X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Phospho-GSK-3beta (Ser9) (5B3) Rabbit mAb antibody

RRID:AB_2115201

Antibody ID

AB_2115201

Target Antigen

Phospho-GSK-3beta (Ser9) (5B3) Rabbit mAb non-human primate, rat, human, mouse, h, m, r, mk

Proper Citation

(Cell Signaling Technology Cat# 9323, RRID:AB_2115201)

Clonality

monoclonal antibody

Comments

Applications: W, IHC-P, IF-IC. Consolidation on 7/2016: AB_10285243.

Host Organism

rabbit

Vendor

Cell Signaling Technology

In Vivo Decoding Mechanisms of the Temporal Patterns of Blood Insulin by the Insulin-AKT Pathway in the Liver.

  • Kubota H
  • Cell Syst
  • 2018 Jun 6

Literature context:


Abstract:

Cells respond to various extracellular stimuli through a limited number of signaling pathways. One strategy to process such stimuli is to code the information into the temporal patterns of molecules. Although we showed that insulin selectively regulated molecules depending on its temporal patterns using Fao cells, the in vivo mechanism remains unknown. Here, we show how the insulin-AKT pathway processes the information encoded into the temporal patterns of blood insulin. We performed hyperinsulinemic-euglycemic clamp experiments and found that, in the liver, all temporal patterns of insulin are encoded into the insulin receptor, and downstream molecules selectively decode them through AKT. S6K selectively decodes the additional secretion information. G6Pase interprets the basal secretion information through FoxO1, while GSK3β decodes all secretion pattern information. Mathematical modeling revealed the mechanism via differences in network structures and from sensitivity and time constants. Given that almost all hormones exhibit distinct temporal patterns, temporal coding may be a general principle of system homeostasis by hormones.

Funding information:
  • NICHD NIH HHS - HD 37760-S1(United States)

Evidence of altered depression and dementia-related proteins in the brains of young rats after ovariectomy.

  • Fang YY
  • J. Neurochem.
  • 2018 Jun 25

Literature context:


Abstract:

Menopause, a risk factor for brain dysfunction in women, is characterized by neuropsychological symptoms including depression and dementia, which are closely related to alterations in different brain regions after menopause. However, little is known about the variability of pathophysiologic changes associated with menopause in the brain. Here, we observed that menopause in rats induced by bilateral ovariectomy (OVX) showed depressive and dementia-related behaviors along with neuronal loss in the prefrontal cortex (PFC), hippocampus (HIP), hypothalamus (HYP) and amygdala (AMY) by Nissl staining. Meanwhile, by immunohistochemical staining, increased microglia in the HIP and AMY and increased astrocytes in the PFC, HYP and AMY were shown. By using quantitative proteomics, we identified 146 differentially expressed proteins in the brains of OVX rats, e.g., 20 in the PFC, 41 in the HIP, 17 in the HYP and 79 in the AMY, and performed further detection by Western blotting. A link between neuronal loss and apoptosis was suggested, as evidenced by increases in adenylate kinase 2 (AK2), B-cell lymphoma 2 associated X (Bax), cleaved caspase-3 and phosphorylated p53 and decreases in Huntingtin-interacting protein K (HYPK), hexokinase (HK), and phosphorylated B-cell lymphoma 2 (Bcl-2), and apoptosis might be triggered by endoplasmic reticulum stress (probed by increased glucose-regulated protein 78 (GRP78), cleaved caspase-12, phosphorylated protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme-1 (IRE-1) and activating transcription factor 6 (ATF6)) and mitochondrial dysfunction (probed by increased cytochrome c and cleaved caspase-3 and decreased sideroflexin-1 (SFXN1) and NADH dehydrogenase (ubiquinone) 1 α subcomplex 11 (NDUFA11)). Activation of autophagy was also indicated by increased autophagy-related 7 (ATG7), γ-aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) and oxysterol-binding protein-related protein 1 (ORP1) and confirmed by increased microtubule-associated protein light chain 3 (LC3II/I), autophagy-related 5 (ATG5), and Beclin1 in the HIP and AMY. In the AMY, which is important in emotion, higher GABA transporter 3 (GAT3) and lower vesicular glutamate transporter 1 (VgluT1) levels indicated an imbalance between excitatory and inhibitory neurotransmission, and the increased calretinin and decreased calbindin levels suggested an adjustment of GABAergic transmission after OVX. In addition, cytoskeletal abnormalities including tau hyperphosphorylation, dysregulated Ca²+ signals and glutamic synaptic impairments were observed in the brains of OVX rats. Collectively, our study showed the changes in different brain regions related to depression and dementia during menopause. This article is protected by copyright. All rights reserved.

Funding information:
  • Howard Hughes Medical Institute - 1K08AI097238-01(United States)

Maternal separation stress reduced prenatal-ethanol-induced increase in exploratory behaviour and extracellular signal-regulated kinase activity.

  • Swart PC
  • Behav. Brain Res.
  • 2018 Jun 13

Literature context:


Abstract:

In an attempt to better represent the aetiology of fetal alcohol spectrum disorder (FASD) and the associated psychological deficits, prenatal-ethanol exposure was followed by maternal separation in a rat model in order to account for the effects of early-life adversities in addition to in utero alcohol exposure. Extracellular signal-regulated kinase 1/2 (ERK1/2) and glycogen synthase kinase 3-β (GSK3β) are converging points for many signalling cascades and have been implicated in models of FASD and models of early-life stress. Therefore, these kinases may also contribute to the behavioural changes observed after the combination of both developmental insults. In this study, ethanol-dams voluntarily consumed a 0.066% saccharin-sweetened 10% ethanol (EtOH) solution for 10 days prior to pregnancy and throughout gestation while control-dams had ad libitumaccess to a 0.066% saccharin (sacc) solution. Whole litters were randomly assigned to undergo maternal separation (MS) for 3 h/day from P2 to P14 while the remaining litters were left undisturbed (nMS). This resulted in 4 experimental groups: control (sacc + nMS), MS (sacc + MS), EtOH (EtOH + nMS) and EtOH + MS. Throughout development, EtOH-rats weighed less than control rats. However, subsequent maternal separation stress caused EtOH + MS-rats to weigh more than EtOH-rats. In adulthood both MS- and EtOH-rats were hyperactive but the combination produced activity levels similar to that of control rats. All treated animals (MS-, EtOH- and EtOH + MS-rats) demonstrated a negative affective state shown by increased number and duration of 22 kHz ultrasonic vocalizations compared to control rats. Prenatal-ethanol exposure increased the P-GSK3β/GSK3β ratio in the prefrontal cortex (PFC) and maternal separation decreased the P-GSK3β/GSK3β ratio in the dorsal hippocampus (DH) of adult rats. However, maternal separation stress decreased the effect of prenatal-ethanol exposure on the P-ERK/ERK ratio in the PFC and DH and reduced prenatal-ethanol-induced hyperactivity. Therefore, indicating a significant interaction between prenatal-ethanol exposure and early-life stress on behaviour and the brain and may implicate P-ERK1/2 signalling in exploratory behaviour.

Funding information:
  • NIAID NIH HHS - R01 AI048562-07(United States)

PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling.

  • González-Fernández E
  • Elife
  • 2018 Feb 20

Literature context:


Abstract:

Oligodendrocytes (OLs), the myelin-forming CNS glia, are highly vulnerable to cellular stresses, and a severe myelin loss underlies numerous CNS disorders. Expedited OL regeneration may prevent further axonal damage and facilitate functional CNS repair. Although adult OL progenitors (OPCs) are the primary players for OL regeneration, targetable OPC-specific intracellular signaling mechanisms for facilitated OL regeneration remain elusive. Here, we report that OPC-targeted PTEN inactivation in the mouse, in contrast to OL-specific manipulations, markedly promotes OL differentiation and regeneration in the mature CNS. Unexpectedly, an additional deletion of mTOR did not reverse the enhanced OL development from PTEN-deficient OPCs. Instead, ablation of GSK3β, another downstream signaling molecule that is negatively regulated by PTEN-Akt, enhanced OL development. Our results suggest that PTEN persistently suppresses OL development in an mTOR-independent manner, and at least in part, via controlling GSK3β activity. OPC-targeted PTEN-GSK3β inactivation may benefit facilitated OL regeneration and myelin repair.

Funding information:
  • Ellison Medical Foundation - AG-NS-1101-13()
  • National Institute of Neurological Disorders and Stroke - R01NS07693()
  • National Institute of Neurological Disorders and Stroke - R01NS089586()
  • NIH HHS - DP2 OD006740(United States)
  • Shriners Hospitals for Children - 84298-PHI()
  • Shriners Hospitals for Children - 85500-PHI-14()
  • Shriners Hospitals for Children - 86600()

Maternal exercise modifies body composition and energy substrates handling in male offspring fed a high-fat/high-sucrose diet.

  • Quiclet C
  • J. Physiol. (Lond.)
  • 2017 Dec 1

Literature context:


Abstract:

KEY POINTS: Maternal training during gestation enhances offspring body composition and energy substrates handling in early adulthood. Offspring nutrition also plays a role as some beneficial effects of maternal training during gestation disappear after consumption of a high-fat diet. ABSTRACT: Maternal exercise during gestation has been reported to modify offspring metabolism and health. Whether these effects are exacerbated when offspring are receiving a high-fat diet remains unclear. Our purpose was to evaluate the effect of maternal exercise before and during gestation on the offspring fed a high-fat/high-sucrose diet (HF) by assessing its body composition, pancreatic function and energy substrates handling by two major glucose-utilizing tissues: liver and muscle. Fifteen-week-old nulliparous female Wistar rats exercised 4 weeks before as well as during gestation at a constant submaximal intensity (TR) or remained sedentary (CT). At weaning, pups from each group were fed either a standard diet (TRCD or CTCD) or a high-fat/high-sucrose diet (TRHF or CTHF) for 10 weeks. Offspring from TR dams gained less weight compared to those from CT dams. Selected fat depots were larger with the HF diet compared to control diet (CD) but significantly smaller in TRHF compared to CTHF. Surprisingly, the insulin secretion index was higher in islets from HF offspring compared to CD. TR offspring showed a higher muscle insulin sensitivity estimated by the ratio of phosphorylated protein kinase B to total protein kinase B compared with CT offspring (+48%, P < 0.05). With CD, permeabilized isolated muscle fibres from TR rats displayed a lower apparent affinity constant (Km ) for pyruvate and palmitoyl coenzyme A as substrates compared to the CT group (-46% and -58%, respectively, P < 0.05). These results suggest that maternal exercise has positive effects on young adult offspring body composition and on muscle carbohydrate and lipid metabolism depending on the nutritional status.

Early ethanol exposure and vinpocetine treatment alter learning- and memory-related proteins in the rat hippocampus and prefrontal cortex.

  • Swart PC
  • J. Neurosci. Res.
  • 2017 Nov 16

Literature context:


Abstract:

This study investigates the effects of early exposure to ethanol on cognitive function and neural plasticity-related proteins in the rat brain. Sprague-Dawley rats were administered 12% ethanol solution (4 g/kg/day i.p.) or saline from P4 to P9. Vinpocetine, a phosphodiesterase type 1 inhibitor, was tested to determine whether it could reverse any changes induced by early ethanol exposure. Hence, from P25 to P31, ethanol-exposed male rats were injected with vinpocetine (20 mg/kg/day i.p.) or vehicle (DMSO) prior to undergoing behavioral testing in the open field and Morris water maze (MWM) tests. Ethanol exposure did not adversely affect spatial memory in the MWM. A key finding in this study was a significant ethanol-induced change in the function of the phosphorylated extracellular signal-related kinase (P-ERK) signaling pathway in the prefrontal cortex (PFC) and dorsal hippocampus (DH) of rats that did not display overt behavioral deficits. The P-ERK/ERK ratio was decreased in the PFC and increased in the DH of ethanol-exposed rats compared with controls. Rats that received vinpocetine in addition to ethanol did not display any behavioral changes but did show alterations in neural plasticity-related proteins. Mitogen-activated protein kinase phosphatase was increased, whereas brain-derived neurotrophic factor was decreased, in the PFC of vinpocetine-treated ethanol-exposed rats, and phosphorylated-glycogen synthase kinase β and synaptophysin were increased in the DH of these rats. This study provides insight into the long-term effects of early ethanol exposure and its interaction with vinpocetine in the rat brain. © 2016 Wiley Periodicals, Inc.

Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche.

  • Yamada T
  • J. Neurochem.
  • 2017 Aug 26

Literature context:


Abstract:

Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.

Persistent Expression of VCAM1 in Radial Glial Cells Is Required for the Embryonic Origin of Postnatal Neural Stem Cells.

  • Hu XL
  • Neuron
  • 2017 Jul 19

Literature context:


Abstract:

During development, neural stem cells (NSCs) undergo transitions from neuroepithelial cells to radial glial cells (RGCs), and later, a subpopulation of slowly dividing RGCs gives rise to the quiescent adult NSCs that populate the ventricular-subventricular zone (V-SVZ). Here we show that VCAM1, a transmembrane protein previously found in quiescent adult NSCs, is expressed by a subpopulation of embryonic RGCs, in a temporal and region-specific manner. Loss of VCAM1 reduced the number of active embryonic RGCs by stimulating their premature neuronal differentiation while preventing quiescence in the slowly dividing RGCs. This in turn diminished the embryonic origin of postnatal NSCs, resulting in loss of adult NSCs and defective V-SVZ regeneration. VCAM1 affects the NSC fate by signaling through its intracellular domain to regulate β-catenin signaling in a context-dependent manner. Our findings provide new insight on how stem cells in the embryo are preserved to meet the need for growth and regeneration.

Funding information:
  • NINDS NIH HHS - R37 NS019904(United States)

Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling.

  • Calcagnì A
  • Elife
  • 2016 Sep 26

Literature context:


Abstract:

TFE-fusion renal cell carcinomas (TFE-fusion RCCs) are caused by chromosomal translocations that lead to overexpression of the TFEB and TFE3 genes (Kauffman et al., 2014). The mechanisms leading to kidney tumor development remain uncharacterized and effective therapies are yet to be identified. Hence, the need to model these diseases in an experimental animal system (Kauffman et al., 2014). Here, we show that kidney-specific TFEB overexpression in transgenic mice, resulted in renal clear cells, multi-layered basement membranes, severe cystic pathology, and ultimately papillary carcinomas with hepatic metastases. These features closely recapitulate those observed in both TFEB- and TFE3-mediated human kidney tumors. Analysis of kidney samples revealed transcriptional induction and enhanced signaling of the WNT β-catenin pathway. WNT signaling inhibitors normalized the proliferation rate of primary kidney cells and significantly rescued the disease phenotype in vivo. These data shed new light on the mechanisms underlying TFE-fusion RCCs and suggest a possible therapeutic strategy based on the inhibition of the WNT pathway.

Funding information:
  • NIGMS NIH HHS - R01 GM064709(United States)

Mice lacking circadian clock components display different mood-related behaviors and do not respond uniformly to chronic lithium treatment.

  • Schnell A
  • Chronobiol. Int.
  • 2015 Oct 15

Literature context:


Abstract:

Genomic studies suggest an association of circadian clock genes with bipolar disorder (BD) and lithium response in humans. Therefore, we tested mice mutant in various clock genes before and after lithium treatment in the forced swim test (FST), a rodent behavioral test used for evaluation of depressive-like states. We find that expression of circadian clock components, including Per2, Cry1 and Rev-erbα, is affected by lithium treatment, and thus, these clock components may contribute to the beneficial effects of lithium therapy. In particular, we observed that Cry1 is important at specific times of the day to transmit lithium-mediated effects. Interestingly, the pathways involving Per2 and Cry1, which regulate the behavior in the FST and the response to lithium, are distinct as evidenced by the phosphorylation of GSK3β after lithium treatment and the modulation of dopamine levels in the striatum. Furthermore, we observed the co-existence of depressive and mania-like symptoms in Cry1 knock-out mice, which resembles the so-called mixed state seen in BD patients. Taken together our results strengthen the concept that a defective circadian timing system may impact directly or indirectly on mood-related behaviors.

Central adiponectin acutely improves glucose tolerance in male mice.

  • Koch CE
  • Endocrinology
  • 2014 May 21

Literature context:


Abstract:

Adiponectin, an adipocyte-derived hormone, regulates glucose and lipid metabolism. It is also antiinflammatory. During obesity, adiponectin levels and sensitivity are reduced. Whereas the action of adiponectin in the periphery is well established the neuroendocrine role of adiponectin is largely unknown. To address this we analyzed the expression of adiponectin and the 2 adiponectin receptors (AdipoR1 and AdipoR2) in response to fasting and to diet-induced and genetic obesity. We also investigated the acute impact of adiponectin on central regulation of glucose homeostasis. Adiponectin (1 μg) was injected intracerebroventricularly (ICV), and glucose tolerance tests were performed in dietary and genetic obese mice. Finally, the influence of ICV adiponectin administration on central signaling cascades regulating glucose homeostasis and on markers of hypothalamic inflammation was assessed. Gene expression of adiponectin was down-regulated whereas AdipoR1 was up-regulated in the arcuate nucleus of fasted mice. High-fat (HF) feeding increased AdipoR1 and AdipoR2 gene expression in this region. In mice on a HF diet and in leptin-deficient mice acute ICV adiponectin improved glucose tolerance 60 minutes after injection, whereas normoglycemia in control mice was unaffected. ICV adiponectin increased pAKT, decreased phospho-AMP-activated protein kinase, and did not change phospho-signal transducer and activator of transcription 3 immunoreactivity. In HF-fed mice, ICV adiponectin reversed parameters of hypothalamic inflammation and insulin resistance as determined by the number of phospho-glycogen synthase kinase 3 β(Ser9) and phospho-c-Jun N-terminal kinase (Thr183/Tyr185) immunoreactive cells in the arcuate nucleus and ventromedial hypothalamus. This study demonstrates that the insulin-sensitizing properties of adiponectin are at least partially based on a neuroendocrine mechanism that involves centrally synthesized adiponectin.

Funding information:
  • NHLBI NIH HHS - P01HL095491(United States)

Hypothalamic WNT signalling is impaired during obesity and reinstated by leptin treatment in male mice.

  • Benzler J
  • Endocrinology
  • 2013 Dec 25

Literature context:


Abstract:

The WNT pathway has been well characterized in embryogenesis and tumorigenesis. In humans, specific polymorphisms in the T cell-specific transcription factor 7 and the WNT coreceptor, low-density lipoprotein receptor-related protein-6 (LRP-6), both prominent components of this pathway, correlate with a higher incidence of type 2 diabetes, suggesting that the WNT pathway might be involved in the control of adult glucose homeostasis. We previously demonstrated that glycogen-synthase-kinase-3β (GSK-3β), the key enzyme of the WNT pathway, is increased in the hypothalamus during obesity and exacerbates high-fat diet-induced weight gain as well as glucose intolerance. These data suggest that WNT action in the hypothalamus might be required for normal glucose homeostasis. Here we characterized whether WNT signaling in general is altered in the hypothalamus of adult obese mice relative to controls. First we identified expression of multiple components of this pathway in the murine arcuate nucleus by in situ hybridization. In this region mRNA of ligands and target genes of the WNT pathway were down-regulated in obese and glucose-intolerant leptin-deficient mice. Similarly, the number of cells immunoreactive for the phosphorylated (active) form of the WNT-coreceptor LRP-6 was also decreased in leptin-deficient mice. Leptin treatment normalized expression of the WNT-target genes Axin-2 and Cylin-D1 and increased the number of phospho-LRP-6-immunoreactive cells reaching levels of lean controls. Leptin also increased the levels of phosphorylated (inactive) GSK-3β in the arcuate nucleus, and this effect was colocalized to neuropeptide Y neurons, suggesting that inactivation of GSK-3β may contribute to the neuroendocrine control of energy homeostasis. Taken together our findings identify hypothalamic WNT signaling as an important novel pathway that integrates peripheral information of the body's energy status encoded by leptin.

Funding information:
  • NINDS NIH HHS - R01 NS066905(United States)