X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Human/Mouse Active Caspase-3 Affinity Purified PAb antibody

RRID:AB_2243952

Antibody ID

AB_2243952

Target Antigen

Human/Mouse Active Caspase-3 Affinity Purified PAb human/mouse

Proper Citation

(R and D Systems Cat# AF835, RRID:AB_2243952)

Clonality

polyclonal antibody

Comments

vendor recommendations: IgG Immunocytochemistry; Immunocytochemistry; Immunohistochemistry

Host Organism

rabbit

Vendor

R and D Systems

hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate.

  • Ozair MZ
  • Cell Stem Cell
  • 2018 Jul 5

Literature context:


Abstract:

Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.

Funding information:
  • NIAID NIH HHS - AI020211(United States)

PRC1 Fine-tunes Gene Repression and Activation to Safeguard Skin Development and Stem Cell Specification.

  • Cohen I
  • Cell Stem Cell
  • 2018 May 3

Literature context:


Abstract:

Polycomb repressive complexes (PRCs) 1 and 2 are essential chromatin regulators of cell identity. PRC1, a dominant executer of Polycomb-mediated control, functions as multiple sub-complexes that possess catalytic-dependent H2AK119 mono-ubiquitination (H2AK119ub) and catalytic-independent activities. Here, we show that, despite its well-established repressor functions, PRC1 binds to both silent and active genes. Through in vivo loss-of-function studies, we show that global PRC1 function is essential for skin development and stem cell (SC) specification, whereas PRC1 catalytic activity is dispensable. Further dissection demonstrated that both canonical and non-canonical PRC1 complexes bind to repressed genes, marked by H2AK119ub and PRC2-mediated H3K27me3. Interestingly, loss of canonical PRC1, PRC1 catalytic activity, or PRC2 leads to expansion of mechanosensitive Merkel cells in neonatal skin. Non-canonical PRC1 complexes, however, also bind to and promote expression of genes critical for skin development and SC formation. Together, our findings highlight PRC1's diverse roles in executing a precise developmental program.

Funding information:
  • NIAMS NIH HHS - R00 AR057817()
  • NIAMS NIH HHS - R01 AR063724()
  • NINDS NIH HHS - R21 NS055261(United States)

Astrocyte truncated-TrkB mediates BDNF antiapoptotic effect leading to neuroprotection.

  • Saba J
  • J. Neurochem.
  • 2018 May 31

Literature context:


Abstract:

Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase-3 and p53 expression. The antiapoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium and Src. BDNF reduced reactive oxygen species (ROS) levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte conditioned media (ACM) from untreated astrocytes partially protected PC12 neurons whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced ROS levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. This article is protected by copyright. All rights reserved.

Funding information:
  • NCI NIH HHS - U01 CA084967-05(United States)

Prenatal Dexamethasone Exposure Induced Ovarian Developmental Toxicity and Transgenerational Effect in Rat Offspring.

  • Lv F
  • Endocrinology
  • 2018 Mar 1

Literature context:


Abstract:

Prenatal dexamethasone exposure (PDE) induces multiorgan developmental toxicities in offspring. Here we verified the transgenerational inheritance effect of ovarian developmental toxicity by PDE and explored its intrauterine programming mechanism. Pregnant rats subcutaneously received 0.2 mg/kg/d dexamethasone from gestational day (GD) 9 to GD20. A subgroup was euthanized for fetuses on GD20, and the other group went on to spontaneous labor to produce F1 offspring. The adult F1 females were mated with normal males to produce the F2 and F3 generations. The PDE fetal rats exhibited ovarian mitochondrial structural abnormalities, decreased serum estradiol (E2) levels, and lower expression levels of ovarian steroidogenic factor 1 (SF1), steroidal synthetases, and insulinlike growth factor 1 (IGF1). On postnatal week (PW) 6 and PW12, the PDE F1 offspring showed altered reproductive behavior and ovarian morphology. The serum E2 level and ovarian expression of SF1, steroidal synthetases, and IGF1 were also decreased. The adult F3 offspring showed alterations in reproductive phenotype and ovarian IGF1, SF1, and steroidal synthetase expression similar to those of F1. PDE induces ovarian developmental toxicity and transgenerational inheritance effects. The mechanism by which this toxicity occurs may be related to PDE-induced low-functional programming of fetal ovarian IGF1/SF1 and steroidal synthetases.

Funding information:
  • NIDCD NIH HHS - R01DC012931(United States)

Serotonergic Projections Govern Postnatal Neuroblast Migration.

  • García-González D
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

In many vertebrates, postnatally generated neurons often migrate long distances to reach their final destination, where they help shape local circuit activity. Concerted action of extrinsic stimuli is required to regulate long-distance migration. Some migratory principles are evolutionarily conserved, whereas others are species and cell type specific. Here we identified a serotonergic mechanism that governs migration of postnatally generated neurons in the mouse brain. Serotonergic axons originating from the raphe nuclei exhibit a conspicuous alignment with subventricular zone-derived neuroblasts. Optogenetic axonal activation provides functional evidence for serotonergic modulation of neuroblast migration. Furthermore, we show that the underlying mechanism involves serotonin receptor 3A (5HT3A)-mediated calcium influx. Thus, 5HT3A receptor deletion in neuroblasts impaired speed and directionality of migration and abolished calcium spikes. We speculate that serotonergic modulation of postnatally generated neuroblast migration is evolutionarily conserved as indicated by the presence of serotonergic axons in migratory paths in other vertebrates.

Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis.

  • Dumitru I
  • Neuron
  • 2017 Apr 5

Literature context:


Abstract:

Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.

EphA4 Regulates Neuroblast and Astrocyte Organization in a Neurogenic Niche.

  • Todd KL
  • J. Neurosci.
  • 2017 Mar 22

Literature context:


Abstract:

Significant migration cues are required to guide and contain newly generated rodent subventricular zone (SVZ) neuroblasts as they transit along the lateral ventricles and then through the anterior forebrain to their ultimate site of differentiation in the olfactory bulbs (OBs). These cues enforce strict neuroblast spatial boundaries within the dense astroglial meshwork of the SVZ and rostral migratory stream (RMS), yet are permissive to large-scale neuroblast migration. Therefore, the molecular mechanisms that define these cues and control dynamic interactions between migratory neuroblasts and surrounding astrocytes are of particular interest. We found that deletion of EphA4 and specifically ablation of EphA4 kinase activity resulted in misaligned neuroblasts and disorganized astrocytes in the RMS/SVZ, linking EphA4 forward signaling to SVZ and RMS spatial organization, orientation, and regulation. In addition, within a 3 week period, there was a significant reduction in the number of neuroblasts that reached the OB and integrated into the periglomerular layer, revealing a crucial role for EphA4 in facilitating efficient neuroblast migration to the OB. Single-cell analysis revealed that EPHA4 and its EFN binding partners are expressed by subpopulations of neuroblasts and astrocytes within the SVZ/RMS/OB system resulting in a cell-specific mosaic, suggesting complex EphA4 signaling involving both homotypic and heterotypic cell-cell interactions. Together, our studies reveal a novel molecular mechanism involving EphA4 signaling that functions in stem cell niche organization and ultimately neuroblast migration in the anterior forebrain.SIGNIFICANCE STATEMENT The subventricular zone neurogenic stem cell niche generates highly migratory neuroblasts that transit the anterior forebrain along a defined pathway to the olfactory bulb. Postnatal and adult brain organization dictates strict adherence to a narrow migration corridor. Subventricular zone neuroblasts are aligned in tightly bundled chains within a meshwork of astrocytes; however, the cell-cell cues that organize this unique, cell-dense migration pathway are largely unknown. Our studies show that forward signaling through the EphA4 tyrosine kinase receptor, mediated by ephrins expressed by subpopulations of neuroblasts and astrocytes, is required for compact, directional organization of neuroblasts and astrocytes within the pathway and efficient transit of neuroblasts through the anterior forebrain to the olfactory bulb.

Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration.

  • Moyon S
  • J. Neurosci.
  • 2015 Jan 7

Literature context:


Abstract:

The declining efficiency of myelin regeneration in individuals with multiple sclerosis has stimulated a search for ways by which it might be therapeutically enhanced. Here we have used gene expression profiling on purified murine oligodendrocyte progenitor cells (OPCs), the remyelinating cells of the adult CNS, to obtain a comprehensive picture of how they become activated after demyelination and how this enables them to contribute to remyelination. We find that adult OPCs have a transcriptome more similar to that of oligodendrocytes than to neonatal OPCs, but revert to a neonatal-like transcriptome when activated. Part of the activation response involves increased expression of two genes of the innate immune system, IL1β and CCL2, which enhance the mobilization of OPCs. Our results add a new dimension to the role of the innate immune system in CNS regeneration, revealing how OPCs themselves contribute to the postinjury inflammatory milieu by producing cytokines that directly enhance their repopulation of areas of demyelination and hence their ability to contribute to remyelination.

Funding information:
  • NINDS NIH HHS - R01 NS014841(United States)

Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development.

  • Jakovcevski I
  • J. Comp. Neurol.
  • 2009 Apr 10

Literature context:


Abstract:

Several L1-related adhesion molecules, expressed in a well-coordinated temporospatial pattern during development, are important for fine tuning of specific cerebellar circuitries. We tested the hypothesis that CHL1, the close homologue of L1, abundantly expressed in the developing and adult cerebellum, is also required for normal cerebellar histogenesis. We found that constitutive ablation of CHL1 in mice caused significant loss (20-23%) of Purkinje and granule cells in the mature 2-month-old cerebellum. The ratio of stellate/basket interneurons to Purkinje cells was abnormally high (+38%) in CHL1-deficient (CHL1-/-) mice compared with wild-type (CHL1+/+) littermates, but the gamma-aminobutyric acid (GABA)ergic synaptic inputs to Purkinje cell bodies and dendrites were normal, as were numbers of Golgi interneurons, microglia, astrocytes, and Bergmann glia. Purkinje cell loss occurred before the first postnatal week and was associated with enhanced apoptosis, presumably as a consequence of CHL1 deficiency in afferent axons. In contrast, generation of granule cells, as indicated by in vivo analyses of cell proliferation and death, was unaffected in 1-week-old CHL1-/- mice, but numbers of migrating granule cells in the molecular layer were increased. This increase was likely related to retarded cell migration because CHL1-/- granule cells migrated more slowly than CHL1+/+ cells in vitro, and Bergmann glial processes guiding migration in vivo expressed CHL1 in wild-type mice. Granule cell deficiency in adult CHL1-/- mice appeared to result from decreased precursor cell proliferation after the first postnatal week. Our results indicate that CHL1 promotes Purkinje and granule cell survival and granule cell migration during cerebellar development.

Funding information:
  • NICHD NIH HHS - P30 HD15052(United States)

Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse.

  • Baker KL
  • J. Comp. Neurol.
  • 2006 Oct 20

Literature context:


Abstract:

The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest neurogenic zone in the adult brain, the subventricular zone (SVZ), lies adjacent to the lateral wall of the lateral ventricle and is responsible for replacement of interneuron populations within the olfactory bulb. Initial gross observation of the anterior forebrain in MRL mice revealed enlarged lateral ventricles; however, little neurodegeneration was detected within the SVZ or surrounding tissues. Instead, increased proliferation within the SVZ was observed, based on incorporation of the thymidine analogue bromodeoxyuridine. Closer examination using electron microscopy revealed that a significant number of SVZ astrocytes interpolated within the ependyma and established contact with the ventricle. In addition, subependymal, protuberant nests of cells, consisting primarily of neuroblasts, were found along the anterior SVZ of MRL mice. Whole mounts of the lateral wall of the lateral ventricle stained for the neuroblast marker doublecortin revealed normal formation of chains of migratory neuroblasts along the entire wall and introduction of enhanced green fluorescent protein-tagged retrovirus into the lateral ventricles confirmed that newly generated neuroblasts were able to track into the olfactory bulb.

Funding information:
  • NCI NIH HHS - RL1 CA133834(United States)