X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Phospho-Myosin Light Chain 2 (Thr18/Ser19) Antibody

RRID:AB_2147464

Antibody ID

AB_2147464

Target Antigen

Phospho-Myosin Light Chain 2 (Thr18/Ser19) See NCBI gene human, mouse

Proper Citation

(Cell Signaling Technology Cat# 3674, RRID:AB_2147464)

Clonality

polyclonal antibody

Comments

Applications: W. Consolidation: AB_10858220.

Host Organism

rabbit

Vendor

Cell Signaling Technology

Morphogenesis and Compartmentalization of the Intestinal Crypt.

  • Sumigray KD
  • Dev. Cell
  • 2018 Apr 23

Literature context:


Abstract:

The adult mammalian intestine is composed of two connected structures, the absorptive villi and the crypts, which house progenitor cells. Mouse crypts develop postnatally and are the architectural unit of the stem cell niche, yet the pathways that drive their formation are not known. Here, we combine transcriptomic, quantitative morphometric, and genetic analyses to identify mechanisms of crypt development. We uncover the upregulation of a contractility gene network at the earliest stage of crypt formation, which drives myosin II-dependent apical constriction and invagination of the crypt progenitor cells. Subsequently, hinges form, compartmentalizing crypts from villi. Hinges contain basally constricted cells, and this cell shape change was inhibited by increased hemidesmosomal adhesion in Rac1 null mice. Loss of hinges resulted in reduced villar spacing, revealing an unexpected role for crypts in tissue architecture and physiology. These studies provide a framework for studying crypt morphogenesis and identify essential regulators of niche formation.

Funding information:
  • NCI NIH HHS - R01 CA113519(United States)

Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment.

  • Berger SL
  • Neuron
  • 2018 Feb 7

Literature context:


Abstract:

The axon initial segment (AIS) is the site of action potential generation and a locus of activity-dependent homeostatic plasticity. A multimeric complex of sodium channels, linked via a cytoskeletal scaffold of ankyrin G and beta IV spectrin to submembranous actin rings, mediates these functions. The mechanisms that specify the AIS complex to the proximal axon and underlie its plasticity remain poorly understood. Here we show phosphorylated myosin light chain (pMLC), an activator of contractile myosin II, is highly enriched in the assembling and mature AIS, where it associates with actin rings. MLC phosphorylation and myosin II contractile activity are required for AIS assembly, and they regulate the distribution of AIS components along the axon. pMLC is rapidly lost during depolarization, destabilizing actin and thereby providing a mechanism for activity-dependent structural plasticity of the AIS. Together, these results identify pMLC/myosin II activity as a common link between AIS assembly and plasticity.

Funding information:
  • NIMH NIH HHS - R37 MH063105(United States)

Cardiomyocytes Sense Matrix Rigidity through a Combination of Muscle and Non-muscle Myosin Contractions.

  • Pandey P
  • Dev. Cell
  • 2018 Feb 5

Literature context:


Abstract:

Mechanical properties are cues for many biological processes in health or disease. In the heart, changes to the extracellular matrix composition and cross-linking result in stiffening of the cellular microenvironment during development. Moreover, myocardial infarction and cardiomyopathies lead to fibrosis and a stiffer environment, affecting cardiomyocyte behavior. Here, we identify that single cardiomyocyte adhesions sense simultaneous (fast oscillating) cardiac and (slow) non-muscle myosin contractions. Together, these lead to oscillating tension on the mechanosensitive adaptor protein talin on substrates with a stiffness of healthy adult heart tissue, compared with no tension on embryonic heart stiffness and continuous stretching on fibrotic stiffness. Moreover, we show that activation of PKC leads to the induction of cardiomyocyte hypertrophy in a stiffness-dependent way, through activation of non-muscle myosin. Finally, PKC and non-muscle myosin are upregulated at the costameres in heart disease, indicating aberrant mechanosensing as a contributing factor to long-term remodeling and heart failure.

Funding information:
  • NEI NIH HHS - EY002520(United States)

Tension-Dependent Stretching Activates ZO-1 to Control the Junctional Localization of Its Interactors.

  • Spadaro D
  • Curr. Biol.
  • 2017 Dec 18

Literature context:


Abstract:

Tensile forces regulate epithelial homeostasis, but the molecular mechanisms behind this regulation are poorly understood. Using structured illumination microscopy and proximity ligation assays, we show that the tight junction protein ZO-1 exists in stretched and folded conformations within epithelial cells, depending on actomyosin-generated force. We also show that ZO-1 and ZO-2 regulate the localization of the transcription factor DbpA and the tight junction membrane protein occludin in a manner that depends on the organization of the actin cytoskeleton, myosin-II activity, and substrate stiffness, resulting in modulation of gene expression, cell proliferation, barrier function, and cyst morphogenesis. Pull-down experiments show that interactions between N-terminal (ZPSG) and C-terminal domains of ZO-1 prevent binding of DbpA to the ZPSG, suggesting that force-dependent intra-molecular interactions regulate ZPSG binding to ligands within cells. In vivo and in vitro experiments also suggest that ZO-1 heterodimerization with ZO-2 promotes the stretched conformation and ZPSG interaction with ligands. Magnetic tweezers single-molecule experiments suggest that pN-scale tensions (∼2-4 pN) are sufficient to maintain the stretched conformation of ZO-1, while keeping its structured domains intact, and that 5-20 pN force is required to disrupt the interaction between the extreme C-terminal and the ZPSG domains of ZO-1. We propose that tensile forces regulate epithelial homeostasis by activating ZO proteins through stretching, to control the junctional recruitment and downstream signaling of their interactors.

Funding information:
  • NIAID NIH HHS - AI090166(United States)

Propagating Wave of ERK Activation Orients Collective Cell Migration.

  • Aoki K
  • Dev. Cell
  • 2017 Nov 6

Literature context:


Abstract:

The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.

Funding information:
  • NIGMS NIH HHS - GM074917(United States)

Microbiota-Dependent Induction of Colonic Cyp27b1 Is Associated With Colonic Inflammation: Implications of Locally Produced 1,25-Dihydroxyvitamin D3 in Inflammatory Regulation in the Colon.

  • Du J
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Our recent studies demonstrated that intestinal epithelial vitamin D receptor (VDR) signaling plays a critical role in regulating colonic inflammation by protecting epithelial barrier integrity. Epithelial VDR is downregulated in colitis, but how mucosal inflammation affects local 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] production is unknown. Here we showed that cytochrome P450 27b1 (Cyp27b1), a cytochrome P450 enzyme necessary for 1,25(OH)2D3 biosynthesis, is highly induced in colonic mucosa in inflammatory response. Although VDR is reduced in colon biopsies from patients with ulcerative colitis, Cyp27b1 is markedly upregulated in these samples. Colon mucosal Cyp27b1 was also markedly induced in an experimental colitis mouse model, and this local Cyp27b1 induction and colonic inflammation required the presence of commensal bacteria. Vitamin D deficiency further exaggerated colonic Cyp27b1 induction and aggravated colonic inflammation in mice. In HCT116 cells, lipopolysaccharide or tumor necrosis factor-α treatment induced Cyp27b1 in time- and dose-dependent manners, and the induced Cyp27b1 was enzymatically active. The inflammation-induced upregulation of Cyp27b1 was mediated by nuclear factor κB. Collectively these data suggest that induction of colonic epithelial Cyp27b1, which is expected to increase local production of 1,25(OH)2D3, is a protective mechanism that partially compensates for the downregulation of epithelial VDR during colonic inflammation. Increased local 1,25(OH)2D3 maintains 1,25(OH)2D3-VDR signaling to protect the mucosal barrier and reduce colonic inflammation.

An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.

  • Barone V
  • Dev. Cell
  • 2017 Oct 23

Literature context:


Abstract:

Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo.

Cell Polarity Regulates Biased Myosin Activity and Dynamics during Asymmetric Cell Division via Drosophila Rho Kinase and Protein Kinase N.

  • Tsankova A
  • Dev. Cell
  • 2017 Jul 24

Literature context:


Abstract:

Cell and tissue morphogenesis depends on the correct regulation of non-muscle Myosin II, but how this motor protein is spatiotemporally controlled is incompletely understood. Here, we show that in asymmetrically dividing Drosophila neural stem cells, cell intrinsic polarity cues provide spatial and temporal information to regulate biased Myosin activity. Using live cell imaging and a genetically encoded Myosin activity sensor, we found that Drosophila Rho kinase (Rok) enriches for activated Myosin on the neuroblast cortex prior to nuclear envelope breakdown (NEB). After NEB, the conserved polarity protein Partner of Inscuteable (Pins) sequentially enriches Rok and Protein Kinase N (Pkn) on the apical neuroblast cortex. Our data suggest that apical Rok first increases phospho-Myosin, followed by Pkn-mediated Myosin downregulation, possibly through Rok inhibition. We propose that polarity-induced spatiotemporal control of Rok and Pkn is important for unequal cortical expansion, ensuring correct cleavage furrow positioning and the establishment of physical asymmetry.

Funding information:
  • Worldwide Cancer Research - 14-0236()