal populations; however, the normal functions of mitochondrial fission in neurons are poorly understood, especially in vivo, which limits the understanding of mitochondrial changes in disease. Altered activity of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) may contribute to the pathophysiology of several neurologic diseases. To study Drp1 in a neuronal population affected by Alzheimer's disease (AD), stroke, and seizure disorders, we postnatally deleted Drp1 from CA1 and other forebrain neurons in mice (CamKII-Cre, Drp1lox/lox (Drp1cKO)). Although most CA1 neurons survived for more than 1 year, their synaptic transmission was impaired, and Drp1cKO mice had impaired memory. In Drp1cKO cell bodies, we observed marked mitochondrial swelling but no change in the number of mitochondria in individual synaptic terminals. Using ATP FRET sensors, we found that cultured neurons lacking Drp1 (Drp1KO) could not maintain normal levels of mitochondrial-derived ATP when energy consumption was increased by neural activity. These deficits occurred specifically at the nerve terminal, but not the cell body, and were sufficient to impair synaptic vesicle cycling. Although Drp1KO increased the distance between axonal mitochondria, mitochondrial-derived ATP still decreased similarly in Drp1KO boutons with and without mitochondria. This indicates that mitochondrial-derived ATP is rapidly dispersed in Drp1KO axons, and that the deficits in axonal bioenergetics and function are not caused by regional energy gradients. Instead, loss of Drp1 compromises the intrinsic bioenergetic function of axonal mitochondria, thus revealing a mechanism by which disrupting mitochondrial dynamics can cause dysfunction of axons.

α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2.

  • Kett LR
  • J. Neurosci.
  • 2015 Apr 8

Literature context:


Abstract:

Accumulating evidence from genetic and biochemical studies implicates dysfunction of the autophagic-lysosomal pathway as a key feature in the pathogenesis of Parkinson's disease (PD). Most studies have focused on accumulation of neurotoxic α-synuclein secondary to defects in autophagy as the cause of neurodegeneration, but abnormalities of the autophagic-lysosomal system likely mediate toxicity through multiple mechanisms. To further explore how endolysosomal dysfunction causes PD-related neurodegeneration, we generated a murine model of Kufor-Rakeb syndrome (KRS), characterized by early-onset Parkinsonism with additional neurological features. KRS is caused by recessive loss-of-function mutations in the ATP13A2 gene encoding the endolysosomal ATPase ATP13A2. We show that loss of ATP13A2 causes a specific protein trafficking defect, and that Atp13a2 null mice develop age-related motor dysfunction that is preceded by neuropathological changes, including gliosis, accumulation of ubiquitinated protein aggregates, lipofuscinosis, and endolysosomal abnormalities. Contrary to predictions from in vitro data, in vivo mouse genetic studies demonstrate that these phenotypes are α-synuclein independent. Our findings indicate that endolysosomal dysfunction and abnormalities of α-synuclein homeostasis are not synonymous, even in the context of an endolysosomal genetic defect linked to Parkinsonism, and highlight the presence of α-synuclein-independent neurotoxicity consequent to endolysosomal dysfunction.

Funding information:
  • NINDS NIH HHS - R01 NS090390(United States)

Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type.

  • Stanton GB
  • J. Comp. Neurol.
  • 2015 Apr 15

Literature context:


Abstract:

We used confocal microscopy and immunohistochemistry (IHC) to look for new cells in the motor cortex of adult macaque monkeys that might form the cellular bases of improved brain function from exercise. Twenty-four female Macaca fascicularis monkeys divided into groups by age (10-12 years, 15-17 years), postexercise survival periods, and controls, received 10 weekly injections of the thymidine analog, bromodeoxyuridine (BrdU) to mark new cells. Sixteen monkeys survived 15 weeks (5 weeks postexercise) and 8 monkeys survived 27 weeks (12 weeks postexercise) after initial BrdU injections. Additionally, five Macaca mulatta female monkeys (∼5.5-7 years) received single injections of BrdU and survived 2 days, 2 weeks, and 6 weeks after BrdU injections. Neural and glial antibodies were used to identify new cell phenotypes and to look for changes in proportions of these cells with respect to time and experimental conditions. No BrdU(+) /DCx(+) cells were found but about 7.5% of new cells were calretinin-positive (Cr(+) ). BrdU(+) /GABA(+) (gamma-aminobutyric acid) cells were also found but no new Cr(+) or GABA(+) cells colabeled with a mature neuron marker, NeuN or chondroitin sulfate antibody, NG2. The proportion of new cells that were NG2(+) was about 85% for short and long survival monkeys of which two, newly described perivascular phenotypes (Pldv and Elu) and a small percentage of pericytes (2.5%) comprised 44% and 51% of the new NG2(+) cells, respectively. Proportions of NG2(+) phenotypes were affected by post-BrdU survival periods, monkey age, and possibly a postexercise sedentary period but no direct effect of exercise was found.

Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury.

  • Miyake S
  • Cell Death Dis
  • 2015 Feb 12

Literature context:


Abstract:

Prolyl 4-hydroxylases (PHDs; PHD1, PHD2, and PHD3) are a component of cellular oxygen sensors that regulate the adaptive response depending on the oxygen concentration stabilized by hypoxia/stress-regulated genes transcription. In normoxic condition, PHD2 is required to stabilize hypoxia inducible factors. Silencing of PHD2 leads to the activation of intracellular signaling including RhoA and Rho-associated protein kinase (ROCK), which are key regulators of neurite growth. In this study, we determined that genetic or pharmacological inhibition of PHD2 in cultured cortical neurons prevents neurite elongation through a ROCK-dependent mechanism. We then explored the role of PHDs in axonal reorganization following a traumatic brain injury in adult mice. Unilateral destruction of motor cortex resulted in behavioral deficits due to disruption of the corticospinal tract (CST), a part of the descending motor pathway. In the spinal cord, sprouting of fibers from the intact side of the CST into the denervated side is thought to contribute to the recovery process following an injury. Intracortical infusion of PHD inhibitors into the intact side of the motor cortex abrogated spontaneous formation of CST collaterals and functional recovery after damage to the sensorimotor cortex. These findings suggest PHDs have an important role in the formation of compensatory axonal networks following an injury and may represent a new molecular target for the central nervous system disorders.

Enhanced consumption of salient solutions following pedunculopontine tegmental lesions.

  • MacLaren DA
  • Neuroscience
  • 2015 Jan 22

Literature context:


Abstract:

Rats with lesions of the pedunculopontine tegmental nucleus (PPTg) reliably overconsume high concentration sucrose solution. This effect is thought to be indicative of response-perseveration or loss of behavioral control in conditions of high excitement. While these theories have anatomical and behavioral support, they have never been explicitly tested. Here, we used a contact lickometer to examine the microstructure of drinking behavior to gain insight into the behavioral changes during overconsumption. Rats received either excitotoxic (ibotenic acid) damage to all PPTg neuronal subpopulations or selective depletion of the cholinergic neuronal sub-population (diphtheria toxin-urotensin II (Dtx-UII) lesions). We offered rats a variety of pleasant, neutral and aversive tastants to assess the generalizability and specificity of the overconsumption effect. Ibotenic-lesioned rats consumed significantly more 20% sucrose than sham controls, and did so through licking significantly more times. However, the behavioral microstructure during overconsumption was unaffected by the lesion and showed no indications of response-perseveration. Furthermore, the overconsumption effect did not generalize to highly consumed saccharin. In contrast, while only consuming small amounts of quinine solution, ibotenic-lesioned rats had significantly more licks and bursts for this tastant. Selective depletion of cholinergic PPTg neurons had no effect on consumption of any tastant. We then assessed whether it is the salience of the solution which determines overconsumption by ibotenic-lesioned rats. While maintained on free-food, ibotenic-lesioned rats had normal consumption of sucrose and hypertonic saline. After mild food deprivation ibotenic PPTg-lesioned rats overconsumed 20% sucrose. Subsequently, after dietary-induced sodium deficiency, lesioned rats consumed significantly more saline than controls. These results establish that it is the salience of the solution which is the determining factor leading to overconsumption following excitotoxic PPTg lesion. They also find no support for response-perseveration contributing to this effect. Results are discussed in terms of altered dopamine (DA) and salience signaling.

The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.

  • Doria JG
  • Neurobiol. Dis.
  • 2015 Jan 2

Literature context:


Abstract:

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin protein (htt), leading to motor dysfunction, cognitive decline, psychiatric alterations, and death. The metabotropic glutamate receptor 5 (mGluR5) has been implicated in HD and we have recently demonstrated that mGluR5 positive allosteric modulators (PAMs) are neuroprotective in vitro. In the present study we demonstrate that the mGluR5 PAM, CDPPB, is a potent neuroprotective drug, in vitro and in vivo, capable of delaying HD-related symptoms. The HD mouse model, BACHD, exhibits many HD features, including neuronal cell loss, htt aggregates, motor incoordination and memory impairment. However, chronic treatment of BACHD mice with CDPPB 1.5 mg/kg s.c. for 18 weeks increased the activation of cell signaling pathways important for neuronal survival, including increased AKT and ERK1/2 phosphorylation and augmented the BDNF mRNA expression. CDPPB chronic treatment was also able to prevent the neuronal cell loss that takes place in the striatum of BACHD mice and decrease htt aggregate formation. Moreover, CDPPB chronic treatment was efficient to partially ameliorate motor incoordination and to rescue the memory deficit exhibited by BACHD mice. Importantly, no toxic effects or stereotypical behavior were observed upon CDPPB chronic treatment. Thus, CDPPB is a potential drug to treat HD, preventing neuronal cell loss and htt aggregate formation and delaying HD symptoms.

Funding information:
  • NIA NIH HHS - R21 AG050663(United States)

DEP domain-containing mTOR-interacting protein in the rat brain: distribution of expression and potential implication.

  • Caron A
  • J. Comp. Neurol.
  • 2015 Jan 1

Literature context:


Abstract:

DEP domain-containing mTOR-interacting protein (DEPTOR) has been recently discovered as an endogenous regulator of the mechanistic target of rapamycin complex 1 (mTORC1) and mTORC2. mTORC1 is present in the brain, and there is growing evidence that its dysregulation contributes to several brain alterations. This suggests the involvement of mTOR signaling and its modulators in neurobiological controls. Here, we characterized and mapped the expression of DEPTOR in the rat brain. We show that DEPTOR was widely expressed from the forebrain to the hindbrain, including the hippocampus, the mediobasal hypothalamus, and the circumventricular organs (CVOs). In the hippocampus, DEPTOR protein and Deptor mRNA were highly expressed in the dendate gyrus and CA3 field. In the CVOs, DEPTOR was expressed in the subfornical organ, the median eminence, and the area postrema. In the mediobasal hypothalamus, DEPTOR was expressed in neurons of the ventromedial nucleus (VMH) and colocalized with proopiomelanocortin (POMC) in the arcuate nucleus (ARC). The hypothalamic distribution suggested a role for DEPTOR in energy balance. Supporting this possibility, we observed that Deptor hypothalamic expression was modulated by the nutritional status in a context of diet-induced and genetic obesity; food deprivation increased Deptor mRNA in both the ARC and VMH of obese rats. In conclusion, the present results illustrate the presence of DEPTOR in the rat brain and suggest a role for DEPTOR in the hypothalamic regulation of energy balance, which further supports the role of mTOR in energy homeostasis. J. Comp. Neurol. 523:93-107, 2015. © 2014 Wiley Periodicals, Inc.

Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories.

  • Kita T
  • J. Comp. Neurol.
  • 2014 Dec 15

Literature context:


Abstract:

The subthalamic nucleus (STN) and the zona incerta (ZI) are two major structures of the subthalamus. The STN has strong connections between the basal ganglia and related nuclei. The ZI has strong connections between brainstem reticular nuclei, sensory nuclei, and nonspecific thalamic nuclei. Both the STN and ZI receive heavy projections from a subgroup of layer V neurons in the cerebral cortex. The major goal of this study was to investigate the following two questions about the cortico-subthalamic projections using the lentivirus anterograde tracing method in the rat: 1) whether cortical projections to the STN and ZI have independent functional organizations or a global organization encompassing the entire subthalamus as a whole; and 2) how the cortical functional zones are represented in the subthalamus. This study revealed that the subthalamus receives heavy projections from the motor and sensory cortices, that the cortico-subthalamic projections have a large-scale functional organization that encompasses both the STN and two subdivisions of the ZI, and that the group of cortical axons that originate from a particular area of the cortex sequentially innervate and form separate terminal fields in the STN and ZI. The terminal zones formed by different cortical functional areas have highly overlapped and fuzzy borders, as do the somatotopic representations of the sensorimotor cortex in the subthalamus. The present study suggests that the layer V neurons in the wide areas of the sensorimotor cortex simultaneously control STN and ZI neurons. Together with other known afferent and efferent connections, possible new functionality of the STN and ZI is discussed.

Social interaction rescues memory deficit in an animal model of Alzheimer's disease by increasing BDNF-dependent hippocampal neurogenesis.

  • Hsiao YH
  • J. Neurosci.
  • 2014 Dec 3

Literature context:


Abstract:

It has been recognized that the risk of cognitive decline during aging can be reduced if one maintains strong social connections, yet the neural events underlying this beneficial effect have not been rigorously studied. Here, we show that amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice demonstrate improvement in memory after they are cohoused with wild-type mice. The improvement was associated with increased protein and mRNA levels of BDNF in the hippocampus. Concomitantly, the number of BrdU(+)/NeuN(+) cells in the hippocampal dentate gyrus was significantly elevated after cohousing. Methylazoxymethanol acetate, a cell proliferation blocker, markedly reduced BrdU(+) and BrdU/NeuN(+) cells and abolished the effect of social interaction. Selective ablation of mitotic neurons using diphtheria toxin (DT) and a retrovirus vector encoding DT receptor abolished the beneficial effect of cohousing. Knockdown of BDNF by shRNA transfection blocked, whereas overexpression of BDNF mimicked the memory-improving effect. A tropomyosin-related kinase B agonist, 7,8-dihydroxyflavone, occluded the effect of social interaction. These results demonstrate that increased BDNF expression and neurogenesis in the hippocampus after cohousing underlie the reversal of memory deficit in APP/PS1 mice.

Funding information:
  • NEI NIH HHS - R01 EY020578(United States)
  • NIDCR NIH HHS - R01 DE023090(United States)

Assessment of sensorimotor gating following selective lesions of cholinergic pedunculopontine neurons.

  • MacLaren DA
  • Eur. J. Neurosci.
  • 2014 Nov 17

Literature context:


Abstract:

Sensorimotor gating is the state-dependent transfer of sensory information into a motor system. When this occurs at an early stage of the processing stream it enables stimuli to be filtered out or partially ignored, thereby reducing the demands placed on advanced systems. Prepulse inhibition (PPI) of the acoustic startle reflex (ASR) is the standard measure of sensorimotor gating. A brainstem-midbrain circuitry is widely viewed as mediating both PPI and ASR. In this circuitry, the pedunculopontine tegmental nucleus (PPTg) integrates sensory input and cortico-basal ganglia output and, via presumed cholinergic signaling, inhibits ASR-generating neurons within the reticular formation. Non-selective damage to all neuronal types within PPTg reduces PPI. We assessed whether this effect originates in the loss of cholinergic signaling by examining ASR and PPI in rats bearing non-selective (excitotoxic) or selective cholinergic (Dtx-UII) lesions of PPTg. Excitotoxic lesions had no effect on ASR but reduced PPI at all prepulse levels tested. In contrast, selective depletion of cholinergic neurons reduced ASR to the extent that PPI was not measurable with standard (10-20 s) inter-trial intervals. Subsequent testing revealed appreciable ASRs could be generated when the inter-trial interval was increased (180 s). Under these conditions, PPI was assessed and no deficits were found after lesions of cholinergic PPTg neurons. These results show that cholinergic output from PPTg is essential for rapidly regenerating the ASR, but has no influence on PPI. Results are discussed in terms of sensorimotor integration circuitry and psychiatric disorders that feature disrupted ASR and PPI.

Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits.

  • McKinstry SU
  • J. Neurosci.
  • 2014 Jul 9

Literature context:


Abstract:

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.

Funding information:
  • NIGMS NIH HHS - R01 GM072881(United States)

Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a.

  • Kim J
  • J. Neurosci.
  • 2014 Jul 16

Literature context:


Abstract:

Layer 6 corticothalamic neurons are thought to modulate incoming sensory information via their intracortical axons targeting the major thalamorecipient layer of the neocortex, layer 4, and via their long-range feedback projections to primary sensory thalamic nuclei. However, anatomical reconstructions of individual layer 6 corticothalamic (L6 CT) neurons include examples with axonal processes ramifying within layer 5, and the relative input of the overall population of L6 CT neurons to layers 4 and 5 is not well understood. We compared the synaptic impact of L6 CT cells on neurons in layers 4 and 5. We found that the axons of L6 CT neurons densely ramified within layer 5a in both visual and somatosensory cortices of the mouse. Optogenetic activation of corticothalamic neurons generated large EPSPs in pyramidal neurons in layer 5a. In contrast, excitatory neurons in layer 4 exhibited weak excitation or disynaptic inhibition. Fast-spiking parvalbumin-positive cells in both layer 5a and layer 4 were also strongly activated by L6 CT neurons. The overall effect of L6 CT activation was to suppress layer 4 while eliciting action potentials in layer 5a pyramidal neurons. Together, our data indicate that L6 CT neurons strongly activate an output layer of the cortex.

Lgr5 Marks Post-Mitotic, Lineage Restricted Cerebellar Granule Neurons during Postnatal Development.

  • Miller TE
  • PLoS ONE
  • 2014 May 25

Literature context:


Abstract:

Wnt signaling regulates self-renewal and fate commitment of stem and progenitor cells in development and homeostasis. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is a co-receptor for Wnt signaling that marks highly proliferative stem and progenitor cells in many epithelial tissue types. Wnt signaling instructs neural developmental and homeostatic processes; however, Lgr5 expression in the developing and adult brain has not been characterized. Here we report that Lgr5 is expressed in the postnatal cerebellum during the maturation and synaptogenesis of cerebellar granule neurons (CGNs), processes controlled by Wnt signaling. Using a transgenic reporter mouse for in vivo Lgr5 expression analysis and lineage tracing, we reveal that Lgr5 specifically identified CGNs and was restricted temporally to the CGN maturation phase within the internal granule layer, but absent in the adult brain. Cells marked by Lgr5 were lineage restricted, post-mitotic and long-lived. The ligand for Lgr5, R-spondin, was secreted in a paracrine fashion that evolved during the maturation of CGNs, which coincided with the Lgr5 expression pattern. Our findings provide potential new insight into the critical regulation of Wnt signaling in the developing cerebellum and support a novel role for Lgr5 in the regulation of post-mitotic cells.

PTEN knockdown alters dendritic spine/protrusion morphology, not density.

  • Haws ME
  • J. Comp. Neurol.
  • 2014 Apr 1

Literature context:


Abstract:

Mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology by using fluorescent dye confocal imaging. Contrary to previous studies in the dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory postsynaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in the dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors.

Selective androgen receptor modulator RAD140 is neuroprotective in cultured neurons and kainate-lesioned male rats.

  • Jayaraman A
  • Endocrinology
  • 2014 Apr 24

Literature context:


Abstract:

The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed "selective androgen receptor modulators" (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases.

Funding information:
  • NIMH NIH HHS - R15 MH099590(United States)

Migration of bone marrow-derived cells into the central nervous system in models of neurodegeneration.

  • Lampron A
  • J. Comp. Neurol.
  • 2013 Dec 1

Literature context:


Abstract:

Microglia are the brain-resident macrophages tasked with the defense and maintenance of the central nervous system (CNS). The hematopoietic origin of microglia has warranted a therapeutic potential for the hematopoietic system in treating diseases of the CNS. However, migration of bone marrow-derived cells (BMDC) into the CNS is a marginal event under normal, healthy conditions. A busulfan-based chemotherapy regimen was used for bone marrow transplantation in wild-type mice before subjecting them to a hypoxic-ischemic brain injury or in APP/PS1 mice prior to the formation of amyloid plaques. The cells were tracked and analyzed throughout the development of the pathology. The efficacy of a preventive macrophage colony-stimulating factor (M-CSF) treatment was also studied to highlight the effects of circulating monocytes in hypoxic-ischemic brain injury. Such an injury induces a strong migration of BMDC into the CNS, without the need for irradiation. These migrating cells do not replace the entire microglial pool but rather are confined to the sites of injury for several weeks, suggesting that they could perform specific functions. M-CSF showed neuroprotective effects as a preventive treatment. In APP/PS1 mice, the formation of amyloid plaques was sufficient to induce the entry of cells into the parenchyma, though in low numbers. This study confirms that BMDC infiltrate the CNS in animal models for stroke and Alzheimer's disease and that peripheral cells can be targeted to treat affected regions of the CNS.

Funding information:
  • Cancer Research UK - C355/A6253(United Kingdom)

Wild-type neural progenitors divide and differentiate normally in an amyloid-rich environment.

  • Yetman MJ
  • J. Neurosci.
  • 2013 Oct 30

Literature context:


Abstract:

Adult neurogenesis is modulated by a balance of extrinsic signals and intrinsic responses that maintain production of new granule cells in the hippocampus. Disorders that disrupt the proliferative niche can impair this process, and alterations in adult neurogenesis have been described in human autopsy tissue and transgenic mouse models of Alzheimer's disease. Because exogenous application of aggregated Aβ peptide is neurotoxic in vitro and extracellular Aβ deposits are the main pathological feature recapitulated by mouse models, cell-extrinsic effects of Aβ accumulation were thought to underlie the breakdown of hippocampal neurogenesis observed in Alzheimer's models. We tested this hypothesis using a bigenic mouse in which transgenic expression of APP was restricted to mature projection neurons. These mice allowed us to examine how wild-type neural progenitor cells responded to high levels of Aβ released from neighboring granule neurons. We find that the proliferation, determination, and survival of hippocampal adult-born granule neurons are unaffected in the APP bigenic mice, despite abundant amyloid pathology and robust neuroinflammation. Our findings suggest that Aβ accumulation is insufficient to impair adult hippocampal neurogenesis, and that factors other than amyloid pathology may account for the neurogenic deficits observed in transgenic models with more widespread APP expression.

Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats.

  • Hamson DK
  • Endocrinology
  • 2013 Sep 26

Literature context:


Abstract:

Gonadal steroids are potent regulators of adult neurogenesis. We previously reported that androgens, such as testosterone (T) and dihydrotestosterone (DHT), but not estradiol, increased the survival of new neurons in the dentate gyrus of the male rat. These results suggest androgens regulate hippocampal neurogenesis via the androgen receptor (AR). To test this supposition, we examined the role of ARs in hippocampal neurogenesis using 2 different approaches. In experiment 1, we examined neurogenesis in male rats insensitive to androgens due to a naturally occurring mutation in the gene encoding the AR (termed testicular feminization mutation) compared with wild-type males. In experiment 2, we injected the AR antagonist, flutamide, into castrated male rats and compared neurogenesis levels in the dentate gyrus of DHT and oil-treated controls. In experiment 1, chronic T increased hippocampal neurogenesis in wild-type males but not in androgen-insensitive testicular feminization mutation males. In experiment 2, DHT increased hippocampal neurogenesis via cell survival, an effect that was blocked by concurrent treatment with flutamide. DHT, however, did not affect cell proliferation. Interestingly, cells expressing doublecortin, a marker of immature neurons, did not colabel with ARs in the dentate gyrus, but ARs were robustly expressed in other regions of the hippocampus. Together these studies provide complementary evidence that androgens regulate adult neurogenesis in the hippocampus via the AR but at a site other than the dentate gyrus. Understanding where in the brain androgens act to increase the survival of new neurons in the adult brain may have implications for neurodegenerative disorders.

Funding information:
  • NEI NIH HHS - R01 EY020535(United States)

Differential changes in the cellular composition of the developing marsupial brain.

  • Seelke AM
  • J. Comp. Neurol.
  • 2013 Aug 1

Literature context:


Abstract:

Throughout development both the body and the brain change at remarkable rates. Specifically, the number of cells in the brain undergoes dramatic nonlinear changes, first exponentially increasing in cell number and then decreasing in cell number. Different cell types, such as neurons and glia, undergo these changes at different stages of development. The current investigation used the isotropic fractionator method to examine the changes in cellular composition at multiple developmental milestones in the short-tailed opossum, Monodelphis domestica. Here we report several novel findings concerning marsupial brain development and organization. First, during the later stages of neurogenesis (P18), neurons make up most of the cells in the neocortex, although the total number of neurons remains the same throughout the life span. In contrast, in the subcortical regions, the number of neurons decreases dramatically after P18, and a converse relationship is observed for nonneuronal cells. In the cerebellum, the total number of cells gradually increases until P180 and then remains constant, and then the number of neurons is consistent across the developmental ages examined. For the three major structures examined, neuronal density and the percentage of neurons within a structure are highest during neurogenesis and then decrease after this point. Finally, the total number of neurons in the opossum brain is relatively low compared with other small-brained mammals such as mice. The relatively low number of neurons and correspondingly high number of nonneurons suggests that in the marsupial brain nonneurons may play a significant role in signal processing.

Forebrain GABAergic projections to locus coeruleus in mouse.

  • Dimitrov EL
  • J. Comp. Neurol.
  • 2013 Jul 1

Literature context:


Abstract:

The noradrenergic locus coeruleus (LC) regulates arousal, memory, sympathetic nervous system activity, and pain. Forebrain projections to LC have been characterized in rat, cat, and primates, but not systematically in mouse. We surveyed mouse forebrain LC-projecting neurons by examining retrogradely labeled cells following LC iontophoresis of Fluoro-Gold and anterograde LC labeling after forebrain injection of biotinylated dextran amine or viral tracer. Similar to other species, the central amygdalar nucleus (CAmy), anterior hypothalamus, paraventricular nucleus, and posterior lateral hypothalamic area (PLH) provide major LC inputs. By using mice expressing green fluorescent protein in γ-aminobutyric acid (GABA)ergic neurons, we found that more than one-third of LC-projecting CAmy and PLH neurons are GABAergic. LC colocalization of biotinylated dextran amine, following CAmy or PLH injection, with either green fluorescent protein or glutamic acid decarboxylase (GAD)65/67 immunoreactivity confirmed these GABAergic projections. CAmy injection of adeno-associated virus encoding channelrhodopsin-2-Venus showed similar fiber labeling and association with GAD65/67-immunoreactive (ir) and tyrosine hydroxylase (TH)-ir neurons. CAmy and PLH projections were densest in a pericoerulear zone, but many fibers entered the LC proper. Close apposition between CAmy GABAergic projections and TH-ir processes suggests that CAmy GABAergic neurons may directly inhibit noradrenergic principal neurons. Direct LC neuron targeting was confirmed by anterograde transneuronal labeling of LC TH-ir neurons following CAmy or PLH injection of a herpes virus that expresses red fluorescent protein following activation by Cre recombinase in mice that express Cre recombinase in GABAergic neurons. This description of GABAergic projections from the CAmy and PLH to the LC clarifies important forebrain sources of inhibitory control of central nervous system noradrenergic activity.

Funding information:
  • NLM NIH HHS - RL1LM009833(United States)

Laminar and connectional organization of a multisensory cortex.

  • Foxworthy WA
  • J. Comp. Neurol.
  • 2013 Jun 1

Literature context:


Abstract:

The transformation of sensory signals as they pass through cortical circuits has been revealed almost exclusively through studies of the primary sensory cortices, for which principles of laminar organization, local connectivity, and parallel processing have been elucidated. In contrast, almost nothing is known about the circuitry or laminar features of multisensory processing in higher order, multisensory cortex. Therefore, using the ferret higher order multisensory rostral posterior parietal (PPr) cortex, the present investigation employed a combination of multichannel recording and neuroanatomical techniques to elucidate the laminar basis of multisensory cortical processing. The proportion of multisensory neurons, the share of neurons showing multisensory integration, and the magnitude of multisensory integration were all found to differ by layer in a way that matched the functional or connectional characteristics of the PPr. Specifically, the supragranular layers (L2/3) demonstrated among the highest proportions of multisensory neurons and the highest incidence of multisensory response enhancement, while also receiving the highest levels of extrinsic inputs, exhibiting the highest dendritic spine densities, and providing a major source of local connectivity. In contrast, layer 6 showed the highest proportion of unisensory neurons while receiving the fewest external and local projections and exhibiting the lowest dendritic spine densities. Coupled with a lack of input from principal thalamic nuclei and a minimal layer 4, these observations indicate that this higher level multisensory cortex shows functional and organizational modifications from the well-known patterns identified for primary sensory cortical regions.

RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke.

  • Tokami H
  • Brain Res.
  • 2013 Jun 23

Literature context:


Abstract:

Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES) is a well-known pro-inflammatory chemokine and its role in ischemic stroke remains controversial. We examined the significance of RANTES in ischemic stroke and aimed to elucidate the direct effect of RANTES on neurons. Plasma concentrations of major C-C chemokines, including RANTES, and neurotrophic factors were examined in 171 ischemic stroke patients and age- and gender- matched healthy subjects. Plasma concentrations of RANTES at day 0 after onset were significantly elevated in stroke patients, compared with controls, and were highly correlated with those of BDNF, EGF, and VEGF. In a mouse middle cerebral artery occlusion model (MCAO), plasma RANTES was significantly elevated and the expression of RANTES was markedly upregulated in neurons particularly in peri-infarct areas. The expression of CCR3 and CCR5, receptors for RANTES, was also induced in neurons, while another receptor, CCR1, was observed in vascular cells, in peri-infarct areas after MCAO. We examined the effects of RANTES on differentiated PC12 cells, a model of neuronal cells. Treatment with RANTES induced the activation of Akt and Erk1/2, and attenuated the cleavage of caspase-3 in the cells. RANTES increased the expression of BDNF, EGF, and VEGF in the cells. Moreover, RANTES maintained the number of cells under serum free conditions. The RANTES-mediated upregulation of neurotrophic factors and cell survival were significantly attenuated by the inhibition of Akt or Erk1/2. Taken together, RANTES is an interesting chemokine that is produced from neurons after ischemic stroke and has the potential to protect neurons directly or indirectly through the production of neurotrophic factors in peri-infarct areas.

Funding information:
  • NIDDK NIH HHS - 5R01DK069983-02(United States)

Striatal oligodendrogliogenesis and neuroblast recruitment are increased in the R6/2 mouse model of Huntington's disease.

  • McCollum MH
  • Brain Res.
  • 2013 Jun 26

Literature context:


Abstract:

The subventricular zone (SVZ) is one of the two major neurogenic regions in the adult mammalian brain. Its close proximity to the striatum suggests that a cell-based therapeutic strategy for the treatment of Huntington's disease (HD) is possible. To achieve this, it is important to understand how adult cell production, migration and differentiation may be altered in the HD brain. In this study, we quantified the number of adult-born striatal cells and characterized their fate in the R6/2 transgenic mouse model of HD. We found that the number of new striatal cells was approximately two-fold greater in R6/2 vs. wild type mice, while SVZ cell proliferation was not affected. Using cell-type specific markers, we demonstrated that the majority of new striatal cells were mature oligodendrocytes or oligodendroglial precursors that were intrinsic to the striatum. We also detected a significant increase in the number of migrating neuroblasts that appeared to be recruited from the SVZ to the striatum. However, these neuroblasts did not mature into neurons and most were lost between 1 and 2 weeks of cell age. Crossing the R6/2 mice with mice the over-expressing brain-derived neurotrophic factor in the striatum increased the numbers of neuroblasts that survived to 2 weeks, but did not promote their differentiation. Together, our data indicate that the potential treatment of HD based on manipulating endogenous progenitor cells should take into consideration the apparent enhancement in striatal oligodendrogliogenesis and the limited ability of recruited SVZ neuroblasts to survive long-term and differentiate in the diseased striatum.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Alterations in the motor neuron-renshaw cell circuit in the Sod1(G93A) mouse model.

  • Wootz H
  • J. Comp. Neurol.
  • 2013 May 1

Literature context:


Abstract:

Motor neurons become hyperexcitable during progression of amyotrophic lateral sclerosis (ALS). This abnormal firing behavior has been explained by changes in their membrane properties, but more recently it has been suggested that changes in premotor circuits may also contribute to this abnormal activity. The specific circuits that may be altered during development of ALS have not been investigated. Here we examined the Renshaw cell recurrent circuit that exerts inhibitory feedback control on motor neuron firing. Using two markers for Renshaw cells (calbindin and cholinergic nicotinic receptor subunit alpha2 [Chrna2]), two general markers for motor neurons (NeuN and vesicular acethylcholine transporter [VAChT]), and two markers for fast motor neurons (Chondrolectin and calcitonin-related polypeptide alpha [Calca]), we analyzed the survival and connectivity of these cells during disease progression in the Sod1(G93A) mouse model. Most calbindin-immunoreactive (IR) Renshaw cells survive to end stage but downregulate postsynaptic Chrna2 in presymptomatic animals. In motor neurons, some markers are downregulated early (NeuN, VAChT, Chondrolectin) and others at end stage (Calca). Early downregulation of presynaptic VAChT and Chrna2 was correlated with disconnection from Renshaw cells as well as major structural abnormalities of motor axon synapses inside the spinal cord. Renshaw cell synapses on motor neurons underwent more complex changes, including transitional sprouting preferentially over remaining NeuN-IR motor neurons. We conclude that the loss of presynaptic motor axon input on Renshaw cells occurs at early stages of ALS and disconnects the recurrent inhibitory circuit, presumably resulting in diminished control of motor neuron firing.

Funding information:
  • NICHD NIH HHS - R24 HD042828(United States)

Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse.

  • Tsuneoka Y
  • J. Comp. Neurol.
  • 2013 May 1

Literature context:


Abstract:

In rodents, previous findings indicate critical involvement of the medial preoptic area (MPOA) in the neural control of maternal behavior. However, the specification of the particular MPOA subregions involved in maternal behavior and the identification of the neurochemical phenotype(s) of the essential neurons demands additional study. Therefore, we investigated the chemical neuroanatomy of the essential MPOA subregion for maternal behavior in C57BL/6J female mice. Using the oxytocinergic neurons in the dorsal MPOA as a primary regional marker, we first assessed the distribution of c-Fos-expressing neurons in the MPOA during maternal behavior using immunohistochemistry. Results showed that non-oxytocinergic neurons in the dorsal and ventral MPOA prominently expressed c-Fos during maternal behavior. Then using excitotoxic lesion studies, we determined the specific MPOA area that is necessary for maternal behavior. Bilateral lesions of the central MPOA, where c-Fos was expressed only moderately, effectively disrupted maternal behavior, although lesions to the dorsal and ventral MPOA regions were ineffective. These centrally lesioned females were highly infanticidal irrespective of their previous maternal experience. Neurochemical investigations showed that more than 75% of the c-Fos-expressing neurons in central MPOA were GABAergic. Many of them also expressed galanin, neurotensin, and/or tachykinin2 mRNAs. Finally, the central MPOA was populated by numerous glutamatergic neurons, although only a small percentage of these neurons colocalized with c-Fos. To conclude, the central MPOA is the indispensable subregion for mouse maternal behavior, and GABAergic and/or peptidergic neurons in this area were transcriptionally activated during maternal behavior.

Funding information:
  • Intramural NIH HHS - (United States)
  • NEI NIH HHS - R01 EY-02686(United States)

Heterogeneity of intrinsically photosensitive retinal ganglion cells in the mouse revealed by molecular phenotyping.

  • Karnas D
  • J. Comp. Neurol.
  • 2013 Mar 1

Literature context:


Abstract:

Intrinsically photosensitive retinal ganglion cell (ipRGC) types can be distinguished by their dendritic tree stratification and intensity of melanopsin staining. We identified heavily stained melanopsin-positive M1 cells branching in the outermost part of the inner plexiform layer (IPL) and weakly melanopsin-positive M2 cells branching in the innermost layer of the IPL. A third type can be distinguished by the displacement of the soma to the inner nuclear layer and has morphological similarities with either M1 cells or M2 cells, and is termed here displaced or M-d cells. The aim of the present study was to examine the phenotypic traits of ipRGC types. Using whole retinae from adult mice, we performed immunohistochemistry using melanopsin immunostaining and a number of antibodies directed against proteins typically expressed in retinal ganglion cells. The majority of M1 and M2 ipRGCs expressed Isl-1, microtubule associated protein-2 (MAP2), γ-synuclein, and NeuN, whereas Brn3 transcription factor and the different neurofilaments (NF68, NF160, NF200) were able to discriminate between ipRGC subtypes. Brn3 was expressed preferentially in M2 cells and in a small subpopulation of weakly melanopsin-positive M-d cells with similarities to M2 cells. All three neurofilaments were primarily expressed in large M2 cells with similarities to the recently described alpha-like M4 cells, but not in M1 cells. Expression of NF68 and NF160 was also observed in a few large M-d ipRGCs. These findings show that ipRGCs are not a phenotypically homogenous population and that specific neuronal markers (Brn3 and neurofilament) can partly distinguish between different ipRGC subtypes.

Funding information:
  • Canadian Institutes of Health Research - 82762(Canada)
  • NHGRI NIH HHS - 1R21HG006171-01(United States)

Dynamics of olfactory and hippocampal neurogenesis in adult sheep.

  • Brus M
  • J. Comp. Neurol.
  • 2013 Jan 1

Literature context:


Abstract:

Although adult neurogenesis has been conserved in higher vertebrates such as primates and humans, timing of generation, migration, and differentiation of new neurons appears to differ from that in rodents. Sheep could represent an alternative model to studying neurogenesis in primates because they possess a brain as large as a macaque monkey and have a similar life span. By using a marker of cell division, bromodeoxyuridine (BrdU), in combination with several markers, the maturation time of newborn cells in the dentate gyrus (DG) and the main olfactory bulb (MOB) was determined in sheep. In addition, to establish the origin of adult-born neurons in the MOB, an adeno-associated virus that infects neural cells in the ovine brain was injected into the subventricular zone (SVZ). A migratory stream was indicated from the SVZ up to the MOB, consisting of neuroblasts that formed chain-like structures. Results also showed a long neuronal maturation time in both the DG and the MOB, similar to that in primates. The first new neurons were observed at 1 month in the DG and at 3 months in the MOB after BrdU injections. Thus, maturation of adult-born cells in both the DG and the MOB is much longer than that in rodents and resembles that in nonhuman primates. This study points out the importance of studying the features of adult neurogenesis in models other than rodents, especially for translational research for human cellular therapy.

Funding information:
  • NIMH NIH HHS - R21 MH083614(United States)

Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human.

  • Garcia-Marin V
  • J. Comp. Neurol.
  • 2013 Jan 1

Literature context:


Abstract:

The majority of thalamic terminals in V1 arise from lateral geniculate nucleus (LGN) afferents. Thalamic afferent terminals are preferentially labeled by an isoform of the vesicular glutamate transporter, VGluT2. The goal of our study was to determine the distribution of VGluT2-ir puncta in macaque and human visual cortex. First, we investigated the distribution of VGluT2-ir puncta in all layers of macaque monkey primary visual cortex (V1), and found a very close correspondence between the known distribution of LGN afferents from previous studies and the distribution of VGluT2-immunoreactive (-ir) puncta. There was also a close correspondence between cytochrome oxidase density and VGluT2-ir puncta distribution. After validating the correspondence in macaque, we made a comparative study in human V1. In many aspects, the distribution of VGluT2-ir puncta in human was qualitatively similar to that of the macaque: high densities in layer 4C, patches of VGluT2-ir puncta in the supragranular layer (2/3), lower but clear distribution in layers 1 and 6, and very few puncta in layers 5 and 4B. However, there were also important differences between macaques and humans. In layer 4A of human, there was a sparse distribution of VGluT2-ir puncta, whereas in macaque, there was a dense distribution with the characteristic honeycomb organization. The results suggest important changes in the pattern of cortical VGluT2 immunostaining that may be related to evolutionary differences in the cortical organization of LGN afferents between Old World monkeys and humans.

Funding information:
  • NCRR NIH HHS - R24RR023998(United States)

Birth of neural progenitors during the embryonic period of sexual differentiation in the Japanese quail brain.

  • Bardet SM
  • J. Comp. Neurol.
  • 2012 Dec 15

Literature context:


Abstract:

Several brain areas in the diencephalon are involved in the activation and expression of sexual behavior, including in quail the medial preoptic nucleus (POM). However, the ontogeny of these diencephalic brain nuclei has not to this date been examined in detail. We investigated the ontogeny of POM and other steroid-sensitive brain regions by injecting quail eggs with 5-bromo-2-deoxyuridine (BrdU) at various stages between embryonic day (E)3 and E16 and killing animals at postnatal (PN) days 3 or 56. In the POM, large numbers of BrdU-positive cells were observed in subjects injected from E3-E10, the numbers of these cells was intermediate in birds injected on E12, and most cells were postmitotic in both sexes on E14-E16. Injections on E3-E4 labeled large numbers of Hu-positive cells in POM. In contrast, injections performed at a later stage labeled cells that do not express aromatase nor neuronal markers such as Hu or NeuN in the POM and other steroid-sensitive nuclei and thus do not have a neuronal phenotype in these locations, contrary to what is observed in the telencephalon and cerebellum. No evidence could also be collected to demonstrate that these cells have a glial nature. Converging data, including the facts that these cells divide in the brain mantle and express proliferating cell nuclear antigen (PCNA), a cell cycling marker, indicate that cells labeled by BrdU during the second half of embryonic life are slow-cycling progenitors born and residing in the brain mantle. Future research should now identify their functional significance.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Phox2b expression in the taste centers of fish.

  • Coppola E
  • J. Comp. Neurol.
  • 2012 Nov 1

Literature context:


Abstract:

The homeodomain transcription factor Phox2b controls the formation of the sensory-motor reflex circuits of the viscera in vertebrates. Among Phox2b-dependent structures characterized in rodents is the nucleus of the solitary tract, the first relay for visceral sensory input, including taste. Here we show that Phox2b is expressed throughout the primary taste centers of two cyprinid fish, Danio rerio and Carassius auratus, i.e., in their vagal, glossopharyngeal, and facial lobes, providing the first molecular evidence for their homology with the nucleus of the solitary tract of mammals and suggesting that a single ancestral Phox2b-positive neuronal type evolved to give rise to both fish and mammalian structures. In zebrafish larvae, the distribution of Phox2b²⁺ neurons, combined with the expression pattern of Olig4 (a homologue of Olig3, determinant of the nucleus of the solitary tract in mice), reveals that the superficial position and sheet-like architecture of the viscerosensory column in cyprinid fish, ideally suited for the somatotopic representation of oropharyngeal and bodily surfaces, arise by radial migration from a dorsal progenitor domain, in contrast to the tangential migration observed in amniotes.

Funding information:
  • NIH HHS - U42 OD010924(United States)

Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice.

  • Yi JH
  • J. Comp. Neurol.
  • 2012 Oct 15

Literature context:


Abstract:

Chondroitin sulfate proteoglycans (CSPGs) play a pivotal role in many neuronal growth mechanisms including axon guidance and the modulation of repair processes following injury to the spinal cord or brain. Many actions of CSPGs in the central nervous system (CNS) are governed by the specific sulfation pattern on the glycosaminoglycan (GAG) chains attached to CSPG core proteins. To elucidate the role of CSPGs and sulfated GAG chains following traumatic brain injury (TBI), controlled cortical impact injury of mild to moderate severity was performed over the left sensory motor cortex in mice. Using immunoblotting and immunostaining, we found that TBI resulted in an increase in the CSPGs neurocan and NG2 expression in a tight band surrounding the injury core, which overlapped with the presence of 4-sulfated CS GAGs but not with 6-sulfated GAGs. This increase was observed as early as 7 days post injury (dpi), and persisted for up to 28 dpi. Labeling with markers against microglia/macrophages, NG2+ cells, fibroblasts, and astrocytes showed that these cells were all localized in the area, suggesting multiple origins of chondroitin-4-sulfate increase. TBI also caused a decrease in the expression of aggrecan and phosphacan in the pericontusional cortex with a concomitant reduction in the number of perineuronal nets. In summary, we describe a dual response in CSPGs whereby they may be actively involved in complex repair processes following TBI.

Funding information:
  • NIH HHS - R24 OD010435(United States)

A stereological study of the numbers of neurons and glia in the primary visual cortex across the lifespan of male and female rhesus monkeys.

  • Giannaris EL
  • J. Comp. Neurol.
  • 2012 Oct 15

Literature context:


Abstract:

Mild age-related declines in visual function occur in humans and monkeys, independent of ocular pathology, suggesting involvement of central visual pathways (Spear [1993] Vision Res 33:2589-2609). Although many factors might account for this decline, a loss of neurons in primary visual cortex (V1) could be a contributing factor. Previous studies of neuron numbers in V1 reported stability across age, but were limited in the ages and genders studied and sampled only limited parts of V1 or limited cell types, allowing for the possibility of a subtle loss of neurons. We pursued this question in 26 behaviorally tested adult male and female rhesus monkeys ranging from 7.4 to 31.0 years of age by using design-based stereology to estimate numbers of NeuN-labeled neurons and thionin-stained glia within three laminar zones, supragranular (layers II-IVB), granular (IVC), and infragranular (V-VI), across the entirety of V1. There were no significant differences between males and females on any measures, except for total brain weight (P = 0.0038). There was an average of 416,000,000 neurons in V1, but no effect of age on this total or numbers within any laminar zone. Similarly, there was an average of 184,000,000 glia in V1 (44% of the number of neurons), but no effect of age on this total. However, there was a significant age-related increase in numbers of glia in the infragranular zone, perhaps reflecting a glial response to pathology in myelinated projection fibers. This study provides further evidence that in normal aging neurons are not lost and hence cannot account for age-related dysfunction.

Funding information:
  • NIA NIH HHS - AG012609(United States)

Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell population: implications for neurogenesis.

  • Saaltink DJ
  • J. Comp. Neurol.
  • 2012 Sep 1

Literature context:


Abstract:

We have characterized the expression of doublecortin-like (DCL), a microtubule-associated protein involved in embryonic neurogenesis that is highly homologous to doublecortin (DCX), in the adult mouse brain. To this end, we developed a DCL-specific antibody and used this to compare DCL expression with DCX. In the neurogenic regions of the adult brain like the subventricular zone (SVZ), the rostral migratory stream (RMS), the olfactory bulb (OB), and the hippocampus, DCL colocalizes with DCX in immature neuronal cell populations. In contrast to DCX, we also found high DCL expression in three other brain regions with suspected neurogenesis or neuronal plasticity. First, the radial glia-like, hypothalamic tanycytes show high DCL expression that partly colocalizes with the neural stem cell marker vimentin. Second, DCL expression is found in cells of the suprachiasmatic nucleus (SCN), which lacks expression of the adult neuron marker NeuN. Third, a novel region exhibiting DCL expression is part of the olfactory tubercle where DCL is found in the neuropil of the islands of Calleja (ICj). Our findings define DCL as a novel marker for specific aspects of adult neurogenesis, which partly overlap with DCX. In addition, we propose unique roles for DCL in adult neurogenesis and we suggest high levels of neuronal plasticity in tanycytes, SCN, and ICj.

Funding information:
  • NIMH NIH HHS - K08 MH084058(United States)
  • NIMH NIH HHS - R37 MH049428(United States)

Long-term interaction between microglial cells and cochlear nucleus neurons after bilateral cochlear ablation.

  • Fuentes-Santamaría V
  • J. Comp. Neurol.
  • 2012 Sep 1

Literature context:


Abstract:

The removal of afferent activity has been reported to modify neuronal activity in the cochlear nucleus of adult rats. After cell damage, microglial cells are rapidly activated, initiating a series of cellular responses that influences neuronal function and survival. To investigate how this glial response occurs and how it might influence injured neurons, bilateral cochlear ablations were performed on adult rats to examine the short-term (16 and 24 hours and 4 and 7 days) and long-term (15, 30, and 100 days) changes in the distribution and morphology of microglial cells (immunostained with the ionized calcium-binding adaptor molecule 1; Iba-1) and the interaction of microglial cells with deafferented neurons in the ventral cochlear nucleus. A significant increase in the mean cross-sectional area and Iba-1 immunostaining of microglial cells in the cochlear nucleus was observed at all survival times after the ablation compared with control animals. These increases were concomitant with an increase in the area of Iba-1 immunostaining at 24 hours and 4, 7, and 15 days postablation. Additionally, microglial cells were frequently seen apposing the cell bodies and dendrites of auditory neurons at 7, 15, and 30 days postablation. In summary, these results provide evidence for persistent glial activation in the ventral cochlear nucleus and suggest that long-term interaction occurs between microglial cells and deafferented cochlear nucleus neurons following bilateral cochlear ablation, which could facilitate the remodeling of the affected neuronal circuits.

Funding information:
  • NEI NIH HHS - EY-03592(United States)
  • NIAID NIH HHS - HHSN272201400048C(United States)

The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain.

  • Shrivastava K
  • J. Comp. Neurol.
  • 2012 Aug 15

Literature context:


Abstract:

The CD200/CD200R inhibitory immune ligand-receptor system regulates microglial activation/quiescence in adult brain. Here, we investigated CD200/CD200R at different stages of postnatal development, when microglial maturation takes place. We characterized the spatiotemporal, cellular, and quantitative expression pattern of CD200 and CD200R in the developing and adult C57/BL6 mice brain by immunofluorescent labeling and Western blotting. CD200 expression increased from postnatal day 1 (P1) to P5-P7, when maximum levels were found, and decreased to adulthood. CD200 was located surrounding neuronal bodies, and very prominently in cortical layer I, where CD200(+) structures included glial fibrillary acidic protein (GFAP)(+) astrocytes until P7. In the hippocampus, CD200 was mainly observed in the hippocampal fissure, where GFAP(+) /CD200(+) astrocytes were also found until P7. CD200(+) endothelium was seen in the hippocampal fissure and cortical blood vessels, notably from P14, showing maximum vascular CD200 in adults. CD200R(+) cells were a population of ameboid/pseudopodic Iba1(+) microglia/macrophages observed at all ages, but significantly decreasing with increasing age. CD200R(+) /Iba1(+) macrophages were prominent in the pial meninges and ventricle lining, mainly at P1-P5. CD200R(+) /Iba1(+) perivascular macrophages were observed in cortical and hippocampal fissure blood vessels, showing maximum density at P7, but being prominent until adulthood. CD200R(+) /Iba1(+) ameboid microglia in the cingulum at P1-P5 were the only CD200R(+) cells in the nervous tissue. In conclusion, the main sites of CD200/CD200R interaction seem to include the molecular layer and pial surface in neonates and blood vessels from P7 until adulthood, highlighting the possible role of the CD200/CD200R system in microglial development and renewal.

Funding information:
  • NIMH NIH HHS - R01 MH084812(United States)
  • NINDS NIH HHS - R01 NS045744-04(United States)

Cytoarchitecture, areas, and neuron numbers of the Etruscan shrew cortex.

  • Naumann RK
  • J. Comp. Neurol.
  • 2012 Aug 1

Literature context:


Abstract:

The Etruscan shrew, Suncus etruscus, is one of the smallest mammals. Etruscan shrews can recognize prey shape with amazing speed and accuracy, based on whisker-mediated tactile cues. Because of its small size, quantitative analysis of the Etruscan shrew cortex is more tractable than in other animals. To quantitatively assess the anatomy of the Etruscan shrew's brain, we sectioned brains and applied Nissl staining and NeuN (neuronal nuclei) antibody staining. On the basis of these stains, we estimated the number of neurons of 10 cortical hemispheres by using Stereoinvestigator and Neurolucida (MBF Bioscience) software. On average, the neuron number per hemisphere was found to be ~1 million. We also measured cortical surface area and found an average of 11.1 mm² (n = 7) and an average volume of 5.3 mm³ (n = 10) per hemisphere. We identified 13 cortical regions by cytoarchitectonic boundaries in coronal, sagittal, and tangential sections processed for Nissl substance, myelin, cytochrome oxidase, ionic zinc, neurofilaments, and vesicular glutamate transporter 2 (VGluT2). The Etruscan shrew is a highly tactile animal with a large somatosensory cortex, which contains a barrel field, but the barrels are much less clearly defined than in rodents. The anatomically derived cortical partitioning scheme roughly corresponds to physiologically derived maps of neocortical sensory areas.

Funding information:
  • NINDS NIH HHS - F31 NS080614(United States)

Development and distribution of neuronal cilia in mouse neocortex.

  • Arellano JI
  • J. Comp. Neurol.
  • 2012 Mar 1

Literature context:


Abstract:

Neuronal primary cilia are not generally recognized, but they are considered to extend from most, if not all, neurons in the neocortex. However, when and how cilia develop in neurons are not known. This study used immunohistochemistry for adenylyl cyclase III (ACIII), a marker of primary cilia, and electron microscopic analysis to describe the development and maturation of cilia in mouse neocortical neurons. Our results indicate that ciliogenesis is initiated in late fetal stages after neuroblast migration, when the mother centriole docks with the plasma membrane, becomes a basal body, and grows a cilia bud that we call a procilium. This procilium consists of a membranous protrusion extending from the basal body but lacking axonemal structure and remains undifferentiated until development of the axoneme and cilia elongation starts at about postnatal day 4. Neuronal cilia elongation and final cilia length depend on layer position, and the process extends for a long time, lasting 8-12 weeks. We show that, in addition to pyramidal neurons, inhibitory interneurons also grow cilia of comparable length, suggesting that cilia are indeed present in all neocortical neuron subtypes. Furthermore, the study of mice with defective ciliogenesis suggested that failed elongation of cilia is not essential for proper neuronal migration and laminar organization or establishment of neuronal polarity. Thus, the function of this organelle in neocortical neurons remains elusive.

Funding information:
  • NIDA NIH HHS - R01 DA031833(United States)

Expression analysis of the regenerating gene (Reg) family members Reg-IIIβ and Reg-IIIγ in the mouse during development.

  • Matsumoto S
  • J. Comp. Neurol.
  • 2012 Feb 15

Literature context:


Abstract:

The regenerating gene/regenerating islet-derived (Reg) family is a group of small secretory proteins. Within this family, Reg type-III (Reg-III) consists of: Reg-IIIα, -β, -γ, and -δ. To elucidate the physiological relevance of Reg-III, we examined the localization and ontogeny of Reg-IIIβ and Reg-IIIγ in mice at different time points spanning from embryonic day 13.5 to 7 weeks old, using in situ hybridization and immunohistochemistry. Our results showed that Reg-IIIβ was expressed in specific subsets of primary sensory neurons and motor neurons, and that expression was transient during the embryonic and perinatal periods. Reg-IIIβ expression was also observed in absorptive epithelial cells of the intestine. In contrast, Reg-IIIγ expression was mainly observed in epithelial cells of the airways and intestine, but not in the nervous system, and expression levels showed a gradually increasing pattern along with development. In the airways Reg-IIIγ was expressed in goblet and Clara-like cells, whereas in the intestine Reg-IIIγ was expressed in the absorptive epithelial cells and Paneth cells, and was found to be expressed in development before these organs had been exposed to the outside world. The present findings imply that Reg-IIIβ and Reg-IIIγ expression is regulated along divergent pathways. Furthermore, we also suggest that expression of Reg-IIIγ in the airway and intestinal epithelia may occur to protect these organs from exposure to antigens or other factors (e.g., microbes) in the outer world, whereas the transient expression of Reg-IIIβ in the nervous system may be associated with the development of the peripheral nervous system including such processes as myelination.

Funding information:
  • Medical Research Council - (United Kingdom)
  • Medical Research Council - MC_U117570528(United Kingdom)

Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus).

  • Mezey S
  • J. Comp. Neurol.
  • 2012 Jan 1

Literature context:


Abstract:

To understand better the rate of neurogenesis and the distribution of new neurons in posthatch domestic chicks, we describe and compare the expression of the neuronal nuclei protein (NeuN, a.k.a. Fox-3) and doublecortin antigens in the whole brain of chicks 2 days, 8 days, and 14 weeks posthatch. In the forebrain ventricular and paraventricular zones, the density of bromodeoxyuridine-, NeuN-, and doublecortin-labeled cells was compared between chicks 24 hours and 7 days after an injection of bromodeoxyuridine (2 and 8 days posthatch, respectively). The distribution of NeuN-labeled neurons was similar to Nissl-stained tissue, with the exception of some areas where neurons did not express NeuN: cerebellar Purkinje cells and olfactory bulb mitral cells. The ventral tegmental area of 2-day-old chicks was also faintly labeled. The distribution of doublecortin was similar at all timepoints, with doublecortin-labeled profiles located throughout all forebrain areas as well as in the cerebellar granule cell layer. However, doublecortin labeling was not detectable in any midbrain or brainstem areas. Our data indicate that a significant number of new neurons is still formed in the telencephalon of posthatch domestic chicks, whereas subtelencephalic areas (except for the cerebellum) finish their neuronal expansion before hatching. Most newly formed cells in chicks leave the paraventricular zone after hatching, but a pool of neurons stays in the vicinity of the ventricular zone and matures in situ within 7 days. Proliferating cells often migrate laterally along forebrain laminae into still-developing brain areas.

Funding information:
  • Howard Hughes Medical Institute - T32 GM07092-34(United States)
  • NCRR NIH HHS - P41RR013642(United States)

Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein.

  • Kawaja MD
  • J. Comp. Neurol.
  • 2011 Sep 1

Literature context:


Abstract:

Nerve growth factor (NGF) and its precursor proNGF are perhaps the best described growth factors of the mammalian nervous system. There remains, however, a paucity of information regarding the precise cellular sites of proNGF/NGF synthesis. Here we report the generation of transgenic mice in which the NGF promoter controls the ectopic synthesis of enhanced green fluorescent protein (EGFP). These transgenic mice provide an unprecedented resolution of both neural cells (e.g., neocortical and hippocampal neurons) and non-neural cells (e.g., renal interstitial cells and thymic reticular cells) that display NGF promoter activity from postnatal development to adulthood. Moreover, the transgene is inducible by injury. At 2 days after sciatic nerve ligation, a robust population of EGFP-positive cells is seen in the proximal nerve stump. These transgenic mice offer novel insights into the cellular sites of NGF promoter activity and can be used as models for investigating the regulation of proNGF/NGF expression after injury.

Funding information:
  • Wellcome Trust - WT085822MA(United Kingdom)

Paternal experience suppresses adult neurogenesis without altering hippocampal function in Peromyscus californicus.

  • Glasper ER
  • J. Comp. Neurol.
  • 2011 Aug 1

Literature context:


Abstract:

Paternal care is rare among mammals, occurring in ≈6% of species. California mice (Peromyscus californicus) are unusual; fathers participate extensively in raising their young and display the same components of parental care as mothers, with the exception of nursing. Parenting is a complex experience, having stressful and enriching aspects. The hippocampus is sensitive to experience and responds to both stress and environmental enrichment with changes in structure and function. In rats, where females care exclusively for offspring, parenting is associated with suppressed hippocampal adult neurogenesis. Since this effect has been causally linked to lactation, it is unlikely that fathers would show a similar change. To investigate this issue, we examined adult neurogenesis in the hippocampus of California mouse fathers compared to males without pups and observed reduced adult neurogenesis. Similar effects were found in California mouse mothers. Next, we investigated whether behaviors linked to the hippocampus, namely, object recognition and novelty-suppressed feeding, were altered in fathers, and observed no substantial changes. During caregiving, suppressed adult neurogenesis does not appear to be related to changes in behaviors associated with the hippocampus, although it is possible that there are other effects on hippocampal function.

Funding information:
  • Medical Research Council - G0700477(United Kingdom)

Distribution of the auxiliary GABAB receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain.

  • Metz M
  • J. Comp. Neurol.
  • 2011 Jun 1

Literature context:


Abstract:

GABA(B) receptors are the G-protein-coupled receptors for γ-aminobutyric acid (GABA). KCTD8, 12, 12b, and 16 were recently identified as auxiliary GABA(B) receptor subunits and distinctly influence biophysical and pharmacological properties of the receptor response. Here we examined the expression patterns of the KCTDs in the mouse brain. Using in situ hybridization analysis, we found that most neurons express KCTD transcripts, supporting biochemical data showing that most GABA(B) receptors in the brain incorporate KCTD proteins. In the adult brain, KCTD12 and 16 have a widespread and KCTD8 and 12b a restricted expression pattern. Individual neurons can coexpress multiple KCTDs, as shown for granule cells and CA1/CA3 pyramidal cells in the hippocampus that coexpress KCTD12 and 16. In contrast, granule, Purkinje, and Golgi cells in the cerebellum selectively express one KCTD at a time. The expression levels of individual KCTD transcripts vary during postnatal brain development. Immunohistochemistry reveals that individual KCTD proteins can exhibit distinct axonal or dendritic localizations in neuronal populations. KCTDs are also detectable in nonneuronal tissues not expected to express GABA(B) receptors, suggesting that the role of KCTD proteins extends beyond GABA(B) receptors. In summary, our findings support that most brain GABA(B) receptors associate with KCTD proteins, but that the repertoire and abundance of KCTDs varies during development, among brain areas, neuronal populations, and at subcellular sites. We propose that the distinct spatial and temporal KCTD distribution patterns underlie functional differences in native GABA(B) responses.

Funding information:
  • Canadian Institutes of Health Research - MH-71313(Canada)
  • NIGMS NIH HHS - R01 GM079719-02(United States)

Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn.

  • Polgár E
  • J. Comp. Neurol.
  • 2011 Apr 15

Literature context:


Abstract:

Between 25-40% of neurons in laminae I-III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4-6% of neurons in laminae I-III were NPY-immunoreactive and based on the proportions of neurons that are GABAergic, we estimate that NPY is expressed by 18% of inhibitory interneurons in laminae I-II and 9% of those in lamina III. GABAergic boutons were identified by the presence of the vesicular GABA transporter (VGAT) and NPY was found in 13-15% of VGAT-immunoreactive boutons in laminae I-II, and 5% of those in lamina III. For both the lamina III NK1r-immunoreactive projection neurons and protein kinase Cγ (PKCγ)-immunoreactive interneurons in lamina II, we found that around one-third of the VGAT boutons that contacted them were NPY-immunoreactive. However, based on differences in the sizes of these boutons and the strength of their NPY-immunoreactivity, we conclude that these originate from different populations of interneurons. Only 6% of VGAT boutons presynaptic to large lamina I projection neurons that lacked NK1rs contained NPY. These results show that NPY-containing neurons make up a considerable proportion of the inhibitory interneurons in laminae I-III, and that their axons preferentially target certain classes of dorsal horn neuron.

Funding information:
  • NIDCD NIH HHS - R01 DC007218-01A1(United States)

Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain.

  • Sawamoto K
  • J. Comp. Neurol.
  • 2011 Mar 1

Literature context:


Abstract:

The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astrocyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates.

Funding information:
  • NIAID NIH HHS - 1R21AI085376(United States)

Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain.

  • Bøttger P
  • J. Comp. Neurol.
  • 2011 Feb 1

Literature context:


Abstract:

The Na(+)/K(+)-ATPase1 alpha subunit 3 (ATP1α(3)) is one of many essential components that maintain the sodium and potassium gradients across the plasma membrane in animal cells. Mutations in the ATP1A3 gene cause rapid-onset of dystonia parkinsonism (RDP), a rare movement disorder characterized by sudden onset of dystonic spasms and slowness of movement. To achieve a better understanding of the pathophysiology of the disease, we used immunohistochemical approaches to describe the regional and cellular distribution of ATP1α(3) in the adult mouse brain. Our results show that localization of ATP1α(3) is restricted to neurons, and it is expressed mostly in projections (fibers and punctuates), but cell body expression is also observed. We found high expression of ATP1α(3) in GABAergic neurons in all nuclei of the basal ganglia (striatum, globus pallidus, subthalamic nucleus, and substantia nigra), which is a key circuitry in the fine movement control. Several thalamic nuclei structures harboring connections to and from the cortex expressed high levels of the ATP1α(3) isoform. Other structures with high expression of ATP1α(3) included cerebellum, red nucleus, and several areas of the pons (reticulotegmental nucleus of pons). We also found high expression of ATP1α(3) in projections and cell bodies in hippocampus; most of these ATP1α(3)-positive cell bodies showed colocalization to GABAergic neurons. ATP1α(3) expression was not significant in the dopaminergic cells of substantia nigra. In conclusion, and based on our data, ATP1α(3) is widely expressed in neuronal populations but mainly in GABAergic neurons in areas and nuclei related to movement control, in agreement with RDP symptoms.

Funding information:
  • NIBIB NIH HHS - R01 EB007057(United States)
  • NIMH NIH HHS - R01 MH093725(United States)

GABAergic complex basket formations in the human neocortex.

  • Blazquez-Llorca L
  • J. Comp. Neurol.
  • 2010 Dec 15

Literature context:


Abstract:

Certain GABAergic interneurons in the cerebral cortex, basket cells, establish multiple connections with cell bodies that typically outline the somata and proximal dendrites of pyramidal cells. During studies into the distribution of the vesicular GABA transporter (VGAT) in the human cerebral cortex, we were struck by the presence of a very dense, pericellular arrangement of multiple VGAT-immunoreactive (-ir) terminals in certain cortical areas. We called these terminals "Complex basket formations" (Cbk-formations) to distinguish them from the simpler and more typical pericellular GABAergic innervations of most cortical neurons. Here we examined the distribution of these VGAT-ir Cbk-formations in various cortical areas, including the somatosensory (area 3b), visual (areas 17 and 18), motor (area 4), associative frontal (dorsolateral areas 9, 10, 45, 46, and orbital areas 11, 12, 13, 14, 47), associative temporal (areas 20, 21, 22, and 38), and limbic cingulate areas (areas 24, 32). Furthermore, we used dual or triple staining techniques to study the chemical nature of the innervated cells. We found that VGAT-ir Cbk-formations were most frequently found in area 4 followed by areas 3b, 13, and 18. In addition, they were mostly observed in layer III, except in area 17, where they were most dense in layer IV. We also found that 70% of the innervated neurons were pyramidal cells, while the remaining 30% were multipolar cells. Most of these multipolar cells expressed the calcium-binding protein parvalbumin and the lectin Vicia villosa agglutinin.

Funding information:
  • NCRR NIH HHS - R01RR025342(United States)
  • NEI NIH HHS - EY1765(United States)

Immunolocalization of the voltage-gated potassium channel Kv2.2 in GABAergic neurons in the basal forebrain of rats and mice.

  • Hermanstyne TO
  • J. Comp. Neurol.
  • 2010 Nov 1

Literature context:


Abstract:

The Kv2 voltage-gated potassium channels, Kv2.1 and Kv2.2, are important regulators of neuronal excitability in mammalian brain. It has been shown that Kv2.1 channels are expressed in virtually all neurons in the brain. However, the cellular localization of Kv2.2 has not been fully elucidated. In this article we report that Kv2.2 is highly expressed in a subset of neurons in the magnocellular preoptic nucleus (MCPO) and the horizontal limb of the diagonal band of Broca (HDB) of the basal forebrain complex, which are areas highly implicated in the regulation of cortical activity and the sleep/wake cycle. It has been shown that MCPO and HDB contain distinct populations of neurons that differ in their neurochemicals, cholinergic, glutamatergic, and gamma-aminobutyric acid (GABA)ergic neurons. Using specific immunolabeling and knockin mice in which green fluorescent protein (GFP) is expressed in GABAergic neurons, we found that Kv2.2 is abundantly expressed in a large subpopulation of the GABAergic neurons in the MCPO and HDB. These data offer Kv2.2 as a molecular target to study the role of the specific subpopulation of basal forebrain GABAergic neurons.

Funding information:
  • NCI NIH HHS - R01 CA073735(United States)

Corticosterone and dehydroepiandrosterone have opposing effects on adult neuroplasticity in the avian song control system.

  • Newman AE
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


Abstract:

Chronic elevations in glucocorticoids can decrease the production and survival of new cells in the adult brain. In rat hippocampus, supraphysiological doses of dehydroepiandrosterone (DHEA; a sex steroid precursor synthesized in the gonads, adrenals, and brain) have antiglucocorticoid properties. With male song sparrows (Melospiza melodia), we examined the effects of physiological doses of corticosterone, the primary circulating glucocorticoid in birds, and DHEA on adult neuroplasticity. We treated four groups of nonbreeding sparrows for 28 days with empty (control), corticosterone, DHEA, or corticosterone + DHEA implants. Subjects were injected with BrdU on days 3 and 4. In HVC, a critical song control nucleus, corticosterone and DHEA had independent, additive effects. Corticosterone decreased, whereas DHEA increased, HVC volume, NeuN(+) cell number, and BrdU(+) cell number. Coadministration of DHEA completely reversed the neurodegenerative effects of chronic corticosterone treatment. In an efferent target of HVC, the robust nucleus of the arcopallium (RA), DHEA increased RA volume, but this effect was blocked by coadministration of corticosterone. There were similar antagonistic interactions between corticosterone and DHEA on BrdU(+) cell number in the hippocampus and ventricular zone. This is the first report on the effects of corticosterone treatment on the adult song control circuit, and HVC was the most corticosterone-sensitive song nucleus examined. In HVC, DHEA is neuroprotective and counteracts several pronounced effects of corticosterone. Within brain regions that are particularly vulnerable to corticosterone, such as the songbird HVC and rat hippocampus, DHEA appears to be a potent native antiglucocorticoid.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/G022747/1(United Kingdom)

Clathrin assembly proteins AP180 and CALM in the embryonic rat brain.

  • Schwartz CM
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


Abstract:

Clathrin-coated vesicles are known to play diverse and pivotal roles in cells. The proper formation of clathrin-coated vesicles is dependent on, and highly regulated by, a large number of clathrin assembly proteins. These assembly proteins likely determine the functional specificity of clathrin-coated vesicles, and together they control a multitude of intracellular trafficking pathways, including those involved in embryonic development. In this study, we focus on two closely related clathrin assembly proteins, AP180 and CALM (clathrin assembly lymphoid myeloid leukemia protein), in the developing embryonic rat brain. We find that AP180 begins to be expressed at embryonic day 14 (E14), but only in postmitotic cells that have acquired a neuronal fate. CALM, on the other hand, is expressed as early as E12, by both neural stem cells and postmitotic neurons. In vitro loss-of-function studies using RNA interference (RNAi) indicate that AP180 and CALM are dispensable for some aspects of embryonic neurogenesis but are required for the growth of postmitotic neurons. These results identify the developmental stage of AP180 and CALM expression and suggest that each protein has distinct functions in neural development.

Funding information:
  • NHGRI NIH HHS - P41HG004118(United States)

Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single "cryptic" episode of focal hippocampal excitation in awake rats.

  • Norwood BA
  • J. Comp. Neurol.
  • 2010 Aug 15

Literature context:


Abstract:

In refractory temporal lobe epilepsy, seizures often arise from a shrunken hippocampus exhibiting a pattern of selective neuron loss called "classic hippocampal sclerosis." No single experimental injury has reproduced this specific pathology, suggesting that hippocampal atrophy might be a progressive "endstage" pathology resulting from years of spontaneous seizures. We posed the alternative hypothesis that classic hippocampal sclerosis results from a single excitatory event that has never been successfully modeled experimentally because convulsive status epilepticus, the insult most commonly used to produce epileptogenic brain injury, is too severe and necessarily terminated before the hippocampus receives the needed duration of excitation. We tested this hypothesis by producing prolonged hippocampal excitation in awake rats without causing convulsive status epilepticus. Two daily 30-minute episodes of perforant pathway stimulation in Sprague-Dawley rats increased granule cell paired-pulse inhibition, decreased epileptiform afterdischarge durations during 8 hours of subsequent stimulation, and prevented convulsive status epilepticus. Similarly, one 8-hour episode of reduced-intensity stimulation in Long-Evans rats, which are relatively resistant to developing status epilepticus, produced hippocampal discharges without causing status epilepticus. Both paradigms immediately produced the extensive neuronal injury that defines classic hippocampal sclerosis, without giving any clinical indication during the insult that an injury was being inflicted. Spontaneous hippocampal-onset seizures began 16-25 days postinjury, before hippocampal atrophy developed, as demonstrated by sequential magnetic resonance imaging. These results indicate that classic hippocampal sclerosis is uniquely produced by a single episode of clinically "cryptic" excitation. Epileptogenic insults may often involve prolonged excitation that goes undetected at the time of injury.

Funding information:
  • NHGRI NIH HHS - R01-HG-004885(United States)

Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors.

  • Keast JR
  • J. Comp. Neurol.
  • 2010 Aug 1

Literature context:


Abstract:

Most small unmyelinated neurons in adult rat dorsal root ganglia (DRG) express one or more of the coreceptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin (GFRalpha1, GFRalpha2, and GFRalpha3, respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitization. In this study we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found that the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord there was a widespread increase in neuronal GFRalpha1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRalpha3-IR also increased but in a more restricted area. In contrast, GFRalpha2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabeled L5 DRG sections suggested the main effect of injury on GFRalpha1- and GFRalpha3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRalpha2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRalpha2-IR neurons. Our results suggest that the DRG neuronal populations targeted by GDNF, neurturin, or artemin and the effect of exogenous GFLs could change significantly after a peripheral nerve injury.

Funding information:
  • NIAID NIH HHS - AI 15416(United States)

Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain.

  • Tseng YY
  • J. Comp. Neurol.
  • 2010 Aug 15

Literature context:


Abstract:

Previous studies showed that Tctex-1 immunoreactivity is selectively enriched in the germinal zones of adult brain. In this report we identify a regulatory region of the Tctex-1 gene that is capable of directing transgenic expression of green fluorescent protein (GFP) reporter that recapitulates the spatial and temporal expression pattern of endogenous Tctex-1. This construct specifically targeted expression to the nestin(+)/Pax6(+)/GLAST(+) radial glial cells and Tbr2(+) intermediate progenitors when the reporter construct was delivered to developing mouse neocortex via in utero electroporation. Characterization of mice transgenically expressing GFP under the same regulatory element showed that the GFP expression is faithful to endogenous Tctex-1 at the subgranular zone (SGZ) of dentate gyrus, ventricular/subventricular zone of lateral ventricles, and ependymal layer of 3rd ventricle of adult brains. Immunolocalization and bromodeoxyuridine incorporation studies of adult SGZ in four independent mouse lines showed that Tctex-1:GFP reporter selectively marks nestin(+)/GFAP(+)/Sox2(+) neural stem-like cells in two mouse lines (4 and 13). In two other mouse lines (17 and 18), Tctex-1:GFP is selectively expressed in Type-2 and Type-3 transient amplifying progenitors and a small subset of young neuronal progeny. The P/E-Tctex-1 reporter mouse studies independently confirmed the specific enrichment of Tctex-1 at adult SGZ stem/progenitor cells. Furthermore, these studies supported the notion that an analogous transcriptional program may be used to regulate neurogenesis in embryonic cerebral cortex and adult hippocampus. Finally, the genomic sequences and the reporter mouse lines described here provide useful experimental tools to advance adult neural stem cell research.

Funding information:
  • Intramural NIH HHS - U54 HG003273(United States)

Extracerebellar role for Cerebellin1: modulation of dendritic spine density and synapses in striatal medium spiny neurons.

  • Kusnoor SV
  • J. Comp. Neurol.
  • 2010 Jul 1

Literature context:


Abstract:

Cerebellin1 (Cbln1) is a secreted glycoprotein that was originally isolated from the cerebellum and subsequently found to regulate synaptic development and stability. Cbln1 has a heterogeneous distribution in brain, but the only site in which it has been shown to have central effects is the cerebellar cortex, where loss of Cbln1 causes a reduction in granule cell-Purkinje cell synapses. Neurons of the thalamic parafascicular nucleus (PF), which provide glutamatergic projections to the striatum, also express high levels of Cbln1. We first examined Cbln1 in thalamostriatal neurons and then determined if cbln1 knockout mice exhibit structural deficits in striatal neurons. Virtually all PF neurons express Cbln1-immunoreactivity (-ir). In contrast, only rare Cbln1-ir neurons are present in the central medial complex, the other thalamic region that projects heavily to the dorsal striatum. In the striatum Cbln1-ir processes are apposed to medium spiny neuron (MSN) dendrites; ultrastructural studies revealed that Cbln1-ir axon terminals form axodendritic synapses with MSNs. Tract-tracing studies found that all PF cells retrogradely labeled from the striatum express Cbln1-ir. We then examined the dendritic structure of Golgi-impregnated MSNs in adult cbln1 knockout mice. MSN dendritic spine density was markedly increased in cbln1(-/-) mice relative to wildtype littermates, but total dendritic length was unchanged. Ultrastructural examination revealed an increase in the density of MSN axospinous synapses in cbln1(-/-) mice, with no change in postsynaptic density length. Thus, Cbln1 determines the dendritic structure of striatal MSNs, with effects distinct from those seen in the cerebellum.

Funding information:
  • NCRR NIH HHS - 3P41RR024851-02S1(United States)

Expression of PTPRO in the interneurons of adult mouse olfactory bulb.

  • Kotani T
  • J. Comp. Neurol.
  • 2010 Jan 10

Literature context:


Abstract:

PTPRO is a receptor-type protein tyrosine phosphatase (PTP) with a single catalytic domain in its cytoplasmic region and multiple fibronectin type III-like domains in its extracellular region. In the chick, PTPRO mRNA has been shown to be particularly abundant in embryonic brain, and PTPRO is implicated in axon growth and guidance during embryonic development. However, the temporal and spatial expression of PTPRO protein in the mammalian CNS, particularly in the juvenile and adult mammalian brain, has not been evaluated in any detail. By immunohistofluorescence analysis with a monoclonal antibody to PTPRO, we show that PTPRO is widely expressed throughout the mouse brain from embryonic day 16 to postnatal day 1, while expression is largely confined to the olfactory bulb (OB) and olfactory tubercle in the adult brain. In the OB, PTPRO protein is expressed predominantly in the external plexiform layer, the granule cell layer, and the glomerular layer (GL). In these regions, expression of PTPRO is predominant in interneurons such as gamma-aminobutyric acid (GABA)-ergic or calretinin (CR)-positive granule cells. In addition, PTPRO is expressed in GABAergic, CR-positive, tyrosine hydroxylase-positive, or neurocalcin-positive periglomerular cells in the GL. Costaining of PTPRO with other neuronal markers suggests that PTPRO is likely to be localized to the dendrites or dendritic spines of these olfactory interneurons. Thus, PTPRO might participate in regulation of dendritic morphology or synapse formation of interneurons in the adult mouse OB.

Quantitative study of the developmental changes in calcium-permeable AMPA receptor-expressing neurons in the rat somatosensory cortex.

  • Hsu CI
  • J. Comp. Neurol.
  • 2010 Jan 1

Literature context:


Abstract:

The distribution of cells expressing calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) in the somatosensory cortex of rats at different developmental stages was studied using a kainate-stimulated Co(2+)-labeling assay in a quantitative manner. The applicability of this assay for identifying CP-AMPAR-expressing cells was first verified using cultured rat cortical neurons by means of fluorescence Ca(2+) imaging and pharmacological tools. Cells positively identified by the Co(2+)-labelinig assay resided primarily in the marginal zone and subplate of young fetuses and became more widely distributed throughout the cortex as the fetus matured. The majority, >80%, of these Co(2+)-positive cells were neurons, exhibiting immunoreactivity with the neuronal marker NeuN. The proportion of neurons that were Co(2+)-positive increased from approximately 25% to approximately 60% as the rat fetus grew into adulthood. In contrast, less than 20% of nonneuronal cells were Co(2+)-positive. Of the Co(2+)-positive neurons, 15%-31% exhibited GABA immunoreactivity and nonpyramidal-shaped cell bodies; these were presumably GABAergic neurons. Most of the remaining non-GABAergic/Co(2+)-positive neurons had pyramidal-shaped cell bodies and were presumably excitatory principle neurons. Around 70% of GABAergic neurons in the cortex were Co(2+)-positive. Furthermore, in the cortex of neonatal rats the Co(2+)-positive neurons were found to be more susceptible to kainate toxicity than the Co(2+)-negative cells. The Co(2+)-positive neurons in the subplate of neonatal rats were more vulnerable to kainate toxicity than their counterparts in the remaining cortical areas. Together, the widespread distribution and distinct susceptibility to excitotoxicity of CP-AMPAR-expressing neurons suggest that they play various important roles in the development and physiology of the rat cerebral cortex.

Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses.

  • Su J
  • J. Comp. Neurol.
  • 2010 Jan 10

Literature context:


Abstract:

Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses.

Neuronal expression of Cd36, Cd44, and Cd83 antigen transcripts maps to distinct and specific murine brain circuits.

  • Glezer I
  • J. Comp. Neurol.
  • 2009 Dec 20

Literature context:


Abstract:

Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions.

Expression and localization of the calmodulin-binding protein neurogranin in the adult mouse olfactory bulb.

  • Gribaudo S
  • J. Comp. Neurol.
  • 2009 Dec 10

Literature context:


Abstract:

Neurogranin (Ng) is a brain-specific postsynaptic protein involved in activity-dependent synaptic plasticity through modulation of Ca(2+)/calmodulin (CaM)-dependent signal transduction in neurons. In this study, using biochemical and immunohistochemical approaches, we demonstrate Ng expression in the adult mouse olfactory bulb (OB), the first relay station in odor information processing. We show that Ng is principally associated with the granule cell layer (GCL), which is composed of granule cell inhibitory interneurons. This cell type is continuously renewed during adult life and plays a key role in OB circuits, integrating and modulating the activity of mitral/tufted cells. Our results indicate that Ng localizes in the soma and dendrites of a defined subpopulation of mature GABAergic granule cells, enriched in the deep portion of the GCL. Ng-immunopositive cells largely coexpress the Ca(+)/CaM-dependent kinase IV (CaMKIV), a downstream protein of CaM signaling cascade, whereas no colocalization was observed between Ng and the calcium-binding protein calretinin. Finally, we demonstrate that adult neurogenesis contributes to the Ng-expressing population, with more newly generated Ng-positive cells integrated in the deep GCL. Together, these results provide a new specific neurochemical marker to identify a subpopulation of olfactory granule cells and suggest possible functional implications for Ng in OB plasticity mechanisms.

Funding information:
  • Howard Hughes Medical Institute - R01 NS062798-03(United States)

Evolutionary significance of delayed neurogenesis in the core versus shell auditory areas of Mus musculus.

  • Zeng SJ
  • J. Comp. Neurol.
  • 2009 Aug 10

Literature context:


Abstract:

Early comparative embryogenesis can reflect the organization and evolutionary origins of brain areas. Neurogenesis in the auditory areas of sauropsids displays a clear core-to-shell distinction, but it remains unclear in mammals. To address this issue, [3H]-thymidine was injected into pregnant mice on consecutive embryonic (E) days (E10-E19) to date neuronal birthdays. Immunohistochemistry for substance P, calbindin, and parvalbumin was conducted to distinguish the core and shell auditory regions. The results showed that: 1) cell generation began at E13 in the external or dorsal nucleus of the inferior colliculus (IC), but it did not start in the caudomedial portion of the central nucleus of IC, and significantly fewer cells were produced in the medial and rostromedial portions of the central nucleus of IC; 2) cells were generated at E11 in the dorsal and medial divisions of the medial geniculate complex (MGd and MGm, respectively), whereas cell generation was absent in the medial and rostromedial portions of the ventral medial geniculate complex (MGv), and fewer cells were produced in the caudomedial portion of MGv; 3) in the telencephalic auditory cortex, cells were produced at E11 or E12 in layer I and the subplate, which receive projections from the MGd and MGm. However, cell generation occurred at E13-E18 in layers II-VI, including the area receiving projections from the MGv. The core-to-shell distinction of neurogenesis is thus present in the mesencephalic to telencephalic auditory areas in the mouse. This distinction of neurogenesis is discussed from an evolutionary perspective.

Perisomatic-targeting granule cells in the mouse olfactory bulb.

  • Naritsuka H
  • J. Comp. Neurol.
  • 2009 Aug 1

Literature context:


Abstract:

Inhibitory interneurons in the hippocampus and neocortex are differentiated into several morphological and functional subtypes that innervate distinct subcellular domains of principal neurons. In the olfactory bulb (OB), odor information is processed by local neuronal circuits that include the major inhibitory interneuron, granule cells (GCs). All GCs reported to date target their inhibitory output synapses mainly to dendrites of mitral cells (MCs) and tufted cells (TCs) in the external plexiform layer (EPL). Here we identified a novel type of GC that targets output synapses selectively to the perisomatic region of MCs. In the OB of adult transgenic mice expressing green fluorescent protein (GFP) under the control of nestin gene regulatory regions, we observed cells in the granule cell layer (GCL) that have GC-like morphology and strongly express GFP (referred to as type S cells). Type S cells expressed NeuN and GAD67, molecular markers for GCs. Intracellular labeling of type S cells revealed that their dendrites did not enter the EPL, but formed branches and spines within the GCL, internal plexiform layer, and mitral cell layer. Type S cells typically had huge spines at the ends of the apical dendrites. Some of the terminal spines attached to the perisomatic region of MCs and formed dendrosomatic reciprocal synapses with a presumed granule-to-mitral inhibitory synapse and a mitral-to-granule excitatory synapse. These findings indicate the morphological differentiation of GCs into dendritic-targeting and perisomatic-targeting subsets, and suggest the functional differentiation of the GC subsets in the processing of odor information in the OB.

Funding information:
  • NINDS NIH HHS - R01 NS054814-05(United States)

Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulation-induced status epilepticus in the mouse.

  • Kienzler F
  • J. Comp. Neurol.
  • 2009 Jul 10

Literature context:


Abstract:

Prolonged dentate granule cell discharges produce hippocampal injury and chronic epilepsy in rats. In preparing to study this epileptogenic process in genetically altered mice, we determined whether the background strain used to generate most genetically altered mice, the C57BL/6 mouse, is vulnerable to stimulation-induced seizure-induced injury. This was necessary because C57BL/6 mice are reportedly resistant to the neurotoxic effects of kainate-induced seizures, which we hypothesized to be related to strain differences in kainate's effects, rather than genetic differences in intrinsic neuronal vulnerability. Bilateral perforant pathway stimulation-induced granule cell discharge for 4 hours under urethane anesthesia produced degeneration of glutamate receptor subunit 2 (GluR2)-positive hilar mossy cells and peptide-containing interneurons in both FVB/N (kainate-vulnerable) and C57BL/6 (kainate-resistant) mice, indicating no strain differences in neuronal vulnerability to seizure activity. Granule cell discharge for 2 hours in C57BL/6 mice destroyed most GluR2-positive dentate hilar mossy cells, but not peptide-containing hilar interneurons, indicating that mossy cells are the neurons most vulnerable to this insult. Stimulation for 24 hours caused extensive hippocampal neuron loss and injury to the septum and entorhinal cortex, but no other detectable damage. Mice stimulated for 24 hours developed hippocampal sclerosis, granule cell mossy fiber sprouting, and chronic epilepsy, but not the granule cell layer hypertrophy (granule cell dispersion) produced by intrahippocampal kainate. These results demonstrate that perforant pathway stimulation in mice reliably reproduces the defining features of human mesial temporal lobe epilepsy with hippocampal sclerosis. Experimental studies in transgenic or knockout mice are feasible if electrical stimulation is used to produce controlled epileptogenic insults.

Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis.

  • Furmanski O
  • J. Comp. Neurol.
  • 2009 Jul 1

Literature context:


Abstract:

Numerous central nervous system (CNS) disorders share a common pathology in dysregulation of gamma-aminobutyric acid (GABA) inhibitory signaling. Transplantation of GABA-releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated fibroblast growth factor (FGF)-2 deprivation and mammalian achaete-scute homolog (MASH)1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus-transduced NPCs were maintained in FGF-2 or deprived of FGF-2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA- and beta-III-tubulin-immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro. However, FGF-2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus-transduced clones, MASH1 transduction resulted in increased bromodeoxyuridine (BrdU) incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF-2 deprivation additively increased beta-III-tubulin and decreased cyclic nucleotide phosphodiesterase (CNPase) expression, whereas FGF-2 deprivation alone attenuated glial fibrillary acidic protein (GFAP) expression. These results suggest that low FGF-2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full potential of NSC grafts in restoring function.

Erythropoietin receptor expression is concordant with erythropoietin but not with common beta chain expression in the rat brain throughout the life span.

  • Sanchez PE
  • J. Comp. Neurol.
  • 2009 Jun 1

Literature context:


Abstract:

Brain effects of erythropoietin (Epo) are proposed to involve a heteromeric receptor comprising the classical Epo receptor (Epo-R) and the common beta chain (betac). However, data documenting the pattern of betac gene expression in the healthy brain, in comparison with that of the Epo-R gene, are still lacking. The present study is the first to investigate at the same time betac, Epo-R, and Epo gene expression within different rat brain areas throughout the life span, from neonatal to elderly stages, using quantitative RT-PCR for transcripts. Corresponding proteins were localized by using immunohistochemistry. We demonstrate that the betac transcript level does not correlate with that of Epo-R or Epo, whereas the Epo-R transcript level strongly correlates with that of Epo throughout the life span in all brain structures analyzed. Both Epo and Epo-R were detected primarily in neurons. In the hippocampus, the greatest Epo-R mRNA levels were measured during the early postnatal period and in middle-aged rats, associated with an intense neuronal immunolabeling. Conversely, betac protein was barely detectable in the brain at all ages, even in neurons expressing high levels of Epo-R. Finally, betac transcript could not be detected in PC12 cells, even after nerve growth factor-induced neuritogenesis, which is a condition that dramatically enhances Epo-R transcript level. Altogether, our data suggest that most neurons are likely to express high levels of Epo-R but low, if not null, levels of betac. Given that Epo protects extended populations of neurons after injury, a yet-to-be-identified receptor heterocomplex including Epo-R may exist in the large population of brain neurons that does not express betac.

Conditional ablation and recovery of forebrain neurogenesis in the mouse.

  • Singer BH
  • J. Comp. Neurol.
  • 2009 Jun 20

Literature context:


Abstract:

Forebrain neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Several strategies have been employed to eliminate adult neurogenesis and thereby determine whether depleting adult-born neurons disrupts specific brain functions, but some approaches do not specifically target neural progenitors. We have developed a transgenic mouse line to reversibly ablate adult neural stem cells and suppress neurogenesis. The nestin-tk mouse expresses herpes simplex virus thymidine kinase (tk) under the control of the nestin 2nd intronic enhancer, which drives expression in neural progenitors. Administration of ganciclovir (GCV) kills actively dividing cells expressing this transgene. We found that peripheral GCV administration suppressed SVZ-olfactory bulb and DG neurogenesis within 2 weeks but caused systemic toxicity. Intracerebroventricular GCV infusion for 28 days nearly completely depleted proliferating cells and immature neurons in both the SVZ and DG without systemic toxicity. Reversibility of the effects after prolonged GCV infusion was slow and partial. Neurogenesis did not recover 2 weeks after cessation of GCV administration, but showed limited recovery 6 weeks after GCV that differed between the SVZ and DG. Suppression of neurogenesis did not inhibit antidepressant responsiveness of mice in the tail suspension test. These findings indicate that SVZ and DG neural stem cells differ in their capacity for repopulation, and that adult-born neurons are not required for antidepressant responses in a common behavioral test of antidepressant efficacy. The nestin-tk mouse should be useful for studying how reversible depletion of adult neurogenesis influences neurophysiology, other behaviors, and neural progenitor dynamics.

Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development.

  • Jakovcevski I
  • J. Comp. Neurol.
  • 2009 Apr 10

Literature context:


Abstract:

Several L1-related adhesion molecules, expressed in a well-coordinated temporospatial pattern during development, are important for fine tuning of specific cerebellar circuitries. We tested the hypothesis that CHL1, the close homologue of L1, abundantly expressed in the developing and adult cerebellum, is also required for normal cerebellar histogenesis. We found that constitutive ablation of CHL1 in mice caused significant loss (20-23%) of Purkinje and granule cells in the mature 2-month-old cerebellum. The ratio of stellate/basket interneurons to Purkinje cells was abnormally high (+38%) in CHL1-deficient (CHL1-/-) mice compared with wild-type (CHL1+/+) littermates, but the gamma-aminobutyric acid (GABA)ergic synaptic inputs to Purkinje cell bodies and dendrites were normal, as were numbers of Golgi interneurons, microglia, astrocytes, and Bergmann glia. Purkinje cell loss occurred before the first postnatal week and was associated with enhanced apoptosis, presumably as a consequence of CHL1 deficiency in afferent axons. In contrast, generation of granule cells, as indicated by in vivo analyses of cell proliferation and death, was unaffected in 1-week-old CHL1-/- mice, but numbers of migrating granule cells in the molecular layer were increased. This increase was likely related to retarded cell migration because CHL1-/- granule cells migrated more slowly than CHL1+/+ cells in vitro, and Bergmann glial processes guiding migration in vivo expressed CHL1 in wild-type mice. Granule cell deficiency in adult CHL1-/- mice appeared to result from decreased precursor cell proliferation after the first postnatal week. Our results indicate that CHL1 promotes Purkinje and granule cell survival and granule cell migration during cerebellar development.

Funding information:
  • NICHD NIH HHS - P30 HD15052(United States)

Axon terminals expressing vesicular glutamate transporter VGLUT1 or VGLUT2 within the trigeminal motor nucleus of the rat: origins and distribution patterns.

  • Pang YW
  • J. Comp. Neurol.
  • 2009 Feb 10

Literature context:


Abstract:

Little is known about the significance of the two types of glutamatergic neurons (those expressing vesicular glutamate transporter VGLUT1 or VGLUT2) in the control of jaw movements. We thus examined the origin and distribution of axon terminals with VGLUT1 or VGLUT2 immunoreactivity within the trigeminal motor nucleus (Vm) in the rat. The Vm was divided into the dorsolateral division (Vm.dl; jaw-closing motoneuron pool) and the ventromedial division (Vm.vm; jaw-opening motoneuron pool). VGLUT1-immunopositive terminals were seen within the Vm.dl only, whereas VGLUT2-immunopositive ones were distributed to both the Vm.dl and the Vm.vm. Transection of the motor root eliminated almost all VGLUT1-immunopositive axons in the Vm.dl, with no changes of VGLUT2 immunoreactivity in the two divisions, indicating that the VGLUT1- and VGLUT2-immunopositive axons came from primary afferents in the mesencephalic trigeminal nucleus and premotor neurons for the Vm, respectively. In situ hybridization histochemistry revealed that VGLUT2 neurons were much more numerous than VGLUT1 neurons in the regions corresponding to the reported premotoneuron pool for the Vm. The results of immunofluorescence labeling combined with anterograde tract tracing further indicated that premotor neurons with VGLUT2 in the trigeminal sensory nuclei, the supratrigeminal region, and the reticular region ventral to the Vm sent axon terminals contacting trigeminal motoneurons and that some of the VGLUT1-expressing premotor neurons in the reticular region ventral to the Vm sent axon terminals to jaw-closing motoneurons. The present results suggested that the roles played by glutamatergic neurons in controlling jaw movements might be different between VGLUT1- and VGLUT2-expressing neurons.

Funding information:
  • NINDS NIH HHS - R01 NS049267-04(United States)

Expression and developmental regulation of oxytocin (OT) and oxytocin receptors (OTR) in the enteric nervous system (ENS) and intestinal epithelium.

  • Welch MG
  • J. Comp. Neurol.
  • 2009 Jan 10

Literature context:


Abstract:

Although oxytocin (OT) and oxytocin receptor (OTR) are known for roles in parturition and milk let-down, they are not hypothalamus-restricted. OT is important in nurturing and opposition to stress. Transcripts encoding OT and OTR have been reported in adult human gut, and OT affects intestinal motility. We tested the hypotheses that OT is endogenous to the enteric nervous system (ENS) and that OTR signaling may participate in enteric neurophysiology. Reverse transcriptase polymerase chain reaction confirmed OT and OTR transcripts in adult mouse and rat gut and in precursors of enteric neurons immunoselected from fetal rats. Enteric OT and OTR expression continued through adulthood but was developmentally regulated, peaking at postnatal day 7. Coincidence of the immunoreactivities of OTR and the neural marker Hu was 100% in the P3 and 71% in the adult myenteric plexus, when submucosal neurons were also OTR-immunoreactive. Co-localization with NeuN established that intrinsic primary afferent neurons are OTR-expressing. Because OTR transcripts and protein were detected in the nodose ganglia, OT signaling might also affect extrinsic primary afferent neurons. Although OT immunoreactivity was found only in approximately 1% of myenteric neurons, extensive OT-immunoreactive varicosities surrounded many others. Villus enterocytes were OTR-immunoreactive through postnatal day 17; however, by postnatal day 19, immunoreactivity waned to become restricted to crypts and concentrated at crypt-villus junctions. Immunoelectron microscopy revealed plasmalemmal OTR at enterocyte adherens junctions. We suggest that OT and OTR signaling might be important in ENS development and function and might play roles in visceral sensory perception and neural modulation of epithelial biology.

Genetic tracing of subpopulation neurons in the prethalamus of mice (Mus musculus).

  • Delaunay D
  • J. Comp. Neurol.
  • 2009 Jan 1

Literature context:


Abstract:

Genetic labeling based on the Cre/lox reporter system has allowed the creation of fate maps for progenitor cells and their offspring. In the diencephalon, pools of progenitors express the plp transcripts in the zona limitans intrathalamica (ZLI), the basal plate of the diencephalon (bpD), and the posterior part of the hypothalamus. We used plp-Cre transgenics crossed with either Rosa26-lox-lacZ (R26R) or actin-lox gfp (Z/EG) reporter mice to investigate the progeny of plp-expressing ventricular cells in the diencephalon. We describe the subpopulations of prethalamic neurons derived from plp-activated progenitors, their possible migratory routes as development proceeds, and their final positional identity. Neurons derived from plp-expressing progenitors issued from the ZLI contribute to GABAergic cells in the zona incerta, the subgeniculate nucleus, the ventral lateral geniculate, and the intergeniculate leaflet. Plp(+) progenitors in the bpD and posterior hypothalamus appear to generate glutamatergic neurons in the subthalamic nucleus and GABAergic neurons in the mammillary and retromammillary tegmentum derivatives. In all these nuclei the contribution of plp(+) progenitors is only partial, illustrating the heterogeneity of origin of neurons in prethalamic and caudal hypothalamic nuclei.

Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus.

  • Kim DS
  • J. Comp. Neurol.
  • 2008 Dec 10

Literature context:


Abstract:

Recently we reported that astroglial loss and subsequent gliogenesis in the dentate gyrus play a role in epileptogenesis following pilocarpine-induced status epilepticus (SE). In the present study we investigated whether astroglial damages in the hippocampo-entorhinal complex following SE are relevant to pathological or electrophysiological properties of temporal lobe epilepsy. Astroglial loss/damage was observed in the entorhinal cortex and the CA1 region at 4 weeks and 8 weeks after SE, respectively. These astroglial responses in the hippocampo-entorhinal cortex were accompanied by hyperexcitability of the CA1 region (impairment of paired-pulse inhibition and increase in excitability ratio). Unlike the dentate gyrus and the entorhinal cortex, CA1 astroglial damage was protected by conventional anti-epileptic drugs. alpha-Aminoadipic acid (a specific astroglial toxin) infusion into the entorhinal cortex induced astroglial damage and changed the electrophysiological properties in the CA1 region. Astroglial regeneration in the dentate gyrus and the stratum oriens of the CA1 region was found to originate from gliogenesis, while that in the entorhinal cortex and stratum radiatum of the CA1 region originated from in situ proliferation. These findings suggest that regional specific astroglial death/regeneration patterns may play an important role in the pathogenesis of temporal lobe epilepsy.

Funding information:
  • NIDDK NIH HHS - P01 DK26741(United States)

A quantitative study of spinothalamic neurons in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord.

  • Al-Khater KM
  • J. Comp. Neurol.
  • 2008 Nov 1

Literature context:


Abstract:

The major ascending outputs from superficial spinal dorsal horn consist of projection neurons in lamina I, together with neurons in laminae III-IV that express the neurokinin 1 receptor (NK1r) and have dendrites that enter the superficial laminae. Some neurons in each of these populations belong to the spinothalamic tract, which conveys nociceptive information via the thalamus to cortical areas involved in pain. A projection from the cervical superficial dorsal horn to the posterior triangular nucleus (PoT) has recently been identified. PoT is at the caudal end of the thalamus and was not included in injection sites in many previous retrograde tracing studies. We have injected various tracers (cholera toxin B subunit, Fluoro-Gold, and fluorescent latex microspheres) into the thalamus to estimate the number of spinothalamic neurons in each of these two populations, and to investigate their projection targets. Most lamina I and lamina III/IV NK1r-immunoreactive spinothalamic neurons in cervical and lumbar segments could be labeled from injections centered on PoT. Our results suggest that there are 90 lamina I spinothalamic neurons per side in C7 and 15 in L4 and that some of those in C7 only project to PoT. We found that 85% of the lamina III/IV NK1r-immunoreactive neurons in C6 and 17% of those in L5 belong to the spinothalamic tract, and these apparently project exclusively to the caudal thalamus, including PoT. Because PoT projects to second somatosensory and insular cortices, our results suggest that these are major targets for information conveyed by both these populations of spinothalamic neurons.

The medial paralemniscal nucleus and its afferent neuronal connections in rat.

  • Varga T
  • J. Comp. Neurol.
  • 2008 Nov 10

Literature context:


Abstract:

Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions.

Species differences in the expression of Ahi1, a protein implicated in the neurodevelopmental disorder Joubert syndrome, with preferential accumulation to stigmoid bodies.

  • Doering JE
  • J. Comp. Neurol.
  • 2008 Nov 10

Literature context:


Abstract:

Joubert syndrome (JBTS) is an autosomal recessive disorder characterized by cerebellum and brainstem malformations. Individuals with JBTS have abnormal breathing and eye movements, ataxia, hypotonia, and cognitive difficulty, and they display mirror movements. Mutations in the Abelson-helper integration site-1 gene (AHI1) cause JBTS in humans, suggesting that AHI1 is required for hindbrain development; however AHI1 may also be required for neuronal function. Support for this idea comes from studies demonstrating that the AHI1 locus is associated with schizophrenia. To gain further insight into the function of AHI1 in both the developing and mature central nervous system, we determined the spatial and temporal expression patterns of the gene products of AHI1 orthologs throughout development, in human, mouse, and zebrafish. Murine Ahi1 was distributed throughout the cytoplasm, dendrites, and axons of neurons, but was absent in glial cells. Ahi1 expression in the mouse brain was observed as early as embryonic day 10.5 and persisted into adulthood, with peak expression during the first postnatal week. Murine Ahi1 was observed in neurons of the hindbrain, midbrain, and ventral forebrain. Generally, the AHI1/Ahi1/ahi1 orthologs had a conserved distribution pattern in human, mouse, and zebrafish, but mouse Ahi1 was not present in the developing and mature cerebellum. Ahi1 was also observed consistently in the stigmoid body, a poorly characterized cytoplasmic organelle found in neurons. Overall, these results suggest roles for AHI1 in neurodevelopmental processes that underlie most of the neuroanatomical defects in JBTS, and perhaps in neuronal functions that contribute to schizophrenia.

Serine racemase is predominantly localized in neurons in mouse brain.

  • Miya K
  • J. Comp. Neurol.
  • 2008 Oct 20

Literature context:


Abstract:

D-Serine is the endogenous ligand for the glycine binding site of the N-methyl-D-aspartate (NMDA)-type glutamate receptor (GluR) channel and is involved in the regulation of synaptic plasticity, neural network formation, and neurodegenerative disorders. D-Serine is synthesized from L-serine by serine racemase (SR), which was first reported to be localized in astrocytes. However, recently, SR mRNA and its protein have been detected in neurons. In this study, we examined the SR distribution in the brain during postnatal development and in cultured cells by using novel SR knockout mice as negative controls. We found that SR is predominantly localized in pyramidal neurons in the cerebral cortex and hippocampal CA1 region. Double immunofluorescence staining revealed that SR signals colocalized with those of the neuron-specific nuclear protein, but not with the astrocytic markers glial fibrillary acid protein and 3-phosphoglycerate dehydrogenase. In the striatum, we observed SR expression in gamma-aminobutyric acid (GABA)ergic medium-spiny neurons. Furthermore, in the adult cerebellum, we detected weak but significant SR signals in GABAergic Purkinje cells. From these findings, we conclude that SR is expressed predominantly in many types of neuron in the brain and plays a key role in the regulation of brain functions under physiological and pathological conditions via the production of the neuromodulator D-serine.

Muscarinic-2 and orexin-2 receptors on GABAergic and other neurons in the rat mesopontine tegmentum and their potential role in sleep-wake state control.

  • Brischoux F
  • J. Comp. Neurol.
  • 2008 Oct 20

Literature context:


Abstract:

Acetylcholine (ACh) plays an important role in the promotion of paradoxical sleep (PS) with muscle atonia through the muscarinic-2 receptor (M2R) in the mesopontine tegmentum. Conversely, orexin (Orx or hypocretin) appears to be critical for the maintenance of waking with muscle tone through the orexin-2 (or hypocretin-B) receptor (Orx2R), which is lacking in dogs having narcolepsy with cataplexy. In dual-immunostained material viewed under fluorescence microscopy, we examined the presence and distribution of M2R or Orx2R labeling on all neuronal nuclei (NeuN)-stained neurons or on glutamic acid decarboxylase (GAD)-stained neurons through the mesopontine tegmentum. Applying stereological analysis, we determined that many neurons bear M2Rs on their membrane ( approximately 6,300), including relatively large, non-GABAergic cells, which predominate (>75%) in the oral and caudal pontine (PnO and PnC) reticular fields, and small, GABAergic cells ( approximately 2,800), which predominate (>80%) in the mesencephalic (Mes) reticular formation. Many neurons bear Orx2Rs on their membrane ( approximately 6,800), including relatively large, non-GABAergic cells, which predominate (>70%) through all reticular fields, and comparatively few GABAergic cells ( approximately 700). In triple-immunostained material viewed by confocal microscopy, many large neurons in PnO and PnC appear to bear both M2Rs and Orx2Rs on their membrane, indicating that ACh and Orx could exert opposing influences of inhibition vs. excitation on putative reticulo-spinal neurons and thus attenuate vs. facilitate activity and muscle tone. A few GABAergic cells bear both receptors and could as PS inhibitor neurons serve under these different influences to control PS effector neurons and accordingly gate PS and muscle atonia appropriately across sleep-wake states.

Funding information:
  • NIAMS NIH HHS - F32 AR054700(United States)

Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions.

  • Thomas LA
  • J. Comp. Neurol.
  • 2008 Sep 1

Literature context:


Abstract:

Cell-cell interactions through adhesion molecules play key roles in the development of the nervous system. Synaptic cell adhesion molecules (SynCAMs) comprise a group of four immunoglobulin (Ig) superfamily members that mediate adhesion and are prominently expressed in the brain. Although SynCAMs have been implicated in the differentiation of neurons, there has been no comprehensive analysis of their expression patterns. Here we examine the spatiotemporal expression patterns of SynCAMs by using reverse transcriptase-polymerase chain reaction, in situ hybridization, and immunohistological techniques. SynCAMs 1-4 are widely expressed throughout the developing and adult central nervous system. They are prominently expressed in neurons throughout the brain and are present in both excitatory and inhibitory neurons. Investigation of different brain regions in the developing and mature mouse brain indicates that each SynCAM exhibits a distinct spatiotemporal expression pattern. This is observed in all regions analyzed and is particularly notable in the cerebellum, where SynCAMs display highly distinct expression in cerebellar granule and Purkinje cells. These unique expression profiles are complemented by specific heterophilic adhesion patterns of SynCAM family members, as shown by cell overlay experiments. Three prominent interactions are observed, mediated by the extracellular domains of SynCAMs 1/2, 2/4, and 3/4. These expression and adhesion profiles of SynCAMs together with their previously reported functions in synapse organization indicate that SynCAM proteins contribute importantly to the synaptic circuitry of the central nervous system.

Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome.

  • Luuk H
  • J. Comp. Neurol.
  • 2008 Aug 20

Literature context:


Abstract:

Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. Patients with Wolfram syndrome display considerable clinical pleiomorphism, and symptoms such as neurological complications and psychiatric disorders are common. In the present study we have characterized Wfs1 expression pattern in the mouse central nervous system by using a combination of immunohistochemistry on wild-type mice and X-Gal staining of Wfs1 knockout mice with targeted insertion of the lacZ reporter. We identified a robust enrichment of Wfs1 protein in the central extended amygdala and ventral striatum. Prominent Wfs1 expression was seen in the hippocampal CA1 region, parasubiculum, superficial part of the second and third layers of the prefrontal cortex and proisocortical areas, hypothalamic magnocellular neurosecretory system, and central auditory pathway. Wfs1 expression was also detected in numerous brainstem nuclei and in laminae VIII and IX of the spinal cord. Wfs1-positive nerve fibers were found in the medial forebrain bundle, reticular part of the substantia nigra, globus pallidus, posterior caudate putamen, lateral lemniscus, alveus, fimbria, dorsal hippocampal commissure, subiculum, and to a lesser extent in the central sublenticular extended amygdala, compact part of substantia nigra, and ventral tegmental area. The neuroanatomical findings suggest that the lack of Wfs1 protein function can be related to several neurological and psychiatric symptoms found in Wolfram syndrome. Enrichment of Wfs1 protein in the central extended amygdala suggests a role in the modulation of anxiety and fear.

Funding information:
  • NIDCD NIH HHS - R01 DC004314-08(United States)

Postnatal changes in the Rexed lamination and markers of nociceptive afferents in the superficial dorsal horn of the rat.

  • Lorenzo LE
  • J. Comp. Neurol.
  • 2008 Jun 1

Literature context:


Abstract:

In this study, we investigated postnatal changes in Rexed's laminae and distribution of nociceptive afferents in the dorsal horn of the rat lumbar spinal cord at postnatal days 0, 5, 10, 15, 20, and 60. Transverse sections of the L4-L5 segments were processed for triple labeling with isolectin B4 (IB4)-binding as a marker of nonpeptidergic C-fibers, calcitonin gene-related peptide (CGRP) immunoreactivity to label peptidergic nociceptive afferents, and a fluorescent Nissl stain to visualize cells and lamination at different stages of postnatal development. The Nissl staining revealed that the thickness of lamina I (LI) and outer lamina II remained mostly unchanged from birth until adulthood. CGRP afferents terminated mostly in LI and the outer two-thirds of lamina II, whereas the termination area of fibers binding IB4 was centered on the middle one-third of lamina II at all ages studied. In absolute values, the overall width of the bands of intense CGRP and IB4 labeling increased with age but decreased as a percentage of the overall thickness of the dorsal horn with maturation. The overlap of CGRP termination area with that of IB4 afferents increased with age. The consequences of these findings are twofold. First, the size of the different laminae does not grow evenly across the dorsal horn. Second, CGRP and IB4 labeling cannot be considered per se to be reliable markers of lamination during development. These findings have implications for comparing data obtained in immature and mature tissues with respect to localization of structures in the dorsal horn.

Funding information:
  • NIGMS NIH HHS - R01 GM074057(United States)
  • NINDS NIH HHS - NS16446(United States)

CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain.

  • Bulloch K
  • J. Comp. Neurol.
  • 2008 Jun 10

Literature context:


Abstract:

The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.

Funding information:
  • NIGMS NIH HHS - GM 074746(United States)

Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis.

  • Noctor SC
  • J. Comp. Neurol.
  • 2008 May 1

Literature context:


Abstract:

Neocortical precursor cells undergo symmetric and asymmetric divisions while producing large numbers of diverse cortical cell types. In Drosophila, cleavage plane orientation dictates the inheritance of fate-determinants and the symmetry of newborn daughter cells during neuroblast cell divisions. One model for predicting daughter cell fate in the mammalian neocortex is also based on cleavage plane orientation. Precursor cell divisions with a cleavage plane orientation that is perpendicular with respect to the ventricular surface (vertical) are predicted to be symmetric, while divisions with a cleavage plane orientation that is parallel to the surface (horizontal) are predicted to be asymmetric neurogenic divisions. However, analysis of cleavage plane orientation at the ventricle suggests that the number of predicted neurogenic divisions might be insufficient to produce large amounts of cortical neurons. To understand factors that correlate with the symmetry of cell divisions, we examined rat neocortical precursor cells in situ through real-time imaging, marker analysis, and electrophysiological recordings. We find that cleavage plane orientation is more closely associated with precursor cell type than with daughter cell fate, as commonly thought. Radial glia cells in the VZ primarily divide with a vertical orientation throughout cortical development and undergo symmetric or asymmetric self-renewing divisions depending on the stage of development. In contrast, most intermediate progenitor cells divide in the subventricular zone with a horizontal orientation and produce symmetric daughter cells. We propose a model for predicting daughter cell fate that considers precursor cell type, stage of development, and the planar segregation of fate determinants.

Funding information:
  • NIMH NIH HHS - R01 MH091037(United States)

Early involvement of synapsin III in neural progenitor cell development in the adult hippocampus.

  • Kao HT
  • J. Comp. Neurol.
  • 2008 Apr 20

Literature context:


Abstract:

Synapsin III is a synaptic vesicle-associated protein that is expressed in cells of the subgranular layer of the hippocampal dentate gyrus, a brain region known to sustain substantial levels of neurogenesis into adulthood. Here we tested the hypothesis that synapsin III plays a role in adult neurogenesis with synapsin III knockout and wild-type mice. Immunocytochemistry of the adult hippocampal dentate gyrus revealed that synapsin III colocalizes with markers of neural progenitor cell development (nestin, PSA-NCAM, NeuN, and Tuj1) but did not colocalize with markers of mitosis (Ki67 and PCNA). Because neurogenesis consists of a number of stages, the proliferation, survival, and differentiation of neural progenitor cells were systematically quantitated in the hippocampal dentate gyrus of adult synapsin III knockout and wild-type mice. We found a 30% decrease in proliferation and a 55% increase in survival of neural progenitor cells in synapsin III knockout mice. We also observed a 6% increase in the number of neural progenitor cells that differentiated into neurons. No difference in the volume of the dentate gyrus was observed between synapsin III knockout and wild-type mice. Collectively, our results demonstrate a novel role for synapsin III in regulating the proliferation of neural progenitor cells in the adult hippocampal dentate gyrus. These findings suggest a distinct function for this synaptic vesicle protein, in addition to its role in neurotransmission.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Neuroendocrine secretory protein 55 (NESP55) in the spinal cord of rat: an immunocytochemical study.

  • Li Y
  • J. Comp. Neurol.
  • 2008 Feb 1

Literature context:


Abstract:

The immunohistochemical expression of a novel chromogranin-like protein, neuroendocrine secretory protein 55 (NESP55), in the rat spinal cord was investigated. NESP55-immunoreactive cells were detected in the ventral horn, intermediate laminae, and deep dorsal horn, comprising motoneurons, autonomic neurons, and interneurons throughout all spinal segments. Within laminae I-II of the dorsal horn, one or two NESP55-positive cells were often seen. Nerve fibers also contained NESP55 immunoreactivity (IR) and were particularly prominent in the ventral horn. No nerve terminals/varicosities appeared to contain NESP55 in any spinal lamina. Double-staining experiments revealed that a high proportion of the NESP55-positive neurons were cholinergic. Moreover, NESP55-IR in the motoneurons was evenly distributed in the whole cytoplasm with a finely granular appearance. In contrast, the fluorescent material in the preganglionic neurons was concentrated in the perinuclear region and largely overlapped with the trans-Golgi network marker TGN38. Our data provide detailed morphological information on the distribution of NESP55-IR in the rat spinal cord. Also, the differential intracellular expression of NESP55-IR in the spinal motoneurons and autonomic neurons suggests that NESP55 may be processed into different secretory granules and may be involved in both constitutive and regulated pathways in these neurons.

Funding information:
  • NIA NIH HHS - R01 AG022381(United States)
  • PHS HHS - R01 GMDC05606-01(United States)

Strong P2X4 purinergic receptor-like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis.

  • Casanovas A
  • J. Comp. Neurol.
  • 2008 Jan 1

Literature context:


Abstract:

The distribution of the P2X family of ATP receptors was analyzed in a rat model for amyotrophic lateral sclerosis (ALS) expressing mutated human superoxide dismutase (mSOD1(G93A)). We showed that strong P2X(4) immunoreactivity was selectively associated with degenerating motoneurons (MNs) in spinal cord ventral horn. Degenerating P2X(4)-positive MNs did not display apoptotic features such as chromatin condensation, positive TUNEL reaction, or active caspase 3 immunostaining. In contrast, these neurons showed other signs of abnormality, such as loss of the neuronal marker NeuN and recruitment of microglial cells with neuronophagic activity. Similar changes were observed in MNs from the cerebral cortex and brainstem in mSOD1(G93A) in both rat and mice. In addition, P2X(4) immunostaining demonstrated the existence of neuronal degeneration in the locus coeruleus, reticular formation, and Purkinje cells of the cerebellar cortex. It is suggested that abnormal trafficking and proteolytic processing of the P2X(4) receptor protein may underlie these changes.

Funding information:
  • NIGMS NIH HHS - R01 GM110041(United States)

GABAergic phenotype of periglomerular cells in the rodent olfactory bulb.

  • Panzanelli P
  • J. Comp. Neurol.
  • 2007 Jun 20

Literature context:


Abstract:

Periglomerular (PG) cells in the rodent olfactory bulb are heterogeneous anatomically and neurochemically. Here we investigated whether major classes of PG cells use gamma-aminobutyric acid (GABA) as a neurotransmitter. In addition to three known subtypes of PG cells expressing tyrosine hydroxylase (TH), calbindin D-28k (CB), and calretinin (CR), we identified a novel PG cell population containing the GABAA receptor alpha5 subunit. Consistent with previous studies in the rat, we found that TH-positive cells were also labeled with antibodies against GABA, whereas PG cells expressing CB or the alpha5 subunit were GABA-negative. Using GAD67-GFP knockin mice, we found that all PG cell subtypes expressed GAD67-GFP. Calretinin labeled the major fraction (44%) of green fluorescent protein (GFP)-positive cells, followed by TH (16%), CB (14%), and the alpha5 subunit (13%). There was no overlap between these neuronal populations, which accounted for approximately 85% of GAD67-GFP-positive cells. We then demonstrated that PG cells labeled for TH, CB, or CR established dendrodendritic synapses expressing glutamic acid decarboxylase (GAD) or the vesicular inhibitory amino acid transporter, VGAT, irrespective of their immunoreactivity for GABA. In addition, CB-, CR-, and TH-positive dendrites were apposed to GABAA receptor clusters containing the alpha1 or alpha3 subunits, which are found in mitral and tufted cells, and the alpha2 subunit, which is expressed by PG cells. Together, these findings indicate that all major subtypes of PG cells are GABAergic. In addition, they show that PG cells provide GABAergic input to the dendrites of principal neurons and are interconnected with other GABAergic interneurons, which most likely are other PG cells.

Funding information:
  • NINDS NIH HHS - NS065960(United States)
  • NINDS NIH HHS - NS07437(United States)

Localization of the transcriptional coactivator PGC-1alpha to GABAergic neurons during maturation of the rat brain.

  • Cowell RM
  • J. Comp. Neurol.
  • 2007 May 1

Literature context:


Abstract:

The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator 1alpha (PGC-1alpha) can activate a number of transcription factors to regulate mitochondrial biogenesis and cell-specific responses to cold, fasting, and exercise. Recent studies indicate that PGC-1alpha knockout mice exhibit behavioral abnormalities and progressive vacuolization in various brain regions. To investigate the roles for PGC-1alpha in the nervous system, we evaluated the temporal and cell-specific expression of PGC-1alpha in the normal developing rat brain. Western blot of whole brain homogenates with a PGC-1alpha-specific antibody revealed that PGC-1alpha protein was most abundant in the embryonic and early postnatal forebrain and cerebellum. Using quantitative reverse-transcriptase polymerase chain reaction (RT-PCR), we determined that PGC-1alpha mRNA expression increased most markedly between postnatal days 3 (P3) and 14 in the cortex, striatum, and hippocampus. Immunohistochemical and immunofluorescence analyses of brain tissue indicated that while PGC-1alpha was found in most neuronal populations from embryonic day 15 to P3, it was specifically concentrated in GABAergic populations from P3 to adulthood. Interestingly, PGC-1alpha colocalized with the developmentally regulated chemoattractant reelin in the cortex and hippocampus, and the survival-promoting transcription factor myocyte enhancing factor 2 was highly concentrated in GABAergic populations in the striatum and cerebellum at times of PGC-1alpha expression. These results implicate PGC-1alpha as a regulator of metabolism and/or survival in GABAergic neurons during a phase of mitochondrial and synaptic changes in the developing brain and suggest that PGC-1alpha may be a good target for increasing metabolism in GABAergic populations in neurodevelopmental and neurodegenerative disorders.

Funding information:
  • NINDS NIH HHS - R15 NS087606(United States)

Developmental origin and identity of song system neurons born during vocal learning in songbirds.

  • Scott BB
  • J. Comp. Neurol.
  • 2007 May 10

Literature context:


Abstract:

New neurons are added to the forebrain song control regions high vocal center (HVC) and Area X of juvenile songbirds but the identity and site of origin of these cells have not been fully characterized. We used oncoretroviral vectors to genetically label neuronal progenitors in different regions of the zebra finch lateral ventricle. A region corresponding to the mammalian medial and lateral ganglionic eminences generated medium spiny neurons found in Area X and in the striatum surrounding Area X, and at least two classes of interneurons found in HVC. In addition, our experiments indicate that the HVC projection neurons that project into nucleus robust nucleus of the arcopallium (RA) are born locally from the ventricular region immediately dorsal to HVC. The ability to genetically target neuron subpopulations that give rise to different song system cell types provides a tool for specific genetic manipulations of these cell types. In addition, our results suggest striking similarities between neurogenesis in the embryonic mammalian brain and in the brain of the juvenile songbird and provide further evidence for the existence of conserved cell types in the forebrain for birds and mammals.

Funding information:
  • NINDS NIH HHS - R01NS038752(United States)

Quantitative analysis of neuronal diversity in the mouse olfactory bulb.

  • Parrish-Aungst S
  • J. Comp. Neurol.
  • 2007 Apr 20

Literature context:


Abstract:

Olfactory sensory information is processed and integrated by circuits within the olfactory bulb. Golgi morphology suggests the olfactory bulb contains several major neuronal classes. However, an increasingly diverse collection of neurochemical markers have been localized in subpopulations of olfactory bulb neurons. While the mouse is becoming the animal model of choice for olfactory research, little is known about the proportions of neurons expressing and coexpressing different neurochemical markers in this species. Here we characterize neuronal populations in the mouse main olfactory bulb, focusing on glomerular populations. Immunofluorescent labeling for: 1) calretinin, 2) calbindin D-28K (CB), 3) parvalbumin, 4) neurocalcin, 5) tyrosine hydroxylase (TH), 6) the 67-kDa isoform of GAD (GAD67), and 7) the neuronal marker NeuN was performed in mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65kDa (GAD65) promoter. Using unbiased stereological cell counts we estimated the total numbers of cells and neurons in the bulb and the number and percentage of neurons expressing and coexpressing different neurochemical populations in each layer of the olfactory bulb. Use of a genetic label for GAD65 and immunohistochemistry for GAD67 identified a much larger percentage of GABAergic neurons in the glomerular layer (55% of all neurons) than previously recognized. Additionally, while many glomerular neurons expressing TH or CB coexpress GAD, the majority of these neurons preferentially express the GAD67 isoform. These data suggest that the chemospecific populations of neurons in glomeruli form distinct subpopulations and that GAD isoforms are preferentially regulated in different neurochemical cell types.

Funding information:
  • NHGRI NIH HHS - RM1 HG006193(United States)

Maturational sequence of newly generated neurons in the dentate gyrus of the young adult rhesus monkey.

  • Ngwenya LB
  • J. Comp. Neurol.
  • 2006 Sep 10

Literature context:


Abstract:

The generation of new neurons in the hippocampal dentate gyrus of adult mammals has been characterized in rodents, but the details of this process have not been described in the primate. Eleven young adult rhesus monkeys were given an injection of the DNA synthesis phase marker bromodeoxyuridine (BrdU) and killed at varying survival intervals (2 hours to 98 days). The immature neuronal marker TUC-4 (TOAD/Ulip/CRMP-4) was used to define three stages of morphological maturation. Stage I neurons had small somata and lacked dendrites. Stage II neurons had larger somata and short dendrites. Stage III neurons were similar in size to mature granule cells and had branching dendrites that extended into the molecular layer. Examination of TUC-4-positive immature neurons colabeled with BrdU indicated that stage I neurons first appeared 2 days after BrdU injection, stage II neurons at 14 days, and stage III neurons at 35 days. Electron microscopy of TUC-4-labeled cells showed that stage I cells had ultrastructural features of immature neurons, whereas stage III neurons were similar to mature granule cells and formed synapses in the molecular layer. This suggests that stage III neurons could potentially integrate into the circuitry of the dentate gyrus. This study shows that the maturational sequence for new neurons in the adult monkey is similar to that of the adult rodent; however, maturation takes a minimum of 5 weeks in the monkey, which is substantially longer than what has been reported in rodents.

Funding information:
  • Wellcome Trust - WT081682/Z/06/Z(United Kingdom)

Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex.

  • Navarro-Quiroga I
  • J. Comp. Neurol.
  • 2006 Aug 10

Literature context:


Abstract:

The rodent dentate gyrus (DG) is formed in the embryo when progenitor cells migrate from the dentate neuroepithelium to establish a germinal zone in the hilus and a secondary germinal matrix, near the fimbria, called the hippocampal subventricular zone (HSVZ). The developmental plasticity of progenitors within the HSVZ is not well understood. To delineate the migratory routes and fates of progenitors within this zone, we injected a replication-incompetent retrovirus, encoding the enhanced green fluorescent protein (EGFP), into the HSVZ of postnatal day 5 (P5) mice. Between P6 and P45, retrovirally-infected EGFP(+) of progenitors migrated into the DG, established a reservoir of progenitor cells, and differentiated into neurons and glia. By P6-7, EGFP(+) cells were observed migrating into the DG. Subsets of these EGFP(+) cells expressed Sox2 and Musashi-1, characteristic of neural stem cells. By P10, EGFP(+) cells assumed positions within the DG and expressed immature neuronal markers. By P20, many EGFP(+) cells expressed the homeobox prospero-like protein Prox1, an early and specific granule cell marker in the CNS, and extended mossy fiber projections into the CA3. A subset of non-neuronal EGFP(+) cells in the dentate gyrus acquired the morphology of astrocytes. Another subset included EGFP(+)/RIP(+) oligodendrocytes that migrated into the fimbria, corpus callosum, and cerebral cortex. Retroviral injections on P15 labeled very few cells, suggesting depletion of HSVZ progenitors by this age. These findings suggest that the early postnatal HSVZ progenitors are multipotent and migratory, and contribute to both dentate gyrus neurogenesis as well as forebrain gliogenesis.

Funding information:
  • NIDDK NIH HHS - R01 DK065806(United States)

Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats.

  • Kim BG
  • J. Comp. Neurol.
  • 2006 Jul 10

Literature context:


Abstract:

Transplantation of growth-permissive cells or tissues was used to bridge a lesion cavity and induce axonal growth in experimental spinal cord injury (SCI). Axonal interactions between host and transplant may be affected by upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) following various transplantation strategies. The extent of axonal growth and functional recovery after transplantation of embryonic spinal cord tissue decreases in adult compared to neonatal host. We hypothesized that CSPGs contribute to the decrease in the extent to which transplant supports axonal remodeling and functional recovery. Expression of CSPGs increased after overhemisection SCI in adult rats but not in neonates. Embryonic spinal cord transplant was surrounded by CSPGs deposited in host cord, and the interface between host and transplant seemed to contain a large amount of CSPGs. Intrathecally delivered chondroitinase ABC (C'ase) improved recovery of distal forelimb usage and skilled motor behavior after C4 overhemisection injury and transplantation in adults. This behavioral recovery was accompanied by an increased amount of raphespinal axons growing into the transplant, and raphespinal innervation to the cervical motor region was promoted by C'ase plus transplant. Moreover, C'ase increased the number of transplanted neurons that grew axons to the host cervical enlargement, suggesting that degradation of CSPGs supports remodeling not only of host axons but also axons from transplanted neurons. Our results suggest that CSPGs constitute an inhibitory barrier to prevent axonal interactions between host and transplant in adults, and degradation of the inhibitory barrier can potentiate transplant-mediated axonal remodeling and functional recovery after SCI.

Funding information:
  • NHGRI NIH HHS - R01 HG003985(United States)

The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain.

  • Liu Z
  • J. Comp. Neurol.
  • 2006 Jul 20

Literature context:


Abstract:

Amyotrophic lateral sclerosis (ALS) is a fatal adult human disease caused by motor neuron degeneration. Stem cell therapy might be a treatment for ALS. The adult mammalian forebrain has neural stem cells (NSCs) and neural progenitor cells (NPCs) in the anterior subventricular zone (SVZa), rostral migratory stream (RMS), olfactory bulb (OB) core, and dentate gyrus (DG). These cells could be used to rescue or replace degenerating upper and lower motor neurons through endogenous recruitment or autologous/allogenic transplantation. We evaluated the competency of forebrain NSCs and NPCs in transgenic (tg) mice harboring human mutant superoxide dismutase-1 (mSOD1), a model of ALS. Tg human wild-type SOD1 (wtSOD1) mice and non-tg mice were controls. Bromodeoxyuridine (BrdU) labeling of cells, a marker for cell proliferation and other events, was reduced in a niche-specific pattern in presymptomatic and symptomatic mice, with the SVZa having greater reductions than the RMS, OB, and DG. Different NSC and NPC complements were evaluated by localizing nestin, neural cell adhesion molecule, distalless-2 transcription factor, vimentin, and glial fibrillary acidic protein. In symptomatic mice, NSC markers were reduced, whereas NPC markers were unchanged or elevated. Neurogenesis was preserved in symptomatic mSOD1 mice. NSC/NPC competence assessment in vitro revealed that mSOD1 SVZa cells had the ability to proliferate and form neurospheres but had an impaired response to mitogen stimulation. We conclude that adult mSOD1 ALS mice have abnormalities in forebrain NSCs, but the essential features of NSC/NPCs remained in presymptomatic and symptomatic mice.

Funding information:
  • NIDDK NIH HHS - U01DK089571(United States)