X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Chicken myosin, sarcomere Antibody, Unconjugated

RRID:AB_2147781

Antibody ID

AB_2147781

Target Antigen

Mouse Chicken myosin sarcomere mammalian, avian and amphibian, chicken/bird, porcine, sheep, donkey, goat, horse, mouse, rabbit, guinea pig, human, bovine, non-human primate, rat, hamster, other mammalian, xenopus/amphibian, canine, feline

Proper Citation

(DSHB Cat# MF 20, RRID:AB_2147781)

Clonality

unknown

Comments

manufacturer recommendations: IgG2b Western Blot; Immunoblotting

Host Organism

mouse

Vendor

DSHB Go To Vendor

Cat Num

MF 20

Publications that use this research resource

Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity.

  • Chan SS
  • Cell Stem Cell
  • 2018 Jul 5

Literature context:


Abstract:

Derivation of functional skeletal muscle stem cells from pluripotent cells without genetic modification has proven elusive. Here we show that teratomas formed in adult skeletal muscle differentiate in vivo to produce large numbers of α7-Integrin+ VCAM-1+ myogenic progenitors. When FACS-purified and transplanted into diseased muscles, mouse teratoma-derived myogenic progenitors demonstrate very high engraftment potential. As few as 40,000 cells can reconstitute ∼80% of the tibialis anterior muscle volume. Newly generated fibers are innervated, express adult myosins, and ameliorate dystrophy-related force deficit and fatigability. Teratoma-derived myogenic progenitors also contribute quiescent PAX7+ muscle stem cells, enabling long-term maintenance of regenerated muscle and allowing muscle regeneration in response to subsequent injuries. Transcriptional profiling reveals that teratoma-derived myogenic progenitors undergo embryonic-to-adult maturation when they contribute to the stem cell compartment of regenerated muscle. Thus, teratomas are a rich and accessible source of potent transplantable skeletal muscle stem cells. VIDEO ABSTRACT.

Funding information:
  • Wellcome Trust - 098330(United Kingdom)

Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster.

  • Wüst S
  • Cell Metab.
  • 2018 May 1

Literature context:


Abstract:

Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.

Funding information:
  • Wellcome Trust - EGA16107(United Kingdom)

Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish.

  • Guerra A
  • Elife
  • 2018 May 15

Literature context:


Abstract:

The ultimate formation of a four-chambered heart allowing the separation of the pulmonary and systemic circuits was key for the evolutionary success of tetrapods. Complex processes of cell diversification and tissue morphogenesis allow the left and right cardiac compartments to become distinct but remain poorly understood. Here, we describe an unexpected laterality in the single zebrafish atrium analogous to that of the two atria in amniotes, including mammals. This laterality appears to derive from an embryonic antero-posterior asymmetry revealed by the expression of the transcription factor gene meis2b. In adult zebrafish hearts, meis2b expression is restricted to the left side of the atrium where it controls the expression of pitx2c, a regulator of left atrial identity in mammals. Altogether, our studies suggest that the multi-chambered atrium in amniotes arose from a molecular blueprint present before the evolutionary emergence of cardiac septation and provide insights into the establishment of atrial asymmetry.

Funding information:
  • American Heart Association - 15GPSPG238300004()
  • Deutsche Forschungsgemeinschaft - SFB/TR23()
  • Max-Planck-Gesellschaft - Open-access funding()
  • National Institutes of Health - HL54737()
  • National Institutes of Health - K08HL125945()
  • Netherlands Organization for International Cooperation in Higher Education - NL.11/379()
  • NIAID NIH HHS - R01 AI092305(United States)

Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential.

  • Judson RN
  • Cell Stem Cell
  • 2018 Feb 1

Literature context:


Abstract:

The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.

Funding information:
  • BLRD VA - I01 BX002324()
  • NCI NIH HHS - R01 CA073808(United States)
  • NIA NIH HHS - P01 AG036695()
  • NIAMS NIH HHS - R21 AR071039()
  • RRD VA - I01 RX001222()

The Ancient Origins of Neural Substrates for Land Walking.

  • Jung H
  • Cell
  • 2018 Feb 8

Literature context:


Abstract:

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.

Funding information:
  • NCI NIH HHS - P30 CA016087()
  • NIDCD NIH HHS - R00 DC012775()
  • NIMH NIH HHS - T32 MH096331()
  • NINDS NIH HHS - R01 NS062822()
  • NINDS NIH HHS - R21 NS099933()
  • Wellcome Trust - 077368(United Kingdom)

Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions.

  • Chopra A
  • Dev. Cell
  • 2018 Jan 8

Literature context:


Abstract:

Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis.

Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors.

  • Drummond CJ
  • Cancer Cell
  • 2018 Jan 8

Literature context:


Abstract:

Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.

Funding information:
  • NCI NIH HHS - K08 CA151649()
  • NCI NIH HHS - P30 CA021765()
  • NCI NIH HHS - R01 CA216344()
  • NIAID NIH HHS - R21AI094333(United States)

CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart.

  • Blech-Hermoni Y
  • Dev. Dyn.
  • 2018 Jan 2

Literature context:


Abstract:

BACKGROUND: CUG-BP, Elav-like family member 1 (CELF1) is a multifunctional RNA binding protein found in a variety of adult and embryonic tissues. In the heart, CELF1 is found exclusively in the myocardium. However, the roles of CELF1 during cardiac development have not been completely elucidated. RESULTS: Myofibrillar organization is disrupted and proliferation is reduced following knockdown of CELF1 in cultured chicken primary embryonic cardiomyocytes. In vivo knockdown of Celf1 in developing Xenopus laevis embryos resulted in myofibrillar disorganization and a trend toward reduced proliferation in heart muscle, indicating conserved roles for CELF1 orthologs in embryonic cardiomyocytes. Loss of Celf1 also resulted in morphogenetic abnormalities in the developing heart and gut. Using optical coherence tomography, we showed that cardiac contraction was impaired following depletion of Celf1, while heart rhythm remained unperturbed. In contrast to cardiac muscle, loss of Celf1 did not disrupt myofibril organization in skeletal muscle cells, although it did lead to fragmentation of skeletal muscle bundles. CONCLUSIONS: CELF1 is required for normal myofibril organization, proliferation, morphogenesis, and contractile performance in the developing myocardium. Developmental Dynamics 245:854-873, 2016. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NINDS NIH HHS - R01 NS092786(United States)

A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3α and GSK3β in Regulating Embryonic Stem Cell Fate.

  • Chen X
  • Dev. Cell
  • 2017 Dec 4

Literature context:


Abstract:

Glycogen synthase kinase 3 (GSK3) plays a central role in diverse cellular processes. GSK3 has two mammalian isozymes, GSK3α and GSK3β, whose functions remain ill-defined because of a lack of inhibitors that can distinguish between the two highly homologous isozymes. Here, we show that GSK3α and GSK3β can be selectively inhibited in mouse embryonic stem cells (ESCs) using a chemical-genetic approach. Selective inhibition of GSK3β is sufficient to maintain mouse ESC self-renewal, whereas GSK3α inhibition promotes mouse ESC differentiation toward neural lineages. Genome-wide transcriptional analysis reveals that GSK3α and GSK3β have distinct sets of downstream targets. Furthermore, selective inhibition of individual GSK3 isozymes yields distinct phenotypes from gene deletion, highlighting the power of the chemical-genetic approach in dissecting kinase catalytic functions from the protein's scaffolding functions. Our study opens new avenues for defining GSK3 isozyme-specific functions in various cellular processes.

Funding information:
  • NICHD NIH HHS - T32 HD060549()
  • NINDS NIH HHS - R01 NS048276(United States)

Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis.

  • Goddard LM
  • Dev. Cell
  • 2017 Nov 6

Literature context:


Abstract:

Hemodynamic forces play an essential epigenetic role in heart valve development, but how they do so is not known. Here, we show that the shear-responsive transcription factor KLF2 is required in endocardial cells to regulate the mesenchymal cell responses that remodel cardiac cushions to mature valves. Endocardial Klf2 deficiency results in defective valve formation associated with loss of Wnt9b expression and reduced canonical WNT signaling in neighboring mesenchymal cells, a phenotype reproduced by endocardial-specific loss of Wnt9b. Studies in zebrafish embryos reveal that wnt9b expression is similarly restricted to the endocardial cells overlying the developing heart valves and is dependent upon both hemodynamic shear forces and klf2a expression. These studies identify KLF2-WNT9B signaling as a conserved molecular mechanism by which fluid forces sensed by endothelial cells direct the complex cellular process of heart valve development and suggest that congenital valve defects may arise due to subtle defects in this mechanotransduction pathway.

Funding information:
  • Cancer Research UK - C7845/A10066(United Kingdom)
  • European Research Council - 682938()
  • NHLBI NIH HHS - R01 HL094326()
  • NHLBI NIH HHS - T32 HL007954()

The Proprioceptive System Masterminds Spinal Alignment: Insight into the Mechanism of Scoliosis.

  • Blecher R
  • Dev. Cell
  • 2017 Aug 21

Literature context:


Abstract:

Maintaining posture requires tight regulation of the position and orientation of numerous spinal components. Yet, surprisingly little is known about this regulatory mechanism, whose failure may result in spinal deformity as in adolescent idiopathic scoliosis. Here, we use genetic mouse models to demonstrate the involvement of proprioception in regulating spine alignment. Null mutants for Runx3 transcription factor, which lack TrkC neurons connecting between proprioceptive mechanoreceptors and spinal cord, developed peripubertal scoliosis not preceded by vertebral dysplasia or muscle asymmetry. Deletion of Runx3 in the peripheral nervous system or specifically in peripheral sensory neurons, or of enhancer elements driving Runx3 expression in proprioceptive neurons, induced a similar phenotype. Egr3 knockout mice, lacking muscle spindles, but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types may be required for this regulatory mechanism. These findings uncover a central role for the proprioceptive system in maintaining spinal alignment.

Funding information:
  • NIDA NIH HHS - DP2 DA035149(United States)

Spin infection enables efficient gene delivery to muscle stem cells.

  • Kodaka Y
  • BioTechniques
  • 2017 Aug 1

Literature context:


Abstract:

Viral vector-mediated foreign gene expression in cultured cells has been extensively used in stem cell studies to explore gene function. However, it is difficult to obtain high-quality stem cells and primary cells after viral vector infection. Here, we describe a new protocol for high-efficiency retroviral infection of primary muscle stem cell (satellite cell) cultures. We compared multiple commercially available transfection reagents to determine which was optimal for retroviral infections of primary myoblasts. Centrifugation force was also tested, and a spin infection protocol with centrifugation at 2800 × g for 90 min had the highest infection efficiency for primary myoblasts. We confirmed that infected muscle stem cells maintain cell proliferation and the capacity for in vitro and in vivo myogenic differentiation. Our new, efficient retroviral infection protocol for muscle stem cells can be applied to molecular biology experiments as well as translational studies.

Funding information:
  • NIAMS NIH HHS - R01 AR062142()
  • NIAMS NIH HHS - R21 AR070319()

CLOCK and BMAL1 Regulate Muscle Insulin Sensitivity via SIRT1 in Male Mice.

  • Liu J
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Circadian misalignment induces insulin resistance in both human and animal models, and skeletal muscle is the largest organ response to insulin. However, how circadian clock regulates muscle insulin sensitivity and the underlying molecular mechanisms are still largely unknown. Here we show circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1, two core circadian transcription factors, are down-regulated in insulin-resistant C2C12 myotubes and mouse skeletal muscle. Furthermore, insulin signaling is attenuated in the skeletal muscle of Clock(Δ19/Δ19) mice, and knockdown of CLOCK or BMAL1 by small interfering RNAs induces insulin resistance in C2C12 myotubes. Consistently, ectopic expression of CLOCK and BMAL1 improves insulin sensitivity in C2C12 myotubes. Moreover, CLOCK and BMAL1 regulate the expression of sirtuin 1 (SIRT1), an important regulator of insulin sensitivity, in C2C12 myotubes and mouse skeletal muscle, and two E-box elements in Sirt1 promoter are responsible for its CLOCK- and BMAL1-dependent transcription in muscle cells. Further studies show that CLOCK and BMAL1 regulate muscle insulin sensitivity through SIRT1. In addition, we find that BMAL1 and SIRT1 are decreased in the muscle of mice maintained in constant darkness, and resveratrol supplementation activates SIRT1 and improves insulin sensitivity. All these data demonstrate that CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1, and activation of SIRT1 might be a potential valuable strategy to attenuate muscle insulin resistance related to circadian misalignment.

Funding information:
  • NCI NIH HHS - T32 CA130807(United States)

The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration.

  • Xiong G
  • Elife
  • 2017 Mar 23

Literature context:


Abstract:

Regeneration of skeletal muscle in adults is mediated by satellite stem cells. Accumulation of misfolded proteins triggers endoplasmic reticulum stress that leads to unfolded protein response (UPR). The UPR is relayed to the cell through the activation of PERK, IRE1/XBP1, and ATF6. Here, we demonstrate that levels of PERK and IRE1 are increased in satellite cells upon muscle injury. Inhibition of PERK, but not the IRE1 arm of the UPR in satellite cells inhibits myofiber regeneration in adult mice. PERK is essential for the survival and differentiation of activated satellite cells into the myogenic lineage. Deletion of PERK causes hyper-activation of p38 MAPK during myogenesis. Blocking p38 MAPK activity improves the survival and differentiation of PERK-deficient satellite cells in vitro and muscle formation in vivo. Collectively, our results suggest that the PERK arm of the UPR plays a pivotal role in the regulation of satellite cell homeostasis during regenerative myogenesis.

Funding information:
  • NIA NIH HHS - R01 AG029623()
  • NIAMS NIH HHS - R01 AR059810()
  • NIAMS NIH HHS - R01 AR068313()

Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

  • Wagner I
  • Dev. Cell
  • 2017 Mar 27

Literature context:


Abstract:

Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle.

Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases.

  • Sato AY
  • Endocrinology
  • 2017 Mar 1

Literature context:


Abstract:

Glucocorticoid excess, either endogenous with diseases of the adrenal gland, stress, or aging or when administered for immunosuppression, induces bone and muscle loss, leading to osteopenia and sarcopenia. Muscle weakness increases the propensity for falling, which, combined with the lower bone mass, increases the fracture risk. The mechanisms underlying glucocorticoid-induced bone and muscle atrophy are not completely understood. We have demonstrated that the loss of bone and muscle mass, decreased bone formation, and reduced muscle strength, hallmarks of glucocorticoid excess, are accompanied by upregulation in both tissues in vivo of the atrophy-related genes atrogin1, MuRF1, and MUSA1. These are E3 ubiquitin ligases traditionally considered muscle-specific. Glucocorticoids also upregulated atrophy genes in cultured osteoblastic/osteocytic cells, in ex vivo bone organ cultures, and in muscle organ cultures and C2C12 myoblasts/myotubes. Furthermore, glucocorticoids markedly increased the expression of components of the Notch signaling pathway in muscle in vivo, ex vivo, and in vitro. In contrast, glucocorticoids did not increase Notch signaling in bone or bone cells. Moreover, the increased expression of atrophy-related genes in muscle, but not in bone, and the decreased myotube diameter induced by glucocorticoids were prevented by inhibiting Notch signaling. Thus, glucocorticoids activate different mechanisms in bone and muscle that upregulate atrophy-related genes. However, the role of these genes in the effects of glucocorticoids in bone is unknown. Nevertheless, these findings advance our knowledge of the mechanism of action of glucocorticoids in the musculoskeletal system and provide the basis for novel therapies to prevent glucocorticoid-induced atrophy of bone and muscle.

Funding information:
  • BLRD VA - I01 BX002104()
  • NCI NIH HHS - R01 CA122596()
  • NHLBI NIH HHS - T35 HL110854()
  • NIAMS NIH HHS - R01 AR059357()
  • NIAMS NIH HHS - T32 AR065971()

Muscle Fibers Secrete FGFBP1 to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS.

  • Taetzsch T
  • J. Neurosci.
  • 2017 Jan 4

Literature context:


Abstract:

The identity of muscle secreted factors critical for the development and maintenance of neuromuscular junctions (NMJs) remains largely unknown. Here, we show that muscle fibers secrete and concentrate the fibroblast growth factor binding protein 1 (FGFBP1) at NMJs. Although FGFBP1 expression increases during development, its expression decreases before NMJ degeneration during aging and in SOD1G93A mice, a mouse model for amyotrophic lateral sclerosis (ALS). Based on these findings, we examined the impact of deleting FGFBP1 on NMJs. In the absence of FGFBP1, NMJs exhibit structural abnormalities in developing and middle age mice. Deletion of FGFBP1 from SOD1G93A mice also accelerates NMJ degeneration and death. Based on these findings, we sought to identify the mechanism responsible for decreased FGFBP1 in stressed skeletal muscles. We show that FGFBP1 expression is inhibited by increased accumulation of the transforming growth factor-β1 (TGF-β1) in skeletal muscles and at their NMJs. These findings suggest that targeting the FGFBP1 and TGF-β1 signaling axis holds promise for slowing age- and disease-related degeneration of NMJs. SIGNIFICANCE STATEMENT: The neuromuscular junction (NMJ) is critical for all voluntary movement. Its malformation during development and degeneration in adulthood impairs motor function. Therefore, it is important to identify factors that function to maintain the structural integrity of NMJs. We show that muscle fibers secrete and concentrate the fibroblast growth factor binding protein 1 (FGFBP1) at NMJs. However, FGFBP1 expression decreases in skeletal muscles during aging and before NMJ degeneration in SOD1G93A mice, a mouse model for amyotrophic lateral sclerosis. We show that transforming growth factor-β1 is responsible for the decreased levels of FGFBP1. Importantly, we demonstrate critical roles for FGFBP1 at NMJs in developing, aging and SOD1G93A mice.

Funding information:
  • NIA NIH HHS - R56 AG051501()
  • NINDS NIH HHS - K01 NS085071()

TIS7 induces transcriptional cascade of methylosome components required for muscle differentiation.

  • Lammirato A
  • BMC Biol.
  • 2016 Oct 25

Literature context:


Abstract:

BACKGROUND: TPA Induced Sequence 7 acts as a transcriptional co-regulator controlling the expression of genes involved in differentiation of various cell types, including skeletal myoblasts. We and others have shown that TIS7 regulates adult myogenesis through MyoD, one of the essential myogenic regulatory factors. RESULTS: Here, we present data identifying ICln as the specific, novel protein downstream of TIS7 controlling myogenesis. We show that TIS7/ICln epigenetically regulate myoD expression controlling protein methyl transferase activity. In particular, ICln regulates MyoD expression via its interaction with PRMT5 by an epigenetic modification that utilizes symmetrical di-methylation of histone H3 on arginine 8. We provide multiple evidences that TIS7 directly binds DNA, which is a functional feature necessary for its role in transcriptional regulation. CONCLUSION: We present here a molecular insight into TIS7-specific control of MyoD gene expression and thereby skeletal muscle differentiation.

Funding information:
  • NIDCD NIH HHS - R01 DC011184(United States)

Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice.

  • Hayashi S
  • Elife
  • 2016 Oct 15

Literature context:


Abstract:

Krüppel-like factor 5 (Klf5) is a zinc-finger transcription factor that controls various biological processes, including cell proliferation and differentiation. We show that Klf5 is also an essential mediator of skeletal muscle regeneration and myogenic differentiation. During muscle regeneration after injury (cardiotoxin injection), Klf5 was induced in the nuclei of differentiating myoblasts and newly formed myofibers expressing myogenin in vivo. Satellite cell-specific Klf5 deletion severely impaired muscle regeneration, and myotube formation was suppressed in Klf5-deleted cultured C2C12 myoblasts and satellite cells. Klf5 knockdown suppressed induction of muscle differentiation-related genes, including myogenin. Klf5 ChIP-seq revealed that Klf5 binding overlaps that of MyoD and Mef2, and Klf5 physically associates with both MyoD and Mef2. In addition, MyoD recruitment was greatly reduced in the absence of Klf5. These results indicate that Klf5 is an essential regulator of skeletal muscle differentiation, acting in concert with myogenic transcription factors such as MyoD and Mef2.

Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency.

  • Southard S
  • Elife
  • 2016 Oct 11

Literature context:


Abstract:

When unperturbed, somatic stem cells are poised to affect immediate tissue restoration upon trauma. Yet, little is known regarding the mechanistic basis controlling initial and homeostatic 'scaling' of stem cell pool sizes relative to their target tissues for effective regeneration. Here, we show that TEAD1-expressing skeletal muscle of transgenic mice features a dramatic hyperplasia of muscle stem cells (i.e. satellite cells, SCs) but surprisingly without affecting muscle tissue size. Super-numeral SCs attain a 'normal' quiescent state, accelerate regeneration, and maintain regenerative capacity over several injury-induced regeneration bouts. In dystrophic muscle, the TEAD1 transgene also ameliorated the pathology. We further demonstrate that hyperplastic SCs accumulate non-cell-autonomously via signal(s) from the TEAD1-expressing myofiber, suggesting that myofiber-specific TEAD1 overexpression activates a physiological signaling pathway(s) that determines initial and homeostatic SC pool size. We propose that TEAD1 and its downstream effectors are medically relevant targets for enhancing muscle regeneration and ameliorating muscle pathology.

Muscle cell identity requires Pax7-mediated lineage-specific DNA demethylation.

  • Carrió E
  • BMC Biol.
  • 2016 Apr 13

Literature context:


Abstract:

BACKGROUND: Skeletal muscle stem cells enable the formation, growth, maintenance, and regeneration of skeletal muscle throughout life. The regeneration process is compromised in several pathological conditions, and muscle progenitors derived from pluripotent stem cells have been suggested as a potential therapeutic source for tissue replacement. DNA methylation is an important epigenetic mechanism in the setting and maintenance of cellular identity, but its role in stem cell determination towards the myogenic lineage is unknown. Here we addressed the DNA methylation dynamics of the major genes orchestrating the myogenic determination and differentiation programs in embryonic stem (ES) cells, their Pax7-induced myogenic derivatives, and muscle stem cells in proliferating and differentiating conditions. RESULTS: Our data showed a common muscle-specific DNA demethylation signature required to acquire and maintain the muscle-cell identity. This specific-DNA demethylation is Pax7-mediated, and it is a prime event in muscle stem cells gene activation. Notably, downregulation of the demethylation-related enzyme Apobec2 in ES-derived myogenic precursors reduced myogenin-associated DNA demethylation and dramatically impaired the expression of differentiation markers and, ultimately, muscle differentiation. CONCLUSIONS: Our results underscore DNA demethylation as a key mechanism driving myogenesis and identify specific Pax7-mediated DNA demethylation signatures to acquire and maintain the muscle-cell identity. Additionally, we provide a panel of epigenetic markers for the efficient and safe generation of ES- and induced pluripotent stem cell (iPS)-derived myogenic progenitors for therapeutic applications.

Funding information:
  • NCI NIH HHS - U54 CA143874(United States)

FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1).

  • Feeney SJ
  • PLoS ONE
  • 2015 Nov 16

Literature context:


Abstract:

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy.

  • Chal J
  • Nat. Biotechnol.
  • 2015 Sep 9

Literature context:


Abstract:

During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.

Funding information:
  • NCATS NIH HHS - UL1 TR001439(United States)

Hypertension is associated with preamyloid oligomers in human atrium: a missing link in atrial pathophysiology?

  • Sidorova TN
  • J Am Heart Assoc
  • 2014 Dec 2

Literature context:


Abstract:

BACKGROUND: Increasing evidence indicates that proteotoxicity plays a pathophysiologic role in experimental and human cardiomyopathy. In organ-specific amyloidoses, soluble protein oligomers are the primary cytotoxic species in the process of protein aggregation. While isolated atrial amyloidosis can develop with aging, the presence of preamyloid oligomers (PAOs) in atrial tissue has not been previously investigated. METHODS AND RESULTS: Atrial samples were collected during elective cardiac surgery in patients without a history of atrial arrhythmias, congestive heart failure, cardiomyopathy, or amyloidosis. Immunohistochemistry was performed for PAOs using a conformation-specific antibody, as well as for candidate proteins identified previously in isolated atrial amyloidosis. Using a myocardium-specific marker, the fraction of myocardium colocalizing with PAOs (PAO burden) was quantified (green/red ratio). Atrial samples were obtained from 92 patients, with a mean age of 61.7±13.8 years. Most patients (62%) were male, 23% had diabetes, 72% had hypertension, and 42% had coronary artery disease. A majority (n=62) underwent aortic valve replacement, with fewer undergoing coronary artery bypass grafting (n=34) or mitral valve replacement/repair (n=24). Immunostaining detected intracellular PAOs in a majority of atrial samples, with a heterogeneous distribution throughout the myocardium. Mean green/red ratio value for the samples was 0.11±0.1 (range 0.03 to 0.77), with a value ≥0.05 in 74 patients. Atrial natriuretic peptide colocalized with PAOs in myocardium, whereas transthyretin was located in the interstitium. Adjusting for multiple covariates, PAO burden was independently associated with the presence of hypertension. CONCLUSION: PAOs are frequently detected in human atrium, where their presence is associated with clinical hypertension.

Funding information:
  • NHGRI NIH HHS - U54HG006542(United States)

Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens.

  • Hutton KC
  • J. Anim. Sci.
  • 2014 Aug 30

Literature context:


Abstract:

Skeletal muscle satellite cells (SC) play a critical role in the hypertrophic growth of postnatal muscle. Increases in breast meat yield have been consistently observed in broiler chickens fed 25-hydroxycholecalciferol (25OHD3), but it is unclear whether this effect is mediated by SC. Thus, our objective was to determine the effect of vitamin D status improvement by replacing the majority of dietary vitamin D3 (D3) with 25OHD3 on SC activity and muscle growth characteristics in the pectoralis major (PM) and the biceps femoris (BF) muscles. Day-old, male Ross 708 broiler chickens (n = 150) were fed 1 of 2 corn and soybean meal-based diets for 49 d. The control diet (CTL) contained 5,000 IU D3 per kg of diet and the experimental diet (25OHD3) contained 2,240 IU D3 per kg of diet + 2,760 IU 25OHD3 per kg of diet. Ten birds per treatment were harvested every 7 d. Two hours before harvest, birds were injected intraperitoneally with 5'-bromo-2'deoxyuridine (BrdU) to label mitotically active cells. Blood was collected from each bird at harvest to measure circulating concentrations of 25OHD3, a marker of vitamin D status. The PM and BF muscles were weighed and processed for cryohistological determination of skeletal muscle fiber cross-sectional area, enumeration of Myf-5+ and Pax7+ SC, and mitotically active (BrdU+) SC using immunofluorescence microscopy. Circulating 25OHD3 concentrations were greater in 25OHD3-fed birds on d 7, 14, 21, 28, 35, 42, and 49 when compared with CTL (P < 0.001). Growth performance and feed efficiency did not differ among dietary treatments (P > 0.10). Improved vitamin D status as a result of feeding 25OHD3 increased the number of mitotically active (Pax7+;BrdU+) SC (P = 0.01) and tended to increase the density of Pax7+ SC (P = 0.07) in the PM muscles of broilers on d 21 and 35, respectively. Broiler chickens fed 25OHD3 also tended to have greater Myf-5+ SC density (P = 0.09) on d 14, greater total nuclear density (P = 0.05) on d 28, and a greater muscle fiber cross-sectional area (P = 0.09) on d 49 in their PM muscles compared with CTL birds. Collectively, these results suggest that improvement of vitamin D status by replacing the majority of D3 in the diet with 25OHD3 can stimulate SC activity in the predominantly fast-twitch PM muscle and provide evidence toward understanding the mechanism behind previously observed increases in breast meat yield in 25OHD3-fed commercial broiler chickens.

Funding information:
  • NIDDK NIH HHS - T32 DK007319(United States)

Quantitative Imaging of Preamyloid Oligomers, a Novel Structural Abnormality, in Human Atrial Samples.

  • Sidorova TN
  • J. Histochem. Cytochem.
  • 2014 Jul 1

Literature context:


Abstract:

Abnormalities in atrial myocardium increase the likelihood of arrhythmias, including atrial fibrillation (AF). The deposition of misfolded protein, or amyloidosis, plays an important role in the pathophysiology of many diseases, including human cardiomyopathies. We have shown that genes implicated in amyloidosis are activated in a cellular model of AF, with the development of preamyloid oligomers (PAOs). PAOs are intermediates in the formation of amyloid fibrils, and they are now recognized to be the cytotoxic species during amyloidosis. To investigate the presence of PAOs in human atrium, we developed a microscopic imaging-based protocol to enable robust and reproducible quantitative analysis of PAO burden in atrial samples harvested at the time of elective cardiac surgery. Using PAO- and myocardial-specific antibodies, we found that PAO distribution was typically heterogeneous within a myocardial sample. Rigorous imaging and analysis protocols were developed to quantify the relative area of myocardium containing PAOs, termed the Green/Red ratio (G/R), for a given sample. Using these methods, reproducible G/R values were obtained when different sections of a sample were independently processed, imaged, and analyzed by different investigators. This robust technique will enable studies to investigate the role of this novel structural abnormality in the pathophysiology of and arrhythmia generation in human atrial tissue.

Funding information:
  • NEI NIH HHS - R01 EY020535(United States)

tal1 Regulates the formation of intercellular junctions and the maintenance of identity in the endocardium.

  • Schumacher JA
  • Dev. Biol.
  • 2013 Nov 15

Literature context:


Abstract:

The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.

Funding information:
  • NEI NIH HHS - R01 EY013315(United States)

Improvement of maternal vitamin D status with 25-hydroxycholecalciferol positively impacts porcine fetal skeletal muscle development and myoblast activity.

  • Hines EA
  • J. Anim. Sci.
  • 2013 Sep 27

Literature context:


Abstract:

There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle developmental characteristics and myoblast activity using Camborough 22 gilts (n = 40) randomly assigned to 1 of 2 corn-soybean meal-based diets. The control diet (CTL) contained 2,500 IU cholecalciferol (D3)/kg diet, whereas the experimental diet contained 500 IU D3/kg diet plus 50 µg 25OHD3/kg diet. Gilts were fed 2.7 kg of their assigned diet once daily beginning 43 d before breeding through d 90 of gestation. On gestational d 90 (± 1), fetal LM and semitendinosus muscle samples were collected for analysis of developmental characteristics and myoblast activity, respectively. No treatment difference was observed in fetal LM cross-sectional area (P = 0.25). Fetuses from 25OHD3-supplemented gilts had more LM fibers (P = 0.04) that tended to be smaller in cross-sectional area compared with CTL fetuses (P = 0.11). A numerical increase in the total number of Pax7+ myoblasts was also observed in fetuses from 25OHD3-supplemented gilts (P = 0.12). Myoblasts derived from the muscles of fetuses from 25OHD3-fed dams displayed an extended proliferative phase in culture compared with those from fetuses of dams fed only D3 (P < 0.0001). The combination of additional muscle fibers and Pax7+ myoblasts with prolonged proliferative capacity could enhance the postnatal skeletal muscle growth potential of fetuses from 25OHD3-supplemented gilts. These data highlight the importance of maternal vitamin D status on the development of fetal skeletal muscle.

Funding information:
  • NHLBI NIH HHS - HL64541(United States)
  • NICHD NIH HHS - R03HD061853(United States)

Elucidation of target muscle and detailed development of dorsal motor neurons in chick embryo spinal cord.

  • Kobayashi N
  • J. Comp. Neurol.
  • 2013 Sep 1

Literature context:


Abstract:

The avian cervical spinal cord includes motoneurons (MNs) that send their axons through the dorsal roots. They have been called dorsal motoneurons (dMNs) and assumed to correspond to MNs of the accessory nerve that innervate the cucullaris muscle (SAN-MNs). However, their target muscles have not been elucidated to date. The present study sought to determine the targets and the specific combination of transcription factors expressed by dMNs and SAN-MNs and to describe the detailed development of dMNs. Experiments with tracing techniques confirmed that axons of dMNs innervated the cucullaris muscle. Retrogradely labeled dMNs were distributed in the ventral horn of C3 and more caudal segments. In most cases, some dMNs were also observed in the C2 segment. It was also demonstrated that SAN-MNs existed in the ventral horn of the C1-2 segments and the adjacent caudal hindbrain. Both SAN-MNs and dMNs expressed Isl1 but did not express Isl2, MNR2, or Lhx3. Rather, these MNs expressed Phox2b, a marker for branchial motoneurons (brMNs), although the intensity of expression was weaker. Dorsal MNs and SAN-MNs were derived from the Nkx2.2-positive precursor domain and migrated dorsally. Dorsal MNs remain in the ventral domain of the neural tube, unlike brMNs in the brainstem. These results indicate that dMNs and SAN-MNs belong to a common MN population innervating the cucullaris muscle and also suggest that they are similar to brMNs of the brainstem, although there are differences in Phox2b expression and in the final location of each population. J. Comp. Neurol. 521: 2987-3002, 2013. © 2013 Wiley Periodicals, Inc.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/D523186/1(United Kingdom)
  • Wellcome Trust - AG13792(United Kingdom)

Suppression of protein kinase C theta contributes to enhanced myogenesis in vitro via IRS1 and ERK1/2 phosphorylation.

  • Marino JS
  • BMC Cell Biol.
  • 2013 Sep 21

Literature context:


Abstract:

BACKGROUND: Differentiation and fusion of skeletal muscle myoblasts into multi-nucleated myotubes is required for neonatal development and regeneration in adult skeletal muscle. Herein, we report novel findings that protein kinase C theta (PKCθ) regulates myoblast differentiation via phosphorylation of insulin receptor substrate-1 and ERK1/2. RESULTS: In this study, PKCθ knockdown (PKCθshRNA) myotubes had reduced inhibitory insulin receptor substrate-1 ser1095 phosphorylation, enhanced myoblast differentiation and cell fusion, and increased rates of protein synthesis as determined by [3H] phenylalanine incorporation. Phosphorylation of insulin receptor substrate-1 ser632/635 and extracellular signal-regulated kinase1/2 (ERK1/2) was increased in PKCθshRNA cells, with no change in ERK5 phosphorylation, highlighting a PKCθ-regulated myogenic pathway. Inhibition of PI3-kinase prevented cell differentiation and fusion in control cells, which was attenuated in PKCθshRNA cells. Thus, with reduced PKCθ, differentiation and fusion occur in the absence of PI3-kinase activity. Inhibition of the ERK kinase, MEK1/2, impaired differentiation and cell fusion in control cells. Differentiation was preserved in PKCθshRNA cells treated with a MEK1/2 inhibitor, although cell fusion was blunted, indicating PKCθ regulates differentiation via IRS1 and ERK1/2, and this occurs independently of MEK1/2 activation. CONCLUSION: Cellular signaling regulating the myogenic program and protein synthesis are complex and intertwined. These studies suggest that PKCθ regulates myogenic and protein synthetic signaling via the modulation of IRS1and ERK1/2 phosphorylation. Myotubes lacking PKCθ had increased rates of protein synthesis and enhanced myotube development despite reduced activation of the canonical anabolic-signaling pathway. Further investigation of PKCθ regulated signaling may reveal important interactions regulating skeletal muscle health in an insulin resistant state.

In vivo cardiac reprogramming contributes to zebrafish heart regeneration.

  • Zhang R
  • Nature
  • 2013 Jun 27

Literature context:


Abstract:

Despite current treatment regimens, heart failure remains the leading cause of morbidity and mortality in the developed world due to the limited capacity of adult mammalian ventricular cardiomyocytes to divide and replace ventricular myocardium lost from ischaemia-induced infarct. Hence there is great interest to identify potential cellular sources and strategies to generate new ventricular myocardium. Past studies have shown that fish and amphibians and early postnatal mammalian ventricular cardiomyocytes can proliferate to help regenerate injured ventricles; however, recent studies have suggested that additional endogenous cellular sources may contribute to this overall ventricular regeneration. Here we have developed, in the zebrafish (Danio rerio), a combination of fluorescent reporter transgenes, genetic fate-mapping strategies and a ventricle-specific genetic ablation system to discover that differentiated atrial cardiomyocytes can transdifferentiate into ventricular cardiomyocytes to contribute to zebrafish cardiac ventricular regeneration. Using in vivo time-lapse and confocal imaging, we monitored the dynamic cellular events during atrial-to-ventricular cardiomyocyte transdifferentiation to define intermediate cardiac reprogramming stages. We observed that Notch signalling becomes activated in the atrial endocardium following ventricular ablation, and discovered that inhibiting Notch signalling blocked the atrial-to-ventricular transdifferentiation and cardiac regeneration. Overall, these studies not only provide evidence for the plasticity of cardiac lineages during myocardial injury, but more importantly reveal an abundant new potential cardiac resident cellular source for cardiac ventricular regeneration.

Funding information:
  • NCI NIH HHS - P50 CA097248(United States)

Synthesis of mitochondrial DNA precursors during myogenesis, an analysis in purified C2C12 myotubes.

  • Frangini M
  • J. Biol. Chem.
  • 2013 Feb 22

Literature context:


Abstract:

During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains.

Funding information:
  • NHGRI NIH HHS - HG002659(United States)

Migration of cardiomyocytes is essential for heart regeneration in zebrafish.

  • Itou J
  • Development
  • 2012 Nov 24

Literature context:


Abstract:

Adult zebrafish possess a significant ability to regenerate injured heart tissue through proliferation of pre-existing cardiomyocytes, which contrasts with the inability of mammals to do so after the immediate postnatal period. Zebrafish therefore provide a model system in which to study how an injured heart can be repaired. However, it remains unknown what important processes cardiomyocytes are involved in other than partial de-differentiation and proliferation. Here we show that migration of cardiomyocytes to the injury site is essential for heart regeneration. Ventricular amputation induced expression of cxcl12a and cxcr4b, genes encoding a chemokine ligand and its receptor. We found that cxcl12a was expressed in the epicardial tissue and that Cxcr4 was expressed in cardiomyocytes. We show that pharmacological blocking of Cxcr4 function as well as genetic loss of cxcr4b function causes failure to regenerate the heart after ventricular resection. Cardiomyocyte proliferation was not affected but a large portion of proliferating cardiomyocytes remained localized outside the injury site. A photoconvertible fluorescent reporter-based cardiomyocyte-tracing assay demonstrates that cardiomyocytes migrated into the injury site in control hearts but that migration was inhibited in the Cxcr4-blocked hearts. By contrast, the epicardial cells and vascular endothelial cells were not affected by blocking Cxcr4 function. Our data show that the migration of cardiomyocytes into the injury site is regulated independently of proliferation, and that coordination of both processes is necessary for heart regeneration.

Funding information:
  • NIDDK NIH HHS - U01 DK058231(United States)

Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development.

  • Comyn SA
  • PLoS ONE
  • 2012 Nov 12

Literature context:


Abstract:

Since the majority of protein-coding genes in vertebrates have intra-genomic homologues, it has been difficult to eliminate the potential of functional redundancy from analyses of mutant phenotypes, whether produced by genetic lesion or transient knockdown. Further complicating these analyses, not all gene products have activities that can be assayed in vitro, where the efficiency of the various family members can be compared against constant substrates. Two vertebrate UNC-45 homologues, unc45a and unc45b, affect distinct stages of muscle differentiation when knocked down in cell culture and are functionally redundant in vitro. UNC-45 proteins are members of the UCS (UNC-45/CRO1/She4p) protein family that has been shown to regulate myosin-dependent functions from fungi to vertebrates through direct interaction with the myosin motor domain. To test whether the same functional relationship exists between these unc45 paralogs in vivo, we examined the developmental phenotypes of doubly homozygous unc45b(-/-); unc45a(-/-) mutant zebrafish embryos. We focused specifically on the combined effects on morphology and gene expression resulting from the zygotic lack of both paralogs. We found that unc45b(-/-) and unc45b(-/-); unc45a(-/-) embryos were phenotypically indistinguishable with both mutants displaying identical cardiac, skeletal muscle, and jaw defects. We also found no evidence to support a role for zygotic Unc45a function in myoblast differentiation. In contrast to previous in vitro work, this rules out a model of functional redundancy between Unc45a and Unc45b in vivo. Instead, our phylogenetic and phenotypic analyses provide evidence for the role of functional divergence in the evolution of the UCS protein family.

Funding information:
  • Wellcome Trust - (United Kingdom)

The actin regulator N-WASp is required for muscle-cell fusion in mice.

  • Gruenbaum-Cohen Y
  • Proc. Natl. Acad. Sci. U.S.A.
  • 2012 Jul 10

Literature context:


Abstract:

A fundamental aspect of skeletal myogenesis involves extensive rounds of cell fusion, in which individual myoblasts are incorporated into growing muscle fibers. Here we demonstrate that N-WASp, a ubiquitous nucleation-promoting factor of branched microfilament arrays, is an essential contributor to skeletal muscle-cell fusion in developing mouse embryos. Analysis both in vivo and in primary satellite-cell cultures, shows that disruption of N-WASp function does not interfere with the program of skeletal myogenic differentiation, and does not affect myoblast motility, morphogenesis and attachment capacity. N-WASp-deficient myoblasts, however, fail to fuse. Furthermore, our analysis suggests that myoblast fusion requires N-WASp activity in both partners of a fusing myoblast pair. These findings reveal a specific role for N-WASp during mammalian myogenesis. WASp-family elements appear therefore to act as universal mediators of the myogenic cell-cell fusion mechanism underlying formation of functional muscle fibers, in both vertebrate and invertebrate species.

Funding information:
  • Canadian Institutes of Health Research - (Canada)
  • NIDCD NIH HHS - 1R01DC012854(United States)

Inhibition of Notch3 signalling induces rhabdomyosarcoma cell differentiation promoting p38 phosphorylation and p21(Cip1) expression and hampers tumour cell growth in vitro and in vivo.

  • Raimondi L
  • Cell Death Differ.
  • 2012 May 9

Literature context:


Abstract:

Rhabdomyosarcoma (RMS) is a paediatric soft-tissue sarcoma arising from skeletal muscle precursors coexpressing markers of proliferation and differentiation. Inducers of myogenic differentiation suppress RMS tumourigenic phenotype. The Notch target gene HES1 is upregulated in RMS and prevents tumour cell differentiation in a Notch-dependent manner. However, Notch receptors regulating this phenomenon are unknown. In agreement with data in RMS primary tumours, we show here that the Notch3 receptor is overexpressed in RMS cell lines versus normal myoblasts. Notch3-targeted downregulation in RMS cells induces hyper-phosphorylation of p38 and Akt essential for myogenesis, resulting in the differentiation of tumour cells into multinucleated myotubes expressing Myosin Heavy Chain. These phenomena are associated to a marked decrease in HES1 expression, an increase in p21(Cip1) level and the accumulation of RMS cells in the G1 phase. HES1-forced overexpression in RMS cells reverses, at least in part, the pro-differentiative effects of Notch3 downregulation. Notch3 depletion also reduces the tumourigenic potential of RMS cells both in vitro and in vivo. These results indicate that downregulation of Notch3 is sufficient to force RMS cells into completing a correct full myogenic program providing evidence that it contributes, partially through HES1 sustained expression, to their malignant phenotype. Moreover, they suggest Notch3 as a novel potential target in human RMS.

Funding information:
  • NIMH NIH HHS - R01 MH095972(United States)

The metalloproteinase inhibitor Reck is essential for zebrafish DRG development.

  • Prendergast A
  • Development
  • 2012 Mar 22

Literature context:


Abstract:

The neural crest is a migratory, multipotent cell lineage that contributes to myriad tissues, including sensory neurons and glia of the dorsal root ganglia (DRG). To identify genes affecting cell fate specification in neural crest, we performed a forward genetic screen for mutations causing DRG deficiencies in zebrafish. This screen yielded a mutant lacking all DRG, which we named sensory deprived (sdp). We identified a total of four alleles of sdp, all of which possess lesions in the gene coding for reversion-inducing cysteine-rich protein containing Kazal motifs (Reck). Reck is an inhibitor of metalloproteinases previously shown to regulate cell motility. We found reck function to be both necessary for DRG formation and sufficient to rescue the sdp phenotype. reck is expressed in neural crest cells and is required in a cell-autonomous fashion for appropriate sensory neuron formation. In the absence of reck function, sensory neuron precursors fail to migrate to the position of the DRG, suggesting that this molecule is crucial for proper migration and differentiation.

Funding information:
  • NEI NIH HHS - R01 EY022369(United States)

Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings.

  • Jiang Q
  • Toxicology
  • 2012 Mar 11

Literature context:


Abstract:

Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPARα). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that developmental PFOA exposure may not affect cardiac energetics. In summary, structural and functional characteristics of the heart appear to be developmental targets of PFOA, possibly at the level of cardiomyocytes. Additional studies will investigate mechanisms of PFOA-induced developmental cardiotoxicity.

Funding information:
  • NCI NIH HHS - R01CA154358(United States)
  • PHS HHS - HHSN271200577531C(United States)

Connexin 39.9 protein is necessary for coordinated activation of slow-twitch muscle and normal behavior in zebrafish.

  • Hirata H
  • J. Biol. Chem.
  • 2012 Jan 6

Literature context:


Abstract:

In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.

Funding information:
  • Wellcome Trust - 098362/Z/12/Z(United Kingdom)

Myo/Nog cell regulation of bone morphogenetic protein signaling in the blastocyst is essential for normal morphogenesis and striated muscle lineage specification.

  • Gerhart J
  • Dev. Biol.
  • 2011 Nov 1

Literature context:


Abstract:

Cells that express MyoD mRNA, the G8 antigen and the bone morphogenetic protein (BMP) inhibitor noggin (Nog) are present in the epiblast before gastrulation. Ablation of "Myo/Nog" cells in the blastocyst results in an expansion of canonical BMP signaling and prevents the expression of noggin and follistatin before and after the onset of gastrulation. Once eliminated in the epiblast, they are neither replaced nor compensated for as development progresses. Older embryos lacking Myo/Nog cells exhibit severe axial malformations. Although Wnts and Sonic hedgehog are expressed in ablated embryos, skeletal muscle progenitors expressing Pax3 are missing in the somites. Pax3+ cells do emerge adjacent to Wnt3a+ cells in vitro; however, few undergo skeletal myogenesis. Ablation of Myo/Nog cells also results in ectopically placed cardiac progenitors and cardiomyocytes in the somites. Reintroduction of Myo/Nog cells into the epiblast of ablated embryos restores normal patterns of BMP signaling, morphogenesis and skeletal myogenesis, and inhibits the expression of cardiac markers in the somites. This study demonstrates that Myo/Nog cells are essential regulators of BMP signaling in the early epiblast and are indispensable for normal morphogenesis and striated muscle lineage specification.

Funding information:
  • NINDS NIH HHS - R37 NS019904(United States)

Induction of apoptosis and inhibition of cell growth by tbx5 knockdown contribute to dysmorphogenesis in Zebrafish embryos.

  • Lu J
  • J. Biomed. Sci.
  • 2011 Oct 8

Literature context:


Abstract:

BACKGROUND: The tbx5 mutation in human causes Holt-Oram syndrome, an autosomal dominant condition characterized by a familial history of congenital heart defects and preaxial radial upper-limb defects. We report aberrant apoptosis and dormant cell growth over head, heart, trunk, fin, and tail of zebrafish embryos with tbx5 deficiency correspond to the dysmorphogenesis of tbx5 morphants. METHODS: Wild-type zebrafish embryos at the 1-cell stage were injected with 4.3 nl of 19.4 ng of tbx5 morpholino or mismatch-tbx5-MO respectively in tbx5 morphants and mismatched control group. Semi-quantitative RT-PCR was used to for expression analysis of apoptosis and cell cycle-related genes. TUNEL and immunohistochemical assay showed the apoptosis spots within the local tissues. Ultra-structure of cardiac myocardium was examined by transmission electron microscope. RESULTS: Apoptosis-related genes (bad, bax, and bcl2), and cell cycle-related genes (cdk2, pcna, p27, and p57) showed remarkable increases in transcriptional level by RT-PCR. Using a TUNEL and immnuohistochemical assay, apoptosis was observed in the organs including the head, heart, pectoral fins, trunk, and tail of tbx5 knockdown embryos. Under transmission electron microscopic examination, mitochondria in cardiomyocytes became swollen and the myocardium was largely disorganized with a disarrayed appearance, compatible with reduced enhancement of myosin in the cardiac wall. The ATP level was reduced, and the ADP/ATP ratio as an apoptotic index significantly increased in the tbx5 deficient embryos. CONCLUSION: Our study highlighted that tbx5 deficiency evoked apoptosis, distributed on multiple organs corresponding to dysmorphogenesis with the shortage of promising maturation, in tbx5 knockdown zebrafish embryos. We hypothesized that mesenchymal cell apoptosis associated with altered TBX5 level may subsequently interfered with organogenesis and contributed to dysmorphogenesis in tbx5 deficiency zebrafish embryos.

Funding information:
  • NIDDK NIH HHS - R01DK078749(United States)

Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators.

  • Simões FC
  • Development
  • 2011 Aug 13

Literature context:


Abstract:

Fibroblast growth factor (Fgf) has been implicated in the control of heart size during development, although whether this is by controlling cell fate, survival or proliferation has not been clear. Here, we show that Fgf, without affecting survival or proliferation, acts during gastrulation to drive cardiac fate and restrict anterior haemangioblast fate in zebrafish embryos. The haemangioblast programme was thought to be activated before the cardiac programme and is repressive towards it, suggesting that activation by Fgf of the cardiac programme might be via suppression of the haemangioblast programme. However, we show that the cardiac regulator nkx2.5 can also repress the haemangioblast programme and, furthermore, that cardiac specification still requires Fgf signalling even when haemangioblast regulators are independently suppressed. We further show that nkx2.5 and the cloche candidate gene lycat are expressed during gastrulation and regulated by Fgf, and that nkx2.5 overexpression, together with loss of the lycat targets etsrp and scl can stably induce expansion of the heart. We conclude that Fgf controls cardiac and haemangioblast fates by the simultaneous regulation of haemangioblast and cardiac regulators. We propose that elevation of Fgf signalling in the anterior haemangioblast territory could have led to its recruitment into the heart field during evolution, increasing the size of the heart.

Funding information:
  • NHGRI NIH HHS - R01 HG004701-01(United States)

Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish.

  • González-Rosa JM
  • Development
  • 2011 May 13

Literature context:


Abstract:

The zebrafish heart has the capacity to regenerate after ventricular resection. Although this regeneration model has proved useful for the elucidation of certain regeneration mechanisms, it is based on the removal of heart tissue rather than its damage. Here, we characterize the cellular response and regenerative capacity of the zebrafish heart after cryoinjury, an alternative procedure that more closely models the pathophysiological process undergone by the human heart after myocardial infarction (MI). Localized damage was induced in 25% of the ventricle by cryocauterization (CC). During the first 24 hours post-injury, CC leads to cardiomyocyte death within the injured area and the near coronary vasculature. Cell death is followed by a rapid proliferative response in endocardium, epicardium and myocardium. During the first 3 weeks post-injury cell debris was cleared and the injured area replaced by a massive scar. The fibrotic tissue was subsequently degraded and replaced by cardiac tissue. Although animals survived CC, their hearts showed nonhomogeneous ventricular contraction and had a thickened ventricular wall, suggesting that regeneration is associated with processes resembling mammalian ventricular remodeling after acute MI. Our results provide the first evidence that, like mammalian hearts, teleost hearts undergo massive fibrosis after cardiac damage. Unlike mammals, however, the fish heart can progressively eliminate the scar and regenerate the lost myocardium, indicating that scar formation is compatible with myocardial regeneration and the existence of endogenous mechanisms of scar regression. This finding suggests that CC-induced damage in zebrafish could provide a valuable model for the study of the mechanisms of scar removal post-MI.

Funding information:
  • Howard Hughes Medical Institute - R01 GM077620-06(United States)
  • NIGMS NIH HHS - GM081084(United States)

Ret signalling integrates a craniofacial muscle module during development.

  • Knight RD
  • Development
  • 2011 May 27

Literature context:


Abstract:

An appropriate organisation of muscles is crucial for their function, yet it is not known how functionally related muscles are coordinated with each other during development. In this study, we show that the development of a subset of functionally related head muscles in the zebrafish is regulated by Ret tyrosine kinase signalling. Three genes in the Ret pathway (gfra3, artemin2 and ret) are required specifically for the development of muscles attaching to the opercular bone (gill cover), but not other adjacent muscles. In animals lacking Ret or Gfra3 function, myogenic gene expression is reduced in forming opercular muscles, but not in non-opercular muscles derived from the same muscle anlagen. These animals have a normal skeleton with small or missing opercular muscles and tightly closed mouths. Myogenic defects correlate with a highly restricted expression of artn2, gfra3 and ret in mesenchymal cells in and around the forming opercular muscles. ret(+) cells become restricted to the forming opercular muscles and a loss of Ret signalling results in reductions of only these, but not adjacent, muscles, revealing a specific role of Ret in a subset of head muscles. We propose that Ret signalling regulates myogenesis in head muscles in a modular manner and that this is achieved by restricting Ret function to a subset of muscle precursors.

Funding information:
  • NHGRI NIH HHS - U01 HG005719-02(United States)

APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis.

  • Vonica A
  • Dev. Biol.
  • 2011 Feb 1

Literature context:


Abstract:

The specification of left-right asymmetry is an evolutionarily conserved developmental process in vertebrates. The interplay between two TGFβ ligands, Derrière/GDF1 and Xnr1/Nodal, together with inhibitors such as Lefty and Coco/Cerl2, have been shown to provide the signals that lead to the establishment of laterality. However, molecular events leading to and following these signals remain mostly unknown. We find that APOBEC2, a member of the cytidine deaminase family of DNA/RNA editing enzymes, is induced by TGFβ signaling, and that its activity is necessary to specify the left-right axis in Xenopus and zebrafish embryos. Surprisingly, we find that APOBEC2 selectively inhibits Derrière, but not Xnr1, signaling. The inhibitory effect is conserved, as APOBEC2 blocks TGFβ signaling, and promotes muscle differentiation, in a mammalian myoblastic cell line. This demonstrates for the first time that a putative RNA/DNA editing enzyme regulates TGFβ signaling and plays a major role in development.

Funding information:
  • NLM NIH HHS - R01 LM 6858(United States)

The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation.

  • Taulli R
  • J. Clin. Invest.
  • 2009 Aug 4

Literature context:


Abstract:

Many microRNAs (miRNAs), posttranscriptional regulators of numerous cellular processes and developmental events, are downregulated in tumors. However, their role in tumorigenesis remains largely unknown. In this work, we examined the role of the muscle-specific miRNAs miR-1 and miR-206 in human rhabdomyosarcoma (RMS), a soft tissue sarcoma thought to arise from skeletal muscle progenitors. We have shown that miR-1 was barely detectable in primary RMS of both the embryonal and alveolar subtypes and that both miR-1 and miR-206 failed to be induced in RMS cell lines upon serum deprivation. Moreover, reexpression of miR-206 in RMS cells promoted myogenic differentiation and blocked tumor growth in xenografted mice by switching the global mRNA expression profile to one that resembled mature muscle. Finally, we showed that the product of the MET proto-oncogene, the Met tyrosine-kinase receptor, which is overexpressed in RMS and has been implicated in RMS pathogenesis, was downregulated in murine satellite cells by miR-206 at the onset of normal myogenesis. Thus, failure of posttranscriptional modulation may underlie Met overexpression in RMS and other types of cancer. We propose that tissue-specific miRNAs such as miR-1 and miR-206, given their ability to modulate hundreds of transcripts and to act as nontoxic differentiating agents, may override the genomic heterogeneity of solid tumors and ultimately hold greater therapeutic potential than single gene-directed drugs.

Funding information:
  • NINDS NIH HHS - R01 NS043782-05(United States)

Protocol for high-resolution separation of rodent myosin heavy chain isoforms in a mini-gel electrophoresis system.

  • Mizunoya W
  • Anal. Biochem.
  • 2008 Jun 1

Literature context:


Abstract:

Skeletal muscle comprises several fiber types classified based on their contractile and metabolic properties. Skeletal muscle fiber types are classified according to their myosin heavy chain isoforms (MyHC I, IIa, IIx, and IIb). We attained good separation of MyHC isoforms in a mini-gel system by modifying a previously developed electrophoresis protocol. Increased glycerol and decreased cross-linking agent concentrations improved the separation of MyHC isoforms. Sample preparation with dithiothreitol and protease inhibitors produced clear MyHC band boundaries. This protocol included silver staining, with a linear range. The protocol provided high resolution and a highly accurate assay of rodent MyHC isoforms.

Funding information:
  • European Research Council - 337703(International)
  • NIMH NIH HHS - MH043784(United States)

Characterization of Bves expression during mouse development using newly generated immunoreagents.

  • Smith TK
  • Dev. Dyn.
  • 2007 Nov 9

Literature context:


Abstract:

Bves (blood vessel/epicardial substance) is a transmembrane protein postulated to play a role in cell-cell interaction/adhesion. It was independently isolated by two groups as a gene product highly enriched in the developing heart. Disagreement exists about its expression during development. Most notably, the expression of Bves in non-muscle cells is disputed. Determining the expression profile of Bves is a critical initial step preceding the characterization of protein function in development and in the adult. We have generated new monoclonal antibodies against mouse Bves and used these immunoreagents to elucidate Bves expression in development. As expected, we detect Bves in myocytes of the developing heart throughout development. In addition, skeletal and smooth muscle cells including those of the coronary system express Bves. Finally, specific, but not all, epithelial derivatives of the three germ layers are stained positively with these monoclonal antibodies. Protein expression in cultured epithelial and muscle cell lines corroborate our in vivo findings. Taken together, these results demonstrate the expression of Bves in a wide range of epithelial and muscle cells during mouse embryogenesis and indicate a broad function for this protein in development, and show that these newly generated reagents will be invaluable in further investigation of Bves.

Funding information:
  • NHGRI NIH HHS - HG003079(United States)

The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence.

  • Linardic CM
  • Cancer Res.
  • 2007 Jul 15

Literature context:


Abstract:

Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence. Despite advances in therapy, patients with a histologic variant of rhabdomyosarcoma known as alveolar rhabdomyosarcoma (ARMS) have a 5-year survival of <30%. ARMS is characterized by a chromosomal translocation generating the PAX3-FKHR fusion gene. However, ectopic expression of PAX3-FKHR often induces inhibition of cell proliferation, or cell death, when expressed in nonmuscle cells. This prompted us to explore the effect of expressing PAX3-FKHR in more relevant cells, specifically primary human skeletal muscle cells because these cells can be converted to a tumorigenic state that mimics rhabdomyosarcoma. PAX3-FKHR expression promoted both fetal and postnatal primary human skeletal muscle cell precursors to bypass the senescence growth arrest checkpoint. This bypass was accompanied by epigenetic DNA methylation of the p16(INK4A) promoter and correspondingly a loss of expression of this tumor suppressor. Knockdown of p16(INK4A) cooperated with PAX3-FKHR to drive proliferation past senescence, whereas reintroduction of wild-type p16(INK4A) in post-senescent cells caused growth arrest. Thus, PAX3-FKHR acts in concert with loss of p16(INK4A) to promote inappropriate proliferation of skeletal muscle cells. This association between PAX3-FKHR expression and p16(INK4A) loss was seen in human ARMS tumor tissue, as both human rhabdomyosarcoma cell lines and tissue microarrays showed a trend toward down-regulation of p16(INK4A) protein in alveolar subsets. We surmise that the generation of the PAX3-FKHR fusion protein may require loss of p16(INK4A) to promote malignant proliferation of skeletal muscle cells as an early step in ARMS tumorigenesis.

Funding information:
  • NCATS NIH HHS - UL1 TR001082(United States)

The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish.

  • Wohlgemuth SL
  • Dev. Biol.
  • 2007 Mar 15

Literature context:


Abstract:

The assembly of myosin into higher order structures is dependent upon accessory factors that are often tissue-specific. UNC-45 acts as such a molecular chaperone for myosin in the nematode Caenorhabditis elegans, in both muscle and non-muscle contexts. Although vertebrates contain homologues of UNC-45, their requirement for muscle function has not been assayed. We identified a zebrafish gene, unc45b, similar to a mammalian unc-45 homologue, expressed exclusively in striated muscle tissue, including the somites, heart and craniofacial muscle. Morpholino-oligonucleotide-mediated knockdown of unc45b results in paralysis and cardiac dysfunction. This paralysis is correlated with a loss of myosin filaments in the sarcomeres of the trunk muscle. Morphants lack circulation, heart looping and display severe cardiac and yolk-sac edema and also demonstrate ventral displacement of several jaw cartilages. Overall, this confirms a role for unc45b in zebrafish motility consistent with a function in myosin thick filament assembly and stability and uncovers novel roles for this gene in the function and morphogenesis of the developing heart and jaw. These results suggest that Unc45b acts as a chaperone that aids in the folding of myosin isoforms required for skeletal, cranial and cardiac muscle contraction.

Funding information:
  • Cancer Research UK - 1-U01-HG004270-01(United Kingdom)
  • NIGMS NIH HHS - 1R01GM070676(United States)

Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants.

  • Schuster-Gossler K
  • Proc. Natl. Acad. Sci. U.S.A.
  • 2007 Jan 9

Literature context:


Abstract:

In vertebrates, skeletal myogenesis is initiated by the generation of myoblasts followed by their differentiation to myocytes and the formation of myofibers. The determination of myoblasts and their differentiation are controlled by muscle regulatory factors that are activated at specific stages during myogenesis. During late embryonic and fetal stages a distinct population of resident proliferating progenitor cells is the major source of myogenic cells. How the differentiation of myoblasts and progenitor cells is regulated is not clear. We show that in mouse embryos the Notch ligand Delta1 (Dll1) controls both differentiation of early myoblasts and maintenance of myogenic progenitor cells. Early dermomyotome-derived myoblasts are determined normally in Dll1 mutant embryos, but their differentiation is accelerated, leading to a transient excess of myotomal muscle fibers. Similarly, migratory hypaxial myogenic cells colonize the limb buds and activate muscle regulatory factor expression normally, but muscle differentiation progresses more rapidly. Resident progenitor cells defined by Pax3/Pax7 expression are formed initially, but they are progressively lost and virtually absent at embryonic day 14.5. Muscle growth declines beginning around embryonic day 12, leading to subsequent severe muscle hypotrophy in hypomorphic Dll1 fetuses. We suggest that premature and excessive differentiation leads to depletion of progenitor cells and cessation of muscle growth, and we conclude that Dll1 provides essential signals that are required to prevent uncontrolled differentiation early and ensure sustained muscle differentiation during development.

Funding information:
  • NHGRI NIH HHS - R01 HG004069(United States)
  • NIMH NIH HHS - MH067622-01(United States)

BMP is an important regulator of proepicardial identity in the chick embryo.

  • Schlueter J
  • Dev. Biol.
  • 2006 Jul 15

Literature context:


Abstract:

The proepicardium (PE) is a transient structure formed by pericardial coelomic mesothelium at the venous pole of the embryonic heart and gives rise to several cell types of the mature heart. In order to study PE development in chick embryos, we have analyzed the expression pattern of the marker genes Tbx18, Wt1, and Cfc. During PE induction, the three marker genes displayed a left-right asymmetric expression pattern. In each case, expression on the right side was stronger than on the left side. The left-right asymmetric gene expression observed here is in accord with the asymmetric formation of the proepicardium in the chick embryo. While initially the marker genes were expressed in the primitive sinus horn, subsequently, expression became confined to the PE mesothelium. In order to search for signaling factors involved in PE development, we studied Bmp2 and Bmp4 expression. Bmp2 was bilaterally expressed in the sinus venosus. In contrast, Bmp4 expression was initially expressed unilaterally in the right sinus horn and subsequently in the PE. In order to assess its functional role, BMP signaling was experimentally modulated by supplying exogenous BMP2 and by inhibiting endogenous BMP signaling through the addition of Noggin. Both supplying BMP and blocking BMP signaling resulted in a loss of PE marker gene expression. Surprisingly, both experimental situations lead to cardiac myocyte formation in the PE cultures. Careful titration experiments with exogenously added BMP2 or Noggin revealed that PE-specific marker gene expression depends on a low level of BMP signaling. Implantation of BMP2-secreting cells or beads filled with Noggin protein into the right sinus horn of HH stage 11 embryos resulted in downregulation of Tbx18 expression, corresponding to the results of the explant assay. Thus, a distinct level of BMP signaling is required for PE formation in the chick embryo.

Funding information:
  • Wellcome Trust - 075491/Z/04(United Kingdom)

Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves.

  • Chen JW
  • Circ. Res.
  • 2006 Apr 14

Literature context:


Abstract:

The coxsackievirus and adenovirus receptor (CAR), which mediates infection by the viruses most commonly associated with myocarditis, is a transmembrane component of specialized intercellular junctions, including the myocardial intercalated disc; it is known to mediate cell-cell recognition, but its natural function is poorly understood. We used conditional gene targeting to investigate the possible functions of CAR during embryonic development, generating mice with both germline and tissue-specific defects in CAR expression. Homozygous germline deletion of CAR exon 2 or cardiomyocyte-specific gene deletion at embryonic day 10 (E10) mediated by Cre recombinase expressed under the control of the cardiac troponin T promoter resulted in death by E12.5; embryos showed marked cardiac abnormalities by E10.5, with hyperplasia of the left ventricular myocardium, distention of the cardinal veins, and abnormalities of sinuatrial valves. Within the hyperplastic left ventricle, increased numbers of proliferating cells were evident; persistent expression of N-myc in the hyperplastic myocardium and attenuated expression of the trabecular markers atrial natriuretic factor and bone morphogenic protein 10 indicated that proliferating cardiomyocytes had failed to differentiate and form normal trabeculae. In electron micrographs, individual CAR-deficient cardiomyocytes within the left ventricle appeared normal, but intercellular junctions were ill-formed or absent, consistent with the known function of CAR as a junctional molecule; myofibrils were also poorly organized. When cardiomyocyte-specific deletion occurred somewhat later (by E11, mediated by Cre under control of the alpha-myosin heavy chain promoter), animals survived to adulthood and did not have evident cardiac abnormalities. These results indicate that during a specific temporal window, CAR expression on cardiomyocytes is essential for normal cardiac development. In addition, the results suggest that CAR-mediated intercellular contacts may regulate proliferation and differentiation of cardiomyocytes within the embryonic left ventricular wall.

Funding information:
  • NCRR NIH HHS - U24-RR025736(United States)

Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton.

  • Komati H
  • Mol. Biol. Cell
  • 2005 Aug 16

Literature context:


Abstract:

We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol, which selectively inhibits PA production by PLD, markedly decreased AVP-induced myogenesis. Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process. The expression of the PLD isoforms was differentially regulated during differentiation. AVP stimulation of myoblasts induced the rapid formation of stress fiber-like actin structures (SFLSs). 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent. Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP. In addition, AVP induced a PLD-dependent neosynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), which also was accumulated along actin fibers. These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation.

Funding information:
  • NIGMS NIH HHS - R01GM070808(United States)

Requirements of myocyte-specific enhancer factor 2A in zebrafish cardiac contractility.

  • Wang YX
  • FEBS Lett.
  • 2005 Aug 29

Literature context:


Abstract:

Myocyte-specific enhancer factor 2A (MEF2A) regulates a broad range of fundamental cellular processes including cell division, differentiation and death. Here, we tested the hypothesis that MEF2A is required in cardiac contractility employing zebrafish as a model organism. MEF2A is highly expressed in heart as well as somites during zebrafish embryogenesis. Knock-down of MEF2A in zebrafish impaires the cardiac contractility and results in sarcomere assembly defects. Dysregulation of cardiac genes in MEF2A morphants suggests that sarcomere assembly disturbances account for the cardiac contractile deficiency. Our studies suggested that MEF2A is essential in cardiac contractility.

Funding information:
  • Intramural NIH HHS - (United States)

Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output.

  • Bauwens C
  • Biotechnol. Bioeng.
  • 2005 May 20

Literature context:


Abstract:

Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single-step bioprocess for ES cell-derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 +/- 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell-derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell-derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield.

Funding information:
  • NHLBI NIH HHS - N01-HC-65226(United States)

Hypertrophy and transcriptional regulation induced in myogenic cell line L6-C5 by an increase of extracellular calcium.

  • De Arcangelis V
  • J. Cell. Physiol.
  • 2005 Mar 3

Literature context:


Abstract:

Calcium plays a pivotal role in the establishment of the differentiated phenotype in myogenic cells but the involved molecular mechanisms are still matter of debate. Here we studied the effects of exposing L6-C5 myogenic cells to high extracellular Ca2+ concentration ([Ca2+]o), which induces an increase of intracellular calcium ([Ca2+]i) without involving Ca2+ release from the intracellular stores but exclusively due to plasma membrane influx (Naro et al., 2003). Exposure of L6-C5 cells to [Ca2+]o up to 20 mM for 30 min, before shifting them into a differentiative medium, induced the appearance of multinucleated, myosin-positive myotubes, much larger than in control cells with an increased protein/DNA ratio. These large myotubes showed nuclear accumulation of the hypertrophy marker GATA-2. The hypertrophic growth of these cells was blocked by cyclosporin A (CsA), FK506, or overexpression of a calcineurin-dominant negative protein, suggesting the involvement in this process of the Ca2+ responsive phosphatase calcineurin. Furthermore, transient exposure of L6-C5 cells to high [Ca2+]o increased the expression of luciferase reporter driven by myoglobin (Mb) and beta-MHC promoters but not IIB-MHC and MCK promoters. Luciferase transcription driven by CK promoter was, instead, enhanced by mobilizing Ca2+ from the intracellular stores. These data indicate that a transient increase of [Ca2+]i due to plasma-membrane influx is sufficient to induce a hypertrophic phenotype and an increased expression of slow-fiber genes but not fast-fiber genes.

Funding information:
  • NHLBI NIH HHS - P01-HL30568(United States)

Existence of reserve quiescent stem cells in adults, from amphibians to humans.

  • Young HE
  • Curr. Top. Microbiol. Immunol.
  • 2004 Nov 3

Literature context:


Abstract:

Several theories have been proposed to explain the phenomenon of tissue restoration in amphibians and higher order animals. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed stem cells, and activation of quiescent stem cells. Young and colleagues demonstrated that connective tissues throughout the body contain multiple populations of quiescent lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells. Subsequent cloning and cell sorting studies identified quiescent lineage-uncommitted pluripotent mesenchymal stem cells, capable of forming any mesodermal cell type, and pluripotent epiblastic-like stem cells, capable of forming any somatic cell type. Based on their studies, they propose at least 11 categories of quiescent reserve stem cells resident within postnatal animals, including humans. These categories are pluripotent epiblastic-like stem cells, pluripotent ectodermal stem cells, pluripotent epidermal stem cells, pluripotent neuronal stem cells, pluripotent neural crest stem cells, pluripotent mesenchymal (mesodermal) stem cells, pluripotent endodermal stem cells, multipotent progenitor stem cells, tripotent progenitor stem cells, bipotent progenitor stem cells, and unipotent progenitor stem cells. Thus, activation of quiescent reserve stem cells, i.e., lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells, resident within the connective tissues could provide for the continual maintenance and repair of the postnatal organism after birth.

Funding information:
  • NIGMS NIH HHS - R29GM46425(United States)
  • NINDS NIH HHS - NS37853(United States)

The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation.

  • Caretti G
  • Genes Dev.
  • 2004 Nov 1

Literature context:


Abstract:

The Ezh2 protein endows the Polycomb PRC2 and PRC3 complexes with histone lysine methyltransferase (HKMT) activity that is associated with transcriptional repression. We report that Ezh2 expression was developmentally regulated in the myotome compartment of mouse somites and that its down-regulation coincided with activation of muscle gene expression and differentiation of satellite-cell-derived myoblasts. Increased Ezh2 expression inhibited muscle differentiation, and this property was conferred by its SET domain, required for the HKMT activity. In undifferentiated myoblasts, endogenous Ezh2 was associated with the transcriptional regulator YY1. Both Ezh2 and YY1 were detected, with the deacetylase HDAC1, at genomic regions of silent muscle-specific genes. Their presence correlated with methylation of K27 of histone H3. YY1 was required for Ezh2 binding because RNA interference of YY1 abrogated chromatin recruitment of Ezh2 and prevented H3-K27 methylation. Upon gene activation, Ezh2, HDAC1, and YY1 dissociated from muscle loci, H3-K27 became hypomethylated and MyoD and SRF were recruited to the chromatin. These findings suggest the existence of a two-step activation mechanism whereby removal of H3-K27 methylation, conferred by an active Ezh2-containing protein complex, followed by recruitment of positive transcriptional regulators at discrete genomic loci are required to promote muscle gene expression and cell differentiation.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/H018123/2(United Kingdom)

Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway.

  • Shefer G
  • J. Cell. Sci.
  • 2004 Oct 15

Literature context:


Abstract:

We show that muscle satellite cells, traditionally considered as committed myogenic precursors, are comprised of Pax7-expressing progenitors that preserve a mesenchymal repertoire extending beyond a mere myogenic potential. Mouse satellite cells from freshly isolated single myofibers, cultured individually in serum-rich growth medium, produced myogenic and non-myogenic clones. Only the myogenic clones expressed muscle-specific transcription factors and formed myotubes. Pax7 was initially expressed in all clones, but subsequently was associated only with the myogenic clones. Some cells in the non-myogenic clones expressed alpha-smooth muscle actin and nestin whereas others differentiated into mature adipocytes. This type of cell composition mirrors characteristics of mesenchymal stem cell progeny. Overall, individual myofibers persistently gave rise to both clonal phenotypes, but the ratio of myogenic to non-myogenic clones randomly varied among fibers. This randomness indicates that clonal dichotomy reflects satellite cell suppleness rather than pre-fated cell heterogeneity. We conclude that satellite cells possess mesenchymal plasticity, being able to commit either to myogenesis or to a mesenchymal alternative differentiation (MAD) program.

Funding information:
  • NCRR NIH HHS - 5UL1RR025774(United States)

Adult stem cells.

  • Young HE
  • Anat Rec A Discov Mol Cell Evol Biol
  • 2004 Jan 30

Literature context:


Abstract:

Development of a multicellular organism is accomplished through a series of events that are preprogrammed in the genome. These events encompass cellular proliferation, lineage commitment, lineage progression, lineage expression, cellular inhibition, and regulated apoptosis. The sequential progression of cells through these events results in the formation of the differentiated cells, tissues, and organs that constitute an individual. Although most cells progress through this sequence during development, a few cells leave the developmental continuum to become reserve precursor cells. The reserve precursor cells are involved in the continual maintenance and repair of the tissues and organs throughout the life span of the individual. Until recently it was generally assumed that the precursor cells in postnatal individuals were limited to lineage-committed progenitor cells specific for various tissues. However, studies by Young, his colleagues, and others have demonstrated the presence of two categories of precursor cells that reside within the organs and tissues of postnatal animals. These two categories of precursor cells are lineage-committed (multipotent, tripotent, bipotent, and unipotent) progenitor cells and lineage-uncommitted pluripotent (epiblastic-like, ectodermal, mesodermal, and endodermal) stem cells. These reserve precursor cells provide for the continual maintenance and repair of the organism after birth.

Funding information:
  • Howard Hughes Medical Institute - (United States)
  • NIDDK NIH HHS - R01 DK55091(United States)

RNAi-mediated HuR depletion leads to the inhibition of muscle cell differentiation.

  • van der Giessen K
  • J. Biol. Chem.
  • 2003 Nov 21

Literature context:


Abstract:

The formation of muscle fibers involves the sequential expression of many proteins that regulate key steps during myoblast-to-myotube transition. MyoD, myogenin, and the cyclin-dependent kinase inhibitor p21cip1 are major players in the initiation and maintenance of the differentiated state of mouse embryonic muscle cells (C2C12). The messenger RNAs encoding these three proteins contain typical AU-rich elements (AREs) in their 3'-untranslated regions (3'-UTRs), which are known to affect the half-life of many short-lived mRNAs. HuR, an RNA-binding protein that regulates both the stability and cellular movement of ARE-containing mRNAs, interacts and stabilizes the p21cip1 message under UV stress in human RKO colorectal carcinoma cells. Here, by the use of gel shift experiments and immunoprecipitation followed by reverse transcription-PCR analysis, we show that HuR interacts with MyoD, myogenin, and p21cip1 mRNAs through specific sequences in their 3'-UTRs. To demonstrate the implication of endogenous HuR in myogenesis, we knocked down its expression in myoblasts using RNA interference and observed a significant reduction of HuR expression, associated with complete inhibition of myogenesis. Moreover, the expression of MyoD and myogenin mRNAs, as well as proteins, is significantly reduced in the HuR knockdown C2C12 cells. We were able to completely re-establish the myogenic process of these defective cells by introducing back HuR protein conjugated to a cell-permeable peptide. Finally, HuR accumulates in the cytoplasm during myogenesis. Thus, our results clearly demonstrated that endogenous HuR plays a crucial role in muscle differentiation by regulating the expression and/or the nuclear export of ARE-containing mRNAs that are essential for this process.

Funding information:
  • NINDS NIH HHS - NS40885(United States)
  • NINDS NIH HHS - R01 NS070300(United States)

IGF-I-induced differentiation of L6 myogenic cells requires the activity of cAMP-phosphodiesterase.

  • De Arcangelis V
  • Mol. Biol. Cell
  • 2003 Jun 24

Literature context:


Abstract:

Inhibition of type 4 cAMP-specific phosphodiesterase (PDE4) activity in L6-C5 and L6-E9 abolished myogenic differentiation induced by low-serum medium and IGF-I. L6-C5 cells cultured in low-serum medium displayed a PDE4 activity higher than cells cultured in serum-free medium, a condition not sufficient to induce differentiation. In the presence of serum, PDE4D3, the major isoform natively expressed in L6-C5 cells, translocated to a Triton-insoluble fraction, which increased the PDE specific activity of the fraction, and exhibited a Mr shift typical of phosphorylation of this isoform. Furthermore, serum promoted the localization of PDE4D3 to a vesicular subcellular compartment. In L6-C5 cells, IGF-I is a stronger inducer of myogenic differentiation in the presence than in absence of serum. Its ability to trigger differentiation in the absence of serum was restored by overexpressing wild-type PDE4D3, but not a phosphorylation-insensitive mutant. This finding was confirmed in single cells overexpressing a GFP-PDE4D3 fusion protein by assessing nuclear accumulation of myogenin in both L6-C5 and L6-E9. Overexpression of other PDE isoforms was less efficient, confirming that PDE4D3 is the physiologically relevant phosphodiesterase isoform in the control of myogenesis. These results show that downregulation of cAMP signaling through cAMP-phosphodiesterase stimulation is a prerequisite for induction of myogenesis.

Funding information:
  • NIGMS NIH HHS - T32 GM007413(United States)

Embryological origins and development of the rat diaphragm.

  • Babiuk RP
  • J. Comp. Neurol.
  • 2003 Jan 20

Literature context:


Abstract:

Textbooks of embryology provide a standard set of drawings and text reflecting the traditional interpretation of phrenic nerve and diaphragm development based on anatomical dissections of embryonic tissue. Here, we revisit this issue, taking advantage of immunohistochemical markers for muscle precursors in conjunction with mouse mutants to perform a systematic examination of phrenic-diaphragm embryogenesis. This includes examining the spatiotemporal relationship of phrenic axon outgrowth and muscle precursors during different stages of myogenesis. Additionally, mutant mice lacking c-met receptors were used to visualize the mesenchymal substratum of the developing diaphragm in the absence of myogenic cells. We found no evidence for contributions to the diaphragm musculature from the lateral body wall, septum transversum, or esophageal mesenchyme, as standard dogma would state. Nor did the data support the hypothesis that the crural diaphragm is of distinct embryological origins. Rather, we found that myogenic cells and axons destined to form the neuromuscular component of the diaphragm coalesce within the pleuroperitoneal fold (PPF). It is the expansion of these components of the PPF that leads to the formation of the diaphragm. Furthermore, we extended these studies to examine the developing diaphragm in an animal model of congenital diaphragmatic hernia (CDH). We find that malformation of the PPF mesenchymal substratum leads to the defect characteristic of CDH. In summary, the data demonstrates that a significant revision of narratives describing normal and pathological development of the diaphragm is warranted.

Funding information:
  • NHLBI NIH HHS - HL60003(United States)
  • NIA NIH HHS - P01 AG009975(United States)

Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders.

  • Quinn LS
  • Exp. Cell Res.
  • 2002 Oct 15

Literature context:


Abstract:

Interleukin-15 (IL-15) is a novel anabolic factor for skeletal muscle which inhibits muscle wasting associated with cancer (cachexia) in a rat model. To develop a cell culture system in which the mechanism of the anabolic action of IL-15 on skeletal muscle could be examined, the mouse C2 skeletal myogenic cell line was transduced with a retroviral expression vector for IL-15 and compared to sister cells transduced with a control vector. Overexpression of IL-15 induced fivefold higher levels of sarcomeric myosin heavy chain and alpha-actin accumulation in differentiated myotubes. Secreted factors from IL-15-overexpressing myogenic cells, but not from control cells, induced increased myofibrillar protein accumulation in cocultured control myotubes. IL-15 overexpression induced a hypertrophic myotube morphology similar to that described for cultured myotubes which overexpressed the well-characterized anabolic factor insulin-like growth factor-I (IGF-I). However, in contrast to IGF-I, the hypertrophic action of IL-15 on skeletal myogenic cells did not involve stimulation of skeletal myoblast proliferation or differentiation. IL-15 induced myotube hypertrophy at both low and high IGF-I concentrations. Furthermore, in contrast to IGF-I, which stimulated only protein synthesis under these culture conditions, IL-15 both stimulated protein synthesis and inhibited protein degradation in cultured skeletal myotubes. These findings indicate that IL-15 action on skeletal myogenic cells is distinct from that of IGF-I. Due to the ability of IGF-I to stimulate cell division and its association with several forms of cancer, controversy exists concerning the advisability of treating cachexia or age-associated muscle wasting with IGF-I. Administration of IL-15 or modulation of the IL-15 signaling pathway may represent an alternative strategy for maintaining skeletal muscle mass under these conditions.

Funding information:
  • NIDCD NIH HHS - DC 00019(United States)
  • NINDS NIH HHS - 5K01NS085071-03(United States)

Reduction in intracellular calcium levels inhibits myoblast differentiation.

  • Porter GA
  • J. Biol. Chem.
  • 2002 Aug 9

Literature context:


Abstract:

In myocytes, calcium plays an important role in intracellular signaling and contraction. However, the ability of calcium to modulate the differentiation of striated muscle cells is poorly understood. To examine this issue we studied C2C12 cells, which is a myoblast cell line that differentiates in vitro. First, we observed that the L-type calcium channel blockers nifedipine and verapamil effectively inhibited electrically induced calcium transients. Next, C2C12 cells were exposed to these agents during conditions that induce myocyte differentiation. In the presence of nifedipine and verapamil, myoblasts failed to form myotubes. Dantrolene and thapsigargin, which decrease intracellular calcium by different mechanisms, also inhibited differentiation. In addition, nifedipine and verapamil inhibited the expression of myosin heavy chain and myogenin, two markers of skeletal myoblast differentiation. In contrast, levels of the transcriptional factor Myf5, which is expressed in undifferentiated myoblasts, did not decline. Calcium channel blockade also prevented the expression of a reporter driven by the skeletal muscle alpha-actin promoter. These data demonstrate that lowering intracellular calcium levels inhibits the differentiation of skeletal myoblasts into mature myotubes.

Funding information:
  • NHLBI NIH HHS - R01HL110737-01(United States)

Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei.

  • Flink IL
  • Anat. Embryol.
  • 2002 Jun 10

Literature context:


Abstract:

To understand how to reinitiate cell division in adult human myocardium, a heart regeneration model was examined in the amphibian axolotl salamander, Amblystoma mexicanum. The ventricular apex was surgically amputated and resected for 3 weeks. At 14 days of recovery, the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) was injected intraperitoneally to identify cell types undergoing S-phase by indirect immunofluorescence using primary anti-BrdU antibodies. This is the first report showing a concentrated area of cell division in the ventricle and cells throughout the atrial epicardium by confocal microscopic image analysis in response to wounding of the ventricle. Tissues coimmunostained with anti-BrdU and sarcomeric myosin-specific MF20 antibodies showed 12.8 +/- 4.10% of myocytes contained BrdU(+) nuclei in a 75 microm to 750 microm zone in the ventricular myocardium subjacent to the amputation plane. BrdU(+) nuclei also were present in newly formed ventricular epicardium that surround dividing myocytes, and in epicardial mesothelium (74.3 +/- 6.36 %) and connective tissue (44.9 +/- 13.31%) cells distal to the wound. Unexpectedly, immunofluorescent BrdU(+) nuclei were observed in isolated atrial myocytes (13.9 +/- 1.45%) and in uninjured atrial epicardial mesothelium (64.3 +/- 1.55%) and connective tissue (29.4 +/- 5.50%). No BrdU(+) nuclei were present in cardiomyocytes or epicardium from sham-operated and BrdU-treated controls. These results suggest that renewed cell division is a specific response to wounding of the ventricle. Additionally, release of a growth factor may be responsible for the specific localized mitotic ventricular cardiomyocyte response adjacent to the wound, and the more generalized atrial proliferative response distal to the amputation.

Funding information:
  • NCI NIH HHS - P30 CA008748(United States)
  • NINDS NIH HHS - NS-16304(United States)

Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors.

  • Young HE
  • Anat. Rec.
  • 2001 Sep 1

Literature context:


Abstract:

This study details the profile of 13 cell surface cluster differentiation markers on human reserve stem cells derived from connective tissues. Stem cells were isolated from the connective tissues of dermis and skeletal muscle derived from fetal, mature, and geriatric humans. An insulin/dexamethasone phenotypic bioassay was used to determine the identity of the stem cells from each population. All populations contained lineage-committed myogenic, adipogenic, chondrogenic, and osteogenic progenitor stem cells as well as lineage-uncommitted pluripotent stem cells capable of forming muscle, adipocytes, cartilage, bone, fibroblasts, and endothelial cells. Flow cytometric analysis of adult stem cell populations revealed positive staining for CD34 and CD90 and negative staining for CD3, CD4, CD8, CD11c, CD33, CD36, CD38, CD45, CD117, Glycophorin-A, and HLA DR-II.

Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle.

  • Takebayashi-Suzuki K
  • Dev. Biol.
  • 2001 Jun 15

Literature context:


Abstract:

A rhythmic heart beat is coordinated by conduction of pacemaking impulses through the cardiac conduction system. Cells of the conduction system, including Purkinje fibers, terminally differentiate from a subset of cardiac muscle cells that respond to signals from endocardial and coronary arterial cells. A vessel-associated paracrine factor, endothelin, can induce embryonic heart muscle cells to differentiate into Purkinje fibers both in vivo and in vitro. During this phenotypic conversion, the conduction cells down-regulate genes characteristic of cardiac muscle and up-regulate subsets of genes typical of both skeletal muscle and neuronal cells. In the present study, we examined the expression of myogenic transcription factors associated with the switch of the gene expression program during terminal differentiation of heart muscle cells into Purkinje fibers. In situ hybridization analyses and immunohistochemistry of embryonic and adult hearts revealed that Purkinje fibers up-regulate skeletal and atrial muscle myosin heavy chains, connexin-42, and neurofilament protein. Concurrently, a cardiac muscle-specific myofibrillar protein, myosin-binding protein-C (cMyBP-C), is down-regulated. During this change in transcription, however, Purkinje fibers continue to express cardiac muscle transcription factors, such as Nkx2.5, GATA4, and MEF2C. Importantly, significantly higher levels of Nkx2.5 and GATA4 mRNAs were detected in Purkinje fibers as compared to ordinary heart muscle cells. No detectable difference was observed in MEF2C expression. In culture, endothelin-induced Purkinje fibers from embryonic cardiac muscle cells dramatically down-regulated cMyBP-C transcription, whereas expression of Nkx2.5 and GATA4 persisted. In addition, myoD, a skeletal muscle transcription factor, was up-regulated in endothelin-induced Purkinje cells, while Myf5 and MRF4 transcripts were undetectable in these cells. These results show that during and after conversion from heart muscle cells, Purkinje fibers express a unique myogenic transcription factor program. The mechanism underlying down-regulation of cardiac muscle genes and up-regulation of skeletal muscle genes during conduction cell differentiation may be independent from the transcriptional control seen in ordinary cardiac and skeletal muscle cells.

A novel role of neuregulin in skeletal muscle. Neuregulin stimulates glucose uptake, glucose transporter translocation, and transporter expression in muscle cells.

  • Suárez E
  • J. Biol. Chem.
  • 2001 May 25

Literature context:


Abstract:

Neuregulins regulate the expression of acetylcholine receptor genes and induce development of the neuromuscular junction in muscle. In studying whether neuregulins regulate glucose uptake in muscle, we analyzed the effect of a recombinant neuregulin, (r)heregulin-beta1-(177-244) (HRG), on L6E9 muscle cells, which express the neuregulin receptors ErbB2 and ErbB3. L6E9 responded acutely to HRG by a time- and concentration-dependent stimulation of 2-deoxyglucose uptake. HRG-induced stimulation of glucose transport was additive to the effect of insulin. The acute stimulation of the glucose transport induced by HRG was a consequence of the translocation of GLUT4, GLUT1, and GLUT3 glucose carriers to the cell surface. The effect of HRG on glucose transport was dependent on phosphatidylinositol 3-kinase activity. HRG also stimulated glucose transport in the incubated soleus muscle and was additive to the effect of insulin. Chronic exposure of L6E9 cells to HRG potentiated myogenic differentiation, and under these conditions, glucose transport was also stimulated. The activation of glucose transport after chronic HRG exposure was due to enhanced cell content of GLUT1 and GLUT3 and to increased abundance of these carriers at the plasma membrane. However, under these conditions, GLUT4 expression was markedly down-regulated. Muscle denervation is associated with GLUT1 induction and GLUT4 repression. In this connection, muscle denervation caused a marked increase in the content of ErbB2 and ErbB3 receptors, which occurred in the absence of alterations in neuregulin mRNA levels. This fact suggests that neuregulins regulate glucose transporter expression in denervated muscle. We conclude that neuregulins regulate glucose uptake in L6E9 muscle cells by mechanisms involving the recruitment of glucose transporters to the cell surface and modulation of their expression. Neuregulins may also participate in the adaptations in glucose transport that take place in the muscle fiber after denervation.

Funding information:
  • NIGMS NIH HHS - R01-GM58008(United States)

Cyclic strain induces proliferation of cultured embryonic heart cells.

  • Miller CE
  • In Vitro Cell. Dev. Biol. Anim.
  • 2001 Mar 2

Literature context:


Abstract:

Embryonic heart cells undergo cyclic strain as the developing heart circulates blood to the embryo. Cyclic strain may have an important regulatory role in formation of the adult structure. This study examines the feasibility of a computerized cell-stretching device for applying strain to embryonic cardiocytes to allow measurement of the cellular response. A primary coculture of myocytes and a secondary culture of nonmyocytes from stage-31 (7 d) embryonic chick hearts were grown on collagen-coated membranes that were subsequently strained at 2 Hz to 20% maximal radial strain. After 24 h, total cell number increased by 37+/-6% in myocyte cocultures and by 26+/-6% in nonmyocyte cultures over unstrained controls. Lactate dehydrogenase and apoptosis assays showed no significant differences in cell viabilities between strained and unstrained cells. After 2 h strain, bromodeoxyuridine incorporation was 38+/-1.2% versus 19+/-0.2% (P < 0.01) in strained versus unstrained myocyte cocultures, and 35+/-2.1% versus 16+/-0.2% (P = 0.01) in nonmyocyte cultures. MF20 antibody labeling and periodic acid-Schiff (PAS) staining estimated the number of myocytes in strained wells as 50-67% larger than in control wells. Tyrosine phosphorylation may play a role in the cellular response to strain, as Western blot analysis showed an increase in tyrosine phosphorylation of two proteins with approximate molecular weights of 63 and 150 kDa within 2 min of strain. The results of this study indicate that embryonic chick cardiocytes can be cultured in an active mechanical environment without significant detachment and damage and that increased proliferation may be a primary response to strain.

Funding information:
  • NIAID NIH HHS - P01 AI074621(United States)

Involvement of type 4 cAMP-phosphodiesterase in the myogenic differentiation of L6 cells.

  • Naro F
  • Mol. Biol. Cell
  • 2000 Feb 14

Literature context:


Abstract:

Myogenic cell differentiation is induced by Arg(8)-vasopressin, whereas high cAMP levels and protein kinase A (PKA) activity inhibit myogenesis. We investigated the role of type 4 phosphodiesterase (PDE4) during L6-C5 myoblast differentiation. Selective PDE4 inhibition resulted in suppression of differentiation induced by vasopressin. PDE4 inhibition prevented vasopressin-induced nuclear translocation of the muscle-specific transcription factor myogenin without affecting its overall expression level. The effects of PDE4 inhibition could be attributed to an increase of cAMP levels and PKA activity. RNase protection, reverse transcriptase PCR, immunoprecipitation, Western blot, and enzyme activity assays demonstrated that the PDE4D3 isoform is the major PDE4 expressed in L6-C5 myoblasts and myotubes, accounting for 75% of total cAMP-hydrolyzing activity. Vasopressin cell stimulation caused a biphasic increase of PDE4 activity, which peaked at 2 and 15 min and remained elevated for 48 h. In the continuous presence of vasopressin, cAMP levels and PKA activity were lowered. PDE4D3 overexpression increased spontaneous and vasopressin-dependent differentiation of L6-C5 cells. These results show that PDE4D3 plays a key role in the control of cAMP levels and differentiation of L6-C5 cells. Through the modulation of PDE4 activity, vasopressin inhibits the cAMP signal transduction pathway, which regulates myogenesis possibly by controlling the subcellular localization of myogenin.

Insulin-like growth factor (IGF)-binding protein-related protein-1: an autocrine/paracrine factor that inhibits skeletal myoblast differentiation but permits proliferation in response to IGF.

  • Haugk KL
  • Endocrinology
  • 2000 Jan 13

Literature context:


Abstract:

Skeletal myogenic cells respond to the insulin-like growth factors (IGF-I and IGF-II) by differentiating or proliferating, which are mutually exclusive pathways. What determines which of these responses to IGF skeletal myoblast undergo is unclear. IGF-binding protein-related protein 1 (IGFBP-rP1) is a secreted protein with close homology to the IGF-binding proteins (IGFBPs) in the N-terminal region. IGFBP-rP1, previously called mac25 and IGFBP-7, is highly expressed in C2 skeletal myoblasts during the proliferative phase, but is down-regulated during myoblast differentiation. To determine the role of IGFBP-rP1 in myogenesis, IGFBP-rP1 was overexpressed in C2 myoblasts using a retroviral vector. Western blots indicated that the resulting C2-rP1 myoblasts secreted approximately 27-fold higher levels of IGFBP-rP1 than control C2-LX myoblasts that were transduced with a control vector (LXSN). Compared with C2-LX myoblasts, the differentiation responses of C2-rP1 myoblasts to IGF-I, IGF-II, insulin, and des(1-3)IGF-I were significantly reduced (P < 0.05). However, proliferation responses of C2-rP1 and C2-LX myoblasts to these same factors were not significantly different. Exposure of control C2-LX myoblasts to factors secreted by C2-rP1 myoblasts using a transwell coculture system reduced C2-LX myoblast differentiation significantly (P < 0.05). Experiments with the mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 suggested that IGFBP-rP1 inhibits a MAPK-dependent differentiation pathway. In confirmation of this idea, levels of phosphorylated extracellular signal-regulated kinase-2 (a MAPK) were reduced in C2-rP1 myoblasts compared with those in C2-LX myoblasts. These findings indicate that IGFBP-rP1 may function as an autocrine/paracrine factor that specifies the proliferative response to the IGFs in myogenesis.

Funding information:
  • NHGRI NIH HHS - R01 HG003224(United States)

Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds; a possible specialization for speech.

  • Han Y
  • Anat. Rec.
  • 1999 Oct 1

Literature context:


Abstract:

Most of the sounds of human speech are produced by vibration of the vocal folds, yet the biomechanics and control of these vibrations are poorly understood. In this study the muscle within the vocal fold, the thyroarytenoid muscle (TA), was examined for the presence and distribution of slow tonic muscle fibers (STF), a rare muscle fiber type with unique contraction properties. Nine human TAs were frozen and serially sectioned in the frontal plane. The presence and distribution pattern of STF in each TA were examined by immunofluorescence microscopy using the monoclonal antibodies (mAb) ALD-19 and ALD-58 which react with the slow tonic myosin heavy chain (MyHC) isoform. In addition, TA muscle samples from adjacent frozen sections were also examined for slow tonic MyHC isoform by electrophoretic immunoblotting. STF were detected in all nine TAs and the presence of slow tonic MyHC isoform was confirmed in the immunoblots. The STF were distributed predominantly in the medial aspect of the TA, a distinct muscle compartment called the vocalis which is the vibrating part of the vocal fold. STF do not contract with a twitch like most muscle fibers, instead, their contractions are prolonged, stable, precisely controlled, and fatigue resistant. The human voice is characterized by a stable sound with a wide frequency spectrum that can be precisely modulated and the STF may contribute to this ability. At present, the evidence suggests that STF are not presented in the vocal folds of other mammals (including other primates), therefore STF may be a unique human specialization for speech.

Funding information:
  • NHGRI NIH HHS - U54 HG004576(United States)

Differentiation of muscle-specific proteins in chicken somites as studied by immunofluorescence microscopy.

  • Begum S
  • Cell Tissue Res.
  • 1998 Aug 28

Literature context:


Abstract:

Fluorescence microscopy of chicken cervical somites revealed that muscle-specific proteins began to appear at stage 11 (Hamburger and Hamilton numbering), and the onset of the expression of all the proteins examined in the present study had occurred by stage 17. Muscle proteins were classified into six groups according to the stage of their appearance. Since all these proteins were expressed before emergence of nerve fibers in myotomes, switching-on of their synthesis does not seem to require neuronal influence. However, since isoproteins other than adult muscle types disappeared and diversification of muscle fiber types occurred coordinately with the clustering of acetylcholine receptors in cervical muscles, switching-off of the synthesis of the nonadult isoforms might have been accelerated by the formation of functional neuromuscular junctions. The absence of nebulin and C-protein in early stages seems to indicate that these proteins are not required for the initial assembly of myofilaments and/or myofibrils. Further, this absence might be considered to facilitate exchangeabilities of proteins in nascent myofibrils, thereby changing the isoforms to adult types.

Funding information:
  • NCRR NIH HHS - KL2 RR025754(United States)

A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes.

  • Ferrari MB
  • J. Cell Biol.
  • 1998 Jun 15

Literature context:


Abstract:

Spontaneous calcium release from intracellular stores occurs during myofibrillogenesis, the process of sarcomeric protein assembly in striated muscle. Preventing these Ca2+ transients disrupts sarcomere formation, but the signal transduction cascade has not been identified. Here we report that specific blockade of Ca2+ release from the ryanodine receptor (RyR) activated Ca2+ store blocks transients and disrupts myosin thick filament (A band) assembly. Inhibition of an embryonic Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) by blocking the ATP-binding site, by allosteric phosphorylation, or by intracellular delivery of a pseudosubstrate peptide, also disrupts sarcomeric organization. The results indicate that both RyRs and MLCK, which have well-described calcium signaling roles in mature muscle contraction, have essential developmental roles during construction of the contractile apparatus.

Funding information:
  • NHGRI NIH HHS - 1R01HG004908(United States)

Retrovirally mediated overexpression of insulin-like growth factor binding protein 4: evidence that insulin-like growth factor is required for skeletal muscle differentiation.

  • Damon SE
  • J. Cell. Physiol.
  • 1998 Apr 12

Literature context:


Abstract:

Recent studies have indicated that the insulin-like growth factors (IGFs) stimulate skeletal myoblast proliferation and differentiation. However, the question of whether IGFs are required for myoblast differentiation has not been resolved. To address this issue directly, we used a retroviral vector (LBP4SN) to develop a subline of mouse C2 myoblasts (C2-BP4) that constitutively overexpress IGF binding protein-4 (IGFBP-4). A control C2 myoblast subline (C2-LNL6) was also developed by using the LNL6 control retroviral vector. C2-BP4 myoblasts expressed sixfold higher levels of IGFBP-4 protein than C2-LNL6 myoblasts. 125I-IGF-I cross linking indicated that IGFBP-4 overexpression reduced IGF access to the type-1 IGF receptor tenfold. At low plating densities, myoblast proliferation was inhibited, and myoblast differentiation was abolished in C2-BP4 cultures compared with C2-LNL6 cultures. At high plating densities in which nuclear numbers were equal in the two sets of cultures, C2-BP4 myoblast differentiation was inhibited completely. Differentiation was restored in C2-BP4 cells by treatment with high levels of exogenous IGF-I or with des(1-3)IGF-I, an analog of IGF-I with reduced affinity for IGFBPs. These findings confirm the hypothesis that positive differentiation signals from the IGFs are necessary for C2 myoblast differentiation, and they suggest that the present model of myogenic differentiation, which involves only negative external control of differentiation by mitogens, may be incomplete.

Funding information:
  • Wellcome Trust - (United Kingdom)

p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions.

  • Wheeler EF
  • J. Comp. Neurol.
  • 1998 Feb 22

Literature context:


Abstract:

The p75 kDa neurotrophin receptor (p75NTR) has been detected in a number of non-neural tissues, especially during development. Reports of Trk receptor transcripts in non-neural tissues raise the possibility that the sites of p75NTR expression during development may correlate with Trk receptor expression. Coexpression of p75NTR with the Trk receptors in developing non-neural tissues would support the hypothesis that there is a cooperative function between the two receptor subclasses. To address these questions, p75NTR was localized relative to the three known Trk receptors in adjacent sections of rat embryos at stages of development when the highest levels of p75NTR have been observed in the muscle, maxillary pad, kidney, and lung. Using in situ hybridization and immunhistochemical analyses, we show here that the Trk receptors are expressed extensively in non-neural tissues during cell differentiation and tissue morphogenesis but in patterns that are generally reciprocal to that of p75NTR. The results indicate p75NTR most likely functions independently of the Trk receptors in most developing non-neural tissues. However, the p75NTR consistently appears in non-neural cells adjacent to those expressing Trk receptors. The reciprocal patterns of expression indicate that the separate activities of the two receptors most likely complement each other in regulating cell-cell interactions important for the innervation of developing non-neural tissues.

Funding information:
  • NHGRI NIH HHS - U01 HG003161(United States)

Ontogeny of the electric organ discharge and the electric organ in the weakly electric pulse fish Brachyhypopomus pinnicaudatus (Hypopomidae, Gymnotiformes).

  • Franchina CR
  • J. Comp. Physiol. A
  • 1997 Aug 12

Literature context:


Abstract:

I recorded the electric organ discharges (EODs) of 331 immature Brachyhypopomus pinnicaudatus 6-88 mm long. Larvae produced head-positive pulses 1.3 ms long at 7 mm (6 days) and added a second, small head-negative phase at 12 mm. Both phases shortened duration and increased amplitude during growth. Relative to the whole EOD, the negative phase increased duration until 22 mm and amplitude until 37 mm. Fish above 37 mm produced a "symmetric" EOD like that of adult females. I stained cleared fish with Sudan black, or fluorescently labeled serial sections with anti-desmin (electric organ) or anti-myosin (muscle). From day 6 onward, a single electric organ was found at the ventral margin of the hypaxial muscle. Electrocytes were initially cylindrical, overlapping, and stalk-less, but later shortened along the rostrocaudal axis, separated into rows, and formed caudal stalks. This differentiation started in the posterior electric organ in 12-mm fish and was complete in the anterior region of fish with "symmetric" EODs. The lack of a distinct "larval" electric organ in this pulse-type species weakens the hypothesis that all gymnotiforms develop both a temporary (larval) and a permanent (adult) electric organ.

Funding information:
  • Howard Hughes Medical Institute - WT077044/Z/05/Z(United States)

Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts.

  • Yablonka-Reuveni Z
  • Growth Factors
  • 1997 Jan 13

Literature context:


Abstract:

We have previously demonstrated that PDGF-BB enhances proliferation of C2 myoblasts. This has led us to examine whether the mitogenic influence of PDGF-BB in the C2 model correlates with modulation of specific steps associated with myogenic differentiation. C2 myoblasts transiting through these differentiation specific steps were monitored via immunocytochemistry. We show that the influence of PDGF on enhancing cell proliferation correlates with a delay in the emergence of cells positive for sarcomeric myosin. We further monitored the influence of PDGF-BB on differentiation steps preceding the emergence of myosin+ cells. We demonstrate that mononucleated C2 cells first express MyoD (MyoD+/myogenin- cells) and subsequently, myogenin. Cells negative for both MyoD and myogenin (the phenotype preceding the MyoD+ state) were present at all times in culture and comprised the majority, if not all, of the cells which responded mitogenically to PDGF. Additionally, the frequency of the MyoD+/myogenin+ cell phenotype was reduced in cultures receiving PDGF, suggesting that PDGF can modulate the transition of the cells into the myogenin+ state. We determined that many of the myogenin+ cells subsequently become MEF2A+ and this phenomenon is not influenced by PDGF-BB. FGF-2 also enhanced the proliferation of C2 myoblasts and suppressed the appearance of the myogenin+ cells, but did not influence the subsequent transition into the MEF2A+ state. The study raises the possibility that PDGF-BB and FGF-2 might delay the transition of the C2 cells into the MyoD+/myogenin+ state by depressing a paracrine signal that enhances differentiation.

Funding information:
  • NIMH NIH HHS - K08 MH01573(United States)

Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes.

  • Ferrari MB
  • Dev. Biol.
  • 1996 Sep 15

Literature context:


Abstract:

Spontaneous transient elevations of intracellular calcium (Ca2+i) have functional roles in the development of Xenopus spinal neurons. However, less is known about the roles of elevations of Ca2+i in the differentiation of other cell types. We have examined Xenopus myocytes as a first step in determining if Ca2+i transients are a more general feature of differentiation in excitable cells. We find that cultured myocytes, like neurons, exhibit spontaneous Ca2+i transients during an early developmental period. These transients average 1.4 min in duration and occur at an average frequency of 6/hr in cultures containing myocytes and neurons. Culture conditions can influence transient production; for example, myocyte-enriched cultures have a lower incidence of transient-producing cells. Transients persist in 0-Ca2+ medium, indicating that they arise from intracellular stores. Caffeine-sensitive Ca2+ stores are present in these cells, and depletion or block of these stores eliminates transient production. To determine if transients play a functional role during development, we blocked their production with intracellular BAPTA, a rapid Ca2+ chelator. Cellular differentiation is significantly inhibited only when BAPTA is applied early in development, during the period of transient production, while later BAPTA treatments have no effect. Blocking transient production severely perturbed myofibril organization and sarcomere assembly. However, other aspects of myocyte differentiation were not affected by transient blockade, indicating that not all myogenic differentiation programs are regulated in this manner. Our results suggest that spontaneous Cai2+ transients play a role in cytoskeletal organization during myofibrillogenesis.

Funding information:
  • NLM NIH HHS - 5 U54 LM008748(United States)

Overexpression of the type-1 insulin-like growth factor receptor increases ligand-dependent proliferation and differentiation in bovine skeletal myogenic cultures.

  • Quinn LS
  • J. Cell. Physiol.
  • 1996 Jul 25

Literature context:


Abstract:

Previous studies demonstrated that overexpression of the type-1 insulin-like growth factor (IGF) receptor (IGF-1R) in skeletal myogenic cell lines increased proliferation and differentiation responses to IGF. However, it was unclear if such manipulations in primary, untransformed skeletal myogenic cells would result in modulation of these responses, which may be more stringently regulated in primary cells than in myogenic cell lines. In this study, low passage untransformed fetal bovine myogenic cultures were infected with a replication-deficient retroviral expression vector (LISN) coding for the human IGF-1R or with a control retroviral vector (LNL6). Bovine myogenic cultures infected with the LISN vector (Bov-LISN) displayed ten times more IGF-1Rs than controls (Bov-LNL6). Bov-LISN myogenic cultures exhibited elevated rates of IGF-I-stimulated proliferation and increased rates of terminal differentiation which were reduced to control levels by the anti-human IGF-1R antibody alpha IR3. These findings indicate overexpression of the IGF-1R can enhance IGF sensitivity and thereby modify the proliferation and differentiation behavior of untransformed low passage myoblasts. Such manipulations may be useful to increase muscle mass in clinical or agricultural applications.

Funding information:
  • NIGMS NIH HHS - GM00806-06(United States)

Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts.

  • Klug MG
  • J. Clin. Invest.
  • 1996 Jul 1

Literature context:


Abstract:

This study describes a simple approach to generate relatively pure cultures of cardiomyocytes from differentiating murine embryonic stem (ES) cells. A fusion gene consisting of the alpha-cardiac myosin heavy chain promoter and a cDNA encoding aminoglycoside phosphotransferase was stably transfected into pluripotent ES cells. The resulting cell lines were differentiated in vitro and subjected to G418 selection. Immunocytological and ultrastructural analyses demonstrated that the selected cardiomyocyte cultures (> 99% pure) were highly differentiated. G418 selected cardiomyocytes were tested for their ability to form grafts in the hearts of adult dystrophic mice. The fate of the engrafted cells was monitored by antidystrophin immunohistology, as well as by PCR analysis with primers specific for the myosin heavy chain-aminoglycoside phosphotransferase transgene. Both analyses revealed the presence of ES-derived cardiomyocyte grafts for as long as 7 wk after implantation, the latest time point analyzed. These studies indicate that a simple genetic manipulation can be used to select essentially pure cultures of cardiomyocytes from differentiating ES cells. Moreover, the resulting cardiomyocytes are suitable for the formation of intracardiac grafts. This selection approach should be applicable to all ES-derived cell lineages.

Funding information:
  • Wellcome Trust - HG00022(United Kingdom)

DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes.

  • Klug MG
  • Am. J. Physiol.
  • 1996 Apr 8

Literature context:


Abstract:

The proliferative capacity of embryonic stem (ES) cell-derived cardiomyocytes was assessed. Enriched preparations of cardiomyocytes were isolated by microdissection of the cardiogenic regions of cultured embryoid bodies. The identity of the isolated cells was established by immunocytology, and mitotic activity was monitored by [3H]thymidine incorporation and pulse-chase experiments. ES-derived cardiomyocytes were mitotically active and predominantly mononucleated at 11 days after cardiogenic induction. By 21 days postinduction, cardiomyocyte DNA synthesis was markedly decreased, with a concomitant increase in the percentage of multinucleated cells. Interestingly, the duration of active cardiomyocyte reduplication in the ES system appeared to be roughly similar to that observed during normal murine cardiogenesis. Given these observations, as well as the genetic tractability of ES cells, ES-derived cardiogenesis might provide a useful in vitro system with which to assess the molecular regulation of the cardiomyocyte cell cycle.

Funding information:
  • NHGRI NIH HHS - R01HG004517(United States)

Relationship between fibronectin expression during gastrulation and heart formation in the rat embryo.

  • Suzuki HR
  • Dev. Dyn.
  • 1995 Nov 12

Literature context:


Abstract:

By utilizing myosin immunostaining, we were able to identify early rat myocardium as a thin epithelial sheet and realized that its cohesive movement toward the midline leads to the straight heart tube formation. Localization study of fibronectin mRNA and protein was, therefore, carried out to investigate its tissue origin and possible roles in facilitating mesoderm migration and heart formation. Fibronectin mRNAs were first detected throughout the mesoderm during the early primitive streak stage, suggesting that the mesoderm is the source of fibronectin. By pre-head fold (pre-somite) and head fold (early somite) stages, the mesoderm became largely down-regulated for fibronectin mRNAs, while it was also at these stages when myosin-positive myocardium formed itself into the epithelium and was subsequently folding toward the midline. Thus, there appears to be little fibronectin synthesis during and directly relevant to early heart tube formation. Later, during the early straight heart tube stage (5 somite and older), endocardium became highly positive for fibronectin mRNAs, suggesting that the endocardium is the major source of fibronectin for the cardiac jelly. Based on the results, we present a map for the early mammalian heart in which the heart is a single crescentic band lying in front of the prechordal plate. We also suggest a process for heart tube formation based on the cohesive movement of the myocardial epithelium. During heart tube formation, fibronectin protein had been deposited previously by the mesoderm and was found uniformly in the ECM and not newly produced by any adjacent tissue. The data contradict the endodermal guidance of heart migration by fibronectin gradient and suggest, instead, a permissive role for the fibronectin substrate.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/01589X/1(United Kingdom)

Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers.

  • Yablonka-Reuveni Z
  • Dev. Biol.
  • 1994 Aug 29

Literature context:


Abstract:

Myogenic precursors in adult skeletal muscle (satellite cells) are mitotically quiescent but can proliferate in response to a variety of stresses including muscle injury. To gain further understanding of adult myoblasts, we analyzed myogenesis of satellite cells on intact fibers isolated from adult rat muscle. In this culture model, satellite cells are maintained in their in situ position underneath the fiber basement membrane. In the present study patterns of satellite cell proliferation, expression of myogenic regulatory factor proteins, and expression of differentiation-specific, cytoskeletal proteins were determined, via immunohistochemistry of cultured fibers. The temporal appearance and the numbers of cells positive for proliferating cell nuclear antigen (PCNA) or for MyoD were similar, suggesting that MyoD is present in detectable amounts in proliferating but not quiescent satellite cells. Satellite cells positive for myogenin, alpha-smooth muscle actin (alpha SMactin), or developmental sarcomeric myosin (DEVmyosin) appeared following the decline in PCNA and MyoD expression. However, expression of myogenin and alpha SMactin was transient, while DEV-myosin expression was continuously maintained. Moreover, the number of DEVmyosin + cells was only half of the number of myogenin + or alpha SMactin + cells--indicating, perhaps, that only 50% of the satellite cell descendants entered the phase of terminal differentiation. We further determined that the number of proliferating satellite cells can be modulated by basic FGF but the overall schedule of cell cycle entry, proliferation, differentiation, and temporal expression of regulatory and structural proteins was unaffected. We thus conclude that satellite cells conform to a highly coordinated program when undergoing myogenesis at their native position along the muscle fiber.

Funding information:
  • NHLBI NIH HHS - U54HL108460(United States)

Effects of cyclochlorotine on myofibrils in cardiomyocytes and on actin filament bundles in fibroblasts in vitro.

  • Zhou ZH
  • Nat. Toxins
  • 1994 May 9

Literature context:


Abstract:

The effects of cyclochlorotine (CC), a secondary metabolite of Penicillium islandicum, on cardiomyocytes and fibroblasts were investigated by fluorescent and electron microscopy. The in vitro application of CC on myocytes induced disruption of myofibrils and large accumulations of actin, myosin, alpha-actinin, and vinculin at the cellular processes. This agent also induced the formation of islands of myosin and alpha-actinin aggregates. Actin filament bundles in fibroblasts were either unaffected or disrupted completely, suggesting the presence of two, physiocochemically different, populations of fibroblasts. CC damage was dose-dependently reversible. Further studies will be required to explore the feasibility of using CC for analyzing the properties of contractile and/or cytoskeletal proteins.

Funding information:
  • NCRR NIH HHS - U54 RR022220(United States)

Maturation of myogenic and chondrogenic cells in the presomitic mesoderm of the chick embryo.

  • George-Weinstein M
  • Exp. Cell Res.
  • 1994 Apr 3

Literature context:


Abstract:

The establishment of cells with myogenic or chondrogenic potential is temporally and spatially separated from terminal differentiation in the developing chick embryo. Both cell types arise from tissue adjacent to the neural tube and notochord, the paraxial mesoderm. A cell culture system was developed in order to study the maturation and differentiation of myogenic and chondrogenic cells along the length of the paraxial mesoderm at different stages of development. Somite and segmental plate cells obtained from 36- to 52-h (stages 10-15) embryos were plated as a monolayer on substrata of gelatin, fibronectin, or laminin. A substratum of gelatin plus fibronectin was most effective in supporting adhesion and differentiation. Maximal increase in number of cells in somite cultures occurred 24 h earlier than that in segmental plate cultures. Fewer skeletal muscle cells and chondroblasts were present in cultures prepared from progressively more caudal regions of the paraxial mesoderm and from younger embryos. Some cells present within the somites and the rostral two-thirds of the stage 13 segmental plate differentiated without replication after placement in culture. Only the progeny of cells from its caudal third, and from stage 10 somites and segmental plates, differentiated under these conditions. The results suggest that some myogenic and chondrogenic cells obtain the ability to differentiate under these in vitro conditions after stage 10 of development, as they occupy more rostral positions within the segmental plate relative to the addition of cells at its caudal end. Although some stage 13 segmental plate cells form skeletal muscle and cartilage directly after removal from the embryo, differentiation is not observed in ovo until these cells are incorporated into somites, a minimum of 10 h later. Three-dimensional tissue interactions, and/or cell-cell interactions, while not required for segmental plate cells to undergo myogenesis and chondrogenesis, may play a role in regulating the timing of terminal differentiation within the embryo.

Funding information:
  • NHGRI NIH HHS - HG01696(United States)

Proliferation of chicken myoblasts is regulated by specific isoforms of platelet-derived growth factor: evidence for differences between myoblasts from mid and late stages of embryogenesis.

  • Yablonka-Reuveni Z
  • Dev. Biol.
  • 1993 Apr 30

Literature context:


Abstract:

In the present study we measured the level of PDGF receptor expression by chicken myoblasts and the effect of the three different PDGF isoforms (AA, AB, BB) on DNA synthesis by myoblasts. We examined PDGF receptor expression and function on clonally derived myoblasts in order to eliminate contaminating fibroblasts which are present in myogenic cultures and which bind PDGF. Furthermore, since we have previously shown that fetal myoblasts are replaced with adult myoblasts during late chicken embryogenesis, we compared PDGF receptor expression and function on myoblasts from Embryonic Day 10 (E10, mid development) and from Embryonic Day 19 (E19, late development). We found that all myogenic clones from late embryos (E19) express many receptors for PDGF-BB, far fewer receptors for PDGF-AB, and even fewer, if any, receptors for PDGF-AA. Myoblast clones derived from E10 were more heterogeneous in their PDGF binding pattern ranging from clones similar to E19 clones to clones having very few PDGF binding sites. We also found that both PDGF-AB and PDGF-BB can promote DNA synthesis by clonally derived chicken myoblasts maintained in 2.5% fetal bovine serum whereas PDGF-AA has no detectable effect. Finally, we observed that primary myogenic cultures from E10 and E19 differ strikingly in levels of PDGF binding; E19 cultures bind much more PDGF than do E10 cultures. We conclude that PDGF can enhance the proliferation of chicken myoblasts and that myoblasts responsive to PDGF are more frequent in late than in mid stages of development. We propose that PDGF may be a modulator of myogenesis of adult but not fetal myoblasts.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

In vitro and in vivo expression of alpha 7 integrin and desmin define the primary and secondary myogenic lineages.

  • George-Weinstein M
  • Dev. Biol.
  • 1993 Mar 14

Literature context:


Abstract:

Skeletal muscle fibers form during two periods of development and differ biochemically, functionally and in their morphology. Primary fibers develop in the rat hindlimb during Days 14 to 16 of embryogenesis. These fibers are subsequently surrounded by secondary fibers that eventually constitute the bulk of muscle mass in the limbs. We have used the expression of the alpha 7 muscle laminin binding integrin (Song et al., J. Cell Biol. 117, 643-657, 1992) and the intermediate filament protein desmin to identify myogenic cells at distinct stages of development both in vitro and in vivo. The phenotypes of these cells, determined by immunofluorescence microscopy, discriminate two lineages and indicate that the development of primary and secondary muscle fibers is regulated by multiple mechanisms. The cells which compose the primary myogenic lineage are derived from a population of precursor cells that is in part present in the Day 12 embryo limb bud and which do not express either alpha 7 integrin or desmin. These precursor cells develop into cells that express desmin, but not alpha 7, and which subsequently mature into replicating myoblasts that are competent to undergo terminal differentiation. This maturation process requires the in vivo environment of the Day 13 embryo limb. The alpha 7 integrin and slow myosin heavy chain are first expressed in primary muscle cells well after the onset of terminal differentiation. Some cells that give rise to secondary muscle fibers also are present in the Day 12 embryo hindlimb. The precursors of secondary fibers will develop into cells which express either alpha 7 integrin or desmin and subsequently into replicating myoblasts that express both proteins. Upon terminal differentiation of secondary myoblasts there is an increase in the expression of both alpha 7 integrin and desmin. The temporal regulation of expression of these proteins indicates that the environment of the limb plays a role in the maturation of precursors of both lineages. At least two roles of alpha 7 integrin during myogenesis are related to its association with beta 1 integrin and its function as a laminin receptor. Laminin selectively maintains the proliferation of secondary myoblasts and modulates their shape and mobility in vitro. This responsiveness of secondary myoblasts to laminin corresponds to the time when laminin is a major component of the extracellular matrix, when there is an expansion of the population of secondary myoblasts, and when the alpha 7 integrin is expressed on secondary myoblasts in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)

Funding information:
  • NCI NIH HHS - U24 CA126546(United States)

Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract.

  • Chen G
  • J. Cell. Physiol.
  • 1992 Dec 30

Literature context:


Abstract:

We have utilized a model system to investigate myotrophic factors released by normal adult mouse muscles following a crush injury. We found that saline extracts from gently crushed mouse muscles (CME) contain potent mitogenic activities which act on primary newborn mouse myoblast cultures, as well as on mouse C2 cells, a mouse myoblast cell line. We compared the activity of CME on mouse myoblasts with that of basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I), two growth factors known to be mitogenic for primary myoblasts (Allen, Dodson, and Lutein: Exp. Cell. Res., 152:154-160, 1984; DiMario and Strohman: Differentiation, 39:42-49, 1988; Allen and Boxhorn: J. Cell. Physiol., 138:311-315, 1989; Dodson, Allen, and Hossner: Endocrinology, 117:2357-2363, 1985; Florini and Magri: Am. J. Physiol., 256:C701-C711, 1989). We found that CME could act in an additive fashion to saturating doses of bFGF to increase proliferation in myoblast cultures. Additionally, CME acted additively to the combination of saturating amounts of bFGF and IGF-I on both C2 and primary myoblast cultures. We also examined additivity of CME with the combination of saturating doses of bFGF, IGF-I, transferrin (Tf), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), adrenocorticotrophin (ACTH), and macrophage colony-stimulating factor (M-CSF). Our data indicate that CME contains Tf, as well as one or more uncharacterized mitogens for myoblasts which are distinct from Tf, the IGFs, bFGF, EGF, PDGF, M-CSF, and ACTH. These uncharacterized mitogens may act independently of known growth factors to stimulate myoblast proliferation, or may act through modulation of known growth factor activities.

Funding information:
  • NIMH NIH HHS - K99 MH104259(United States)

[A case of twin pregnancy associated with transient diabetes insipidus].

  • Shitsukawa K
  • Nippon Sanka Fujinka Gakkai Zasshi
  • 1992 Jul 15

Literature context:


Abstract:

Funding information:
  • NCI NIH HHS - R01 CA163507(United States)

Formation of highly organized skeletal muscle fibers in vitro. Comparison with muscle development in vivo.

  • Swasdison S
  • J. Cell. Sci.
  • 1992 Jul 23

Literature context:


Abstract:

Two methods were developed in which long-term cultures of quail skeletal muscle were established so that all of the muscle fibers develop in a highly oriented manner. The muscle fibers became spontaneously and vigorously contractile and established strong connections with the extracellular matrix at their ends that closely duplicate the structure of the myotendinous junction. A continuous basal lamina was formed around each muscle fiber that contained type IV collagen, laminin and heparan sulfate proteoglycan. With one of the methods, an extensive extracellular matrix developed around each muscle fiber that was highly organized with the formation of a distinctive epimysium, perimysium and endomysium. Analysis of the cultures by both methods for different isoforms of myosin showed expression of an adult form of myosin by some of the muscle cells. The results therefore demonstrate that muscle development in the present culture systems proceeds extensively for several weeks. It will now be possible to investigate directly the structure of the connections between muscle fibers and the extracellular matrix.

Funding information:
  • PHS HHS - R15A1094406(United States)

Myogenic cytodifferentiation of the precardiac mesoderm in the rat.

  • Baldwin HS
  • Differentiation
  • 1992 Jan 9

Literature context:


Abstract:

The contractile cells of the primitive heart are derived from a subpopulation of the lateral plate splanchnic mesoderm. While the formation of the cardiac primordia has been studied in the avian embryo, little is known about this cell population in the mammal. To investigate the distribution and cellular differentiation of the myocardial precursors in the early mammalian embryo, we studied the sequential immunohistochemical appearance of desmin and myosin in whole mounts of rat embryos from the presomite (gestational day 9) through the 6-8 somite, straight heart tube (gestational day 10) stages of early cardiac morphogenesis. In contrast to the chicken, and previous reports in the mouse, our results show that myogenic differentiation of the muscle precursor cells of the heart begins in the presomite embryo prior to formation of the anterior intestinal portal or foregut. In addition, this cell population of the precardiac mesoderm appears as a single crescent-shaped population of cells in continuity across the midline which extends caudally during development and then fuses in the midline to form the primitive heart tube. Unlike skeletal myogenesis, desmin and myosin appear simultaneously and are codistributed throughout this initial period of heart development. These results suggest that myocardial differentiation in the rat is precocious when compared to the chicken and precedes the morphogenetic processes involved in formation of the primitive heart tube. Furthermore, this study provides the first description in the mammal of the spatial distribution of the myogenic precardiac mesoderm.

Baby hamster kidney (BHK-21/C13) cells can express striated muscle type proteins.

  • Schaart G
  • Differentiation
  • 1991 Aug 9

Literature context:


Abstract:

When baby hamster kidney (BHK-21/C13) cell lines are subjected to low-serum medium, cell morphology changes from polygonal to elongated and occasionally fusion of cells is also observed. BHK-21 cells initially growing in Eagle's modified minimum essential medium (EMEM) containing 10% newborn bovine serum were induced to differentiate by changing the culture medium after the cells had grown to confluency. After this point the cells were grown in a low-serum medium (EMEM with 2% normal horse serum), for at least 4 days. The expression of different muscle-specific proteins (desmin, titin and skeletal muscle myosin) and of tropomyosins was studied in both polygonal and elongated BHK-21 cells using the indirect-immunofluorescence assay, two-dimensional (2D)-gel electrophoresis and immunoblotting. Filamentous staining was found with the desmin antisera in the polygonal cells and at all stages of BHK-cell elongation. While no reaction was seen with the titin and myosin antibodies in the polygonal cells, a punctate staining reaction for titin was detected 2 days after medium-change, although the cells had not yet elongated. After 4 days titin was found in a striated pattern. Filamentous staining was seen with the skeletal-muscle-specific myosin antibody at this stage. Confirmatory results were obtained from immunoblotting assays and 2D-gel electrophoresis of cytoskeletal preparations from undifferentiated and differentiated BHK cells. These latter experiments showed the initiation of tropomyosin expression only in the differentiated cells. The positive staining with antibodies to skeletal muscle myosin and titin indicates a striated-muscle nature of the (elongated) BHK-21/C13 cells.

Funding information:
  • NHLBI NIH HHS - N01-HC-65226(United States)

Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle.

  • Yablonka-Reuveni Z
  • Differentiation
  • 1991 Apr 9

Literature context:


Abstract:

Desmin expression by myoblasts cultured from embryonic and adult chicken breast muscle was examined employing indirect immunofluorescence. The study was performed in conjunction with [3H]thymidine autoradiography and analysis of skeletal myosin expression in order to determine whether the desmin-expressing cells were terminally differentiated. Following 2 h of labeling with [3H]thymidine, 0.55%, 2.60%, and 15.10% of the cells in mass cultures from 10-day-old embryos, 18-day-old embryos and adults, respectively, incorporated [3H]thymidine and were desmin-positive but did not express skeletal-muscle-specific myosin. Using the same approach we determined that 0.07%, 1.25%, and 7.59% of the mononucleated cells in myogenic clones from 10-day-old embryos, 18-day-old embryos and adults, respectively, were desmin-positive, myosin-negative, [3H]thymidine-positive. We suggest that these desmin-positive, myosin-negative myoblasts are proliferating cells, and we conclude that the progeny of adult myoblasts exhibit more desmin-expressing cells of this type than embryonic myoblasts do.

Funding information:
  • NHGRI NIH HHS - R33 HG003070(United States)

Formation of chondrous and osseous tissues in micromass cultures of rat frontonasal and mandibular ectomesenchyme.

  • Langille RM
  • Differentiation
  • 1991 Feb 28

Literature context:


Abstract:

Rat frontonasal and mandibular mesenchyme was isolated from day-12 1/2 (stage-22) rat embryos and cultured at high density for up to 12 days. The stage chosen was based on the observation that mandibular mesenchyme at this stage became independent of its epithelium with respect to the production of both cartilage and bone. Frontonasal cultures developed aggregates of anastomosing columns of cells within 2 days. These grew as the cells enlarged, laying down an Alcian-blue-positive matrix by day 3 of culture. Significant mineral was detected by von Kossa staining by day 5 at which time the aggregates covered a large portion of the culture, eventually covering the entire micromass by day 10-12. Mandibular cultures developed centrally located nodular aggregates by 3 days of culture. These nodules increased in number, spreading outwards as the cells enlarged, laying down an Alcian-blue-positive matrix by day 4 and mineral by days 6-7. At this time the nodules began to elongate and coalesce, but never covered the entire culture over the 12-day period. Antibody staining revealed that in both cultures the cells were initially positive for type I collagen. Subsequently, the aggregates began expressing type II collagen, followed by type X, which coincided with the onset of mineralization. At this time some cells were negative for these cartilage markers, but positive for osteoblast markers, bone sialoprotein II, osteocalcin and type I collagen. In addition osteonectin and alkaline phosphatase were demonstrable in all of the aggregate cells late in the culture period. This provided clear evidence that chondroblast and osteoblast differentiation was proceeding within these cultures. The culture of rat facial mesenchyme should prove very useful, not only for the analysis of bone and cartilage induction and lineage relationships, but also in furthering our knowledge of craniofacial differentiation, growth and pattern formation by extending our analysis to a mammalian system.

Funding information:
  • NEI NIH HHS - R01 EY012146(United States)

Long-term maintenance of primary myogenic cultures on a reconstituted basement membrane.

  • Hartley RS
  • In Vitro Cell. Dev. Biol.
  • 1990 Oct 2

Literature context:


Abstract:

We describe a simple technique for maintaining highly contractile long-term chicken myogenic cultures on Matrigel, a gel composed of basement membrane components extracted from the Engelbreth-Holm-Swarm mouse tumor. Cultures grown on Matrigel consist of three-dimensional multilayers of cylindrical, contracting myotubes which endure for at least 60 d without myotube detachment. A Matrigel substrate increases the initial plating efficiency but does not effect cell proliferation. Large-scale differentiation in cultures maintained on Matrigel is delayed by 1 to 2 d, compared to cultures grown on gelatin-coated dishes. Long-term maintenance on Matrigel also results in increased expression of the neonatal and adult fast myosin heavy chain isoforms. Culturing of cells on a Matrigel substrate could thus facilitate the study of later events of in vitro myogenesis.

Funding information:
  • NIMH NIH HHS - MH081968(United States)

The formation of premuscle masses during chick wing bud development.

  • Schramm C
  • Anat. Embryol.
  • 1990 Feb 8

Literature context:


Abstract:

The skeletal musculature of chick limb buds is derived from somitic cells that migrate into the somatopleure of the future limb regions. These cells become organized into the earliest muscle primordia, the dorsal and ventral premuscle masses, prior to myogenic differentiation. Therefore, skeletal-muscle specific markers cannot be used to observe myogenic cells during the process of premuscle mass formation. In this study, an alternative marking method was used to determine the specific stages during which this process occurs. Quail somite strips were fluorescently labeled and implanted into chick hosts. Paraffin sections of the resulting chimeric wing buds were stained with the monoclonal antibody QH1 in order to identify graft-derived endothelium. Non-endothelial graft-derived cells present in the wing mesenchyme were assumed to be myogenic. At Hamburger and Hamilton stage 20, myogenic cells were distributed throughout the central region of the limb, including the future dorsal and ventral premuscle mass regions and the prechondrogenic core region. By stage 21, the myogenic cells were present at greater density in dorsal and ventral regions than in the core. By stage 23, nearly all myogenic cells were located in the dorsal and ventral premuscle masses. Therefore, the two premuscle masses become established by stage 21 and premuscle mass formation is not complete until stage 23 or later. Premuscle mass formation occurs concurrently with early chondrogenic events, as observed with the marker peanut agglutinin. To facilitate the investigation of possible underlying mechanisms of premuscle mass formation, the micromass culture system was evaluated, to determine whether or not it can serve as an accurate in vitro model system. The initially randomly distributed myogenic cells were observed to segregate from prechondrogenic regions prior to myogenic differentiation. This is similar to myogenic patterning in vivo.

Funding information:
  • NIGMS NIH HHS - T32-GM008541(United States)

Differential effects of physiological concentrations of retinoic acid in vitro on chondrogenesis and myogenesis in chick craniofacial mesenchyme.

  • Langille RM
  • Differentiation
  • 1989 Sep 11

Literature context:


Abstract:

Recent studies have shown that in the developing limb bud retinoic acid is a skeletal morphogen at physiological levels, but a potent teratogen at higher levels. Retinoic acid has also been shown to be teratogenic during facial development, but very low levels may have an as yet unspecified role in normal development. In the present study the effects of retinoic acid on chondrogenesis and myogenesis by craniofacial cells grown in micromass cell culture were investigated. Retinoic acid, at concentrations of 0.01-100 ng/ml, was supplied to cells derived from day-4 (H.H stage 23/24) chick embryo mandibular, maxillary and frontonasal processes, grown in micromass cultures for 4 days in both serum-containing and defined media. Based on Alcian-blue-staining, concentrations of retinoic acid of 0.1-1 ng/ml were found to enhance chondrogenesis by mandibular cells grown in defined medium, while greater concentrations up to 100 ng/ml inhibited chondrogenesis. By contrast, chondrogenesis was generally retarded by all concentrations of retinoic acid applied to frontonasal cells grown in defined medium and when applied to both mandibular and frontonasal cells when grown in serum-containing medium. Cells from stage-23/24 maxillae did not display any significant chondrogenic activity in either medium under these culture conditions. Unlike chondrogenesis, myogenesis in mandibular, frontonasal and maxillary cultures was greater in defined than serum-containing medium, based on the appearance of immunologically detectable muscle myosin, and was reduced considerably less in defined medium by all concentrations of retinoic acid tested. In the presence of serum however, myogenesis was retarded with increasing concentrations of retinoic acid beyond 1 ng/ml in micromass cultures from all three facial regions.(ABSTRACT TRUNCATED AT 250 WORDS)

Funding information:
  • NINDS NIH HHS - 5R01NS052634(United States)

Selective stimulation of in vitro limb-bud chondrogenesis by retinoic acid.

  • Paulsen DF
  • Differentiation
  • 1989 Jun 1

Literature context:


Abstract:

Embryonic exposure to pharmacologic doses of vitamin A analogs (retinoids) is a well-known cause of limb-skeletal deletions, limb truncation and other skeletal malformations. The exclusively inhibitory effect of retinoic acid (RA) on chondrogenesis in standard serum-containing cultures of limb-bud mesenchymal cells is equally well known and has provided a means to explore the cellular basis for RA-mediated skeletal teratogenesis. Recent studies showing that lower RA concentrations can cause skeletal duplication when applied directly to the anterior border of a developing limb, suggest that RA may have a role in normal limb development as a diffusible morphogen capable of regulating skeletal pattern. While RA treatment causes both, skeletal deletions and duplications are clearly different (if not opposing) effects, the latter of which is difficult to reconcile with RA's heretofore exclusively inhibitory effect on in vitro chondrogenesis. In the present study. RA's effects on chondrogenesis and myogenesis were examined in serum-free cultures of chick limb-bud mesenchymal cells and compared with its effects on similar cultures grown in serum-containing medium. When added to serum-free medium, concentrations of RA known to cause skeletal duplication in vivo dramatically enhanced in vitro chondrogenesis (to over 200% of control values) as judged by both Alcian-blue staining and [35S]sulfate incorporation, while having little effect on myogenesis. Higher concentrations inhibited both chondrogenesis and myogenesis. The results indicate that at physiological concentrations. RA can selectively modulate chondrogenic expression and suggest that at higher concentrations, RA's inhibitory effects are less specific.(ABSTRACT TRUNCATED AT 250 WORDS)

Funding information:
  • NHGRI NIH HHS - U54HG003067(United States)

Amphibian (urodele) myotomes display transitory anterior/posterior and medial/lateral differentiation patterns.

  • Neff AW
  • Dev. Biol.
  • 1989 Apr 8

Literature context:


Abstract:

Myotome differentiation during Mexican axolotl (Ambystoma mexicanum) somitogenesis was analyzed by employing anti-actin and anti-myosin monoclonal antibodies as molecular probes. Myotome differentiation occurs after segmentation and proceeds in the cranial-to-caudal direction along the somite file. Within individual somites myotome differentiation displays distinct polarities. Examination of the somite file at the tailbud stage revealed that soon after segmentation, actin/myosin accumulate predominantly in the anterior and medial region of the myotome initially. Subsequently, cells within the myotome differentiate in an anterior-to-posterior and medial-to-lateral direction. Experimental analysis of presomitic paraxial mesoderm grafts before segmentation revealed that this transient myotome polarity is autonomous. Comparative analyses indicate that this myotome differentiation pattern is urodele specific. Cynops pyrrhogaster undergoes myotome differentiation like the axolotl, while two anurans, Xenopus laevis and Bombina orientalis, do not.

Funding information:
  • NINDS NIH HHS - NS045195(United States)

The accumulation of basement membrane components during the onset of chondrogenesis and myogenesis in the chick wing bud.

  • Solursh M
  • Development
  • 1988 Sep 11

Literature context:


Abstract:

The study describes the distribution of several basement membrane molecules in the embryonic chick wing bud from stages 23 to 26, during the onset of myogenesis and chondrogenesis, and then later at stage 28. Laminin is localized as early as stage 23, prior to the onset of myogenesis, in regions corresponding to the position of the future dorsal and ventral myogenic areas. Other matrix components, including fibronectin, do not differentially accumulate in these same regions. Fibronectin, basement membrane heparan sulphate proteoglycan and type IV collagen are more widespread in their distribution than laminin, and are even present between mesenchymal cells. These results suggest a role for laminin in the initial differentiation of the muscle masses and emphasize that components of basement membrane can also be associated with mesenchymal cells.

Funding information:
  • NIGMS NIH HHS - R37-GM034220(United States)

Microtiter micromass cultures of limb-bud mesenchymal cells.

  • Paulsen DF
  • In Vitro Cell. Dev. Biol.
  • 1988 Feb 4

Literature context:


Abstract:

A method is described for growing high-density micromass cultures of chick and mouse limb mesenchyme cells in 96-well microtiter plates (microT microM cultures). Rapid quantitative estimates of chondrogenic expression were obtained by automated spectrophotometric analysis of Alcian-blue-stained cartilage matrix extracts performed in the wells in which the cells had been grown. Quantitative estimates of myogenic expression were obtained similarly using anti-sarcomere myosin monoclonal antibody and modified ELISA techniques. This microT microM-ELISA method may be adapted for use with other antigens for which specific antibodies are available. These methods were used to compare cartilage and muscle differentiation in 1 to 4 d microT microM cultures grown in serum-containing (SCM) and defined (DM) media. The DM contains minimal additives (insulin, hydrocortisone, and in some cases, ascorbate or transferrin) and supports both chondrogenesis and myogenesis. The colorimetric analyses agree well with the morphologic appraisal of chondrogenesis and myogenesis. Similar numbers of cartilage nodules formed in all cultures, but in DM the nodules failed to enlarge; explaining the reduced matrix synthesis in DM as compared with SCM, and suggesting that nodule enlargement is a discrete, serum-dependent step. Studies of selected additives to DM show that transferrin enhances myogenesis, ascorbic acid enhances chondrogenesis, and retinoic acid inhibits chondrogenesis. Together, the microT microM system, in situ colorimetric assays of chondrogenesis and myogenesis, and DM will allow rapid prescreening of teratogens and screening of various bioactive compounds (e.g., hormones, growth factors, vitamins, adhesion factors) for effects on limb mesenchymal cell differentiation.

Funding information:
  • NHGRI NIH HHS - 5R01HG004694(United States)

Axial arrangement of the myosin rod in vertebrate thick filaments: immunoelectron microscopy with a monoclonal antibody to light meromyosin.

  • Shimizu T
  • J. Cell Biol.
  • 1985 Sep 9

Literature context:


Abstract:

A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A-bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross-bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15-nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle.

Funding information:
  • NLM NIH HHS - LM05773(United States)

Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro.

  • Bader D
  • J. Cell Biol.
  • 1982 Dec 11

Literature context:


Abstract:

Monoclonal antibodies (McAbs) against the myosin heavy chain (MHC) of adult chicken pectoralis muscle have been tested for reactivity with pectoralis myosin at selected stages of chick development in vivo and in vitro. Three such McAbs, MF 20 and MF 14, which bind to light meromyosin, and MF 30, which binds to myosin subfragment two (S2), were used to assay the appearance and accumulation of specific MHC epitopes with: (a) indirect, solid phase radioimmune assay (RIA), (b) immunoautoradiography, (c) immunofluorescence microscopy. McAb MF 20 bound strongly and equivalently to MHC at all stages of embryonic development in vivo. In contrast, the MF 30 epitope was barely detectable at 12 d of incubation but its concentration rose rapidly just before hatching. No detectable binding of MF 14 to pectoralis myosin could be measured during myogenesis in vivo until 1 wk after hatching. Immunofluorescence studies revealed that all three epitopes accumulate in the same myocytes of the developing pectoralis muscle. Since all three McAbs bound with high activity to native and denatured forms of myosin, it is unlikely that differential antibody reactivity can be explained by conformational changes in myosin during development in vivo. When myogenesis in vitro was monitored using the same McAbs, MF 20 bound to the MHC at all stages tested while reactivity of MF 30 and MF 14 with myosin from cultured muscle was never observed. Thus, this study demonstrates three different immunochemical states of the MHC during development in vivo of chick pectoralis muscle and the absence of later occurring immunochemical transitions in the MHC of cultured embryonic muscle.

Funding information:
  • NIGMS NIH HHS - R01GM070808(United States)