X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Doublecortin (C-18) antibody

RRID:AB_2088494

Antibody ID

AB_2088494

Target Antigen

Doublecortin (C-18) rat, human, mouse, rat, human

Proper Citation

(Santa Cruz Biotechnology Cat# sc-8066, RRID:AB_2088494)

Clonality

polyclonal antibody

Comments

Discontinued: 2016; validation status unknown check with seller; recommendations: Immunofluorescence; ELISA; Immunohistochemistry; Immunoprecipitation; Immunocytochemistry; Western Blot; WB, IP, IF, IHC(P), ELISA

Host Organism

goat

Vendor

Santa Cruz Biotechnology

Identification of NeuN immunopositive cells in the adult mouse subventricular zone.

  • Saito K
  • J. Comp. Neurol.
  • 2018 Aug 15

Literature context:


Abstract:

In the adult rodent subventricular zone (SVZ), there are neural stem cells (NSCs) and the specialized neurogenic niche is critical to maintain their stemness. To date, many cellular and noncellular factors that compose the neurogenic niche and markers to identify subpopulations of Type A cells have been confirmed. In particular, neurotransmitters regulate adult neurogenesis and mature neurons in the SVZ have been only partially analyzed. Moreover, Type A cells, descendants of NSCs, are highly heterogeneous and more molecular markers are still needed to identify them. In the present study, we systematically classified NeuN, commonly used as a marker of mature and immature post-mitotic neurons, immunopositive (+) cells within the adult mouse SVZ. These SVZ-NeuN+ cells (SVZ-Ns) were mainly classified into two types. One was mature SVZ-Ns (M-SVZ-Ns). Neurochemical properties of M-SVZ-Ns were similar to those of striatal neurons, but their birth date and morphology were different. M-SVZ-Ns were generated during embryonic and early postnatal stages with bipolar peaks and extended their processes along the wall of the lateral ventricle. The second type was small SVZ-Ns (S-SVZ-Ns) with features of Type A cells. They expressed not only markers of Type A cells, but also proliferated and migrated from the SVZ to the olfactory bulb. Furthermore, S-SVZ-Ns could be classified into two types by their spatial locations and glutamic acid decarboxylase 67 expression. Our data indicate that M-SVZ-Ns are a new component of the neurogenic niche and S-SVZ-Ns are newly identified subpopulations of Type A cells.

Funding information:
  • NIGMS NIH HHS - R01 GM102869-01(United States)

Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice.

  • Appel JR
  • J. Neurosci.
  • 2018 Jun 27

Literature context:


Abstract:

Vacuolar sorting protein 35 (VPS35) is a critical component of retromer, which is essential for selective endosome-to-Golgi retrieval of membrane proteins. VPS35 deficiency is implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, exactly how VPS35 loss promotes AD pathogenesis remains largely unclear. VPS35 is expressed in various types of cells in the brain, including neurons and microglia. Whereas neuronal VPS35 plays a critical role in preventing neurodegeneration, the role of microglial VPS35 is largely unknown. Here we provide evidence for microglial VPS35's function in preventing microglial activation and promoting adult hippocampal neurogenesis. VPS35 is expressed in microglia in various regions of the mouse brain, with a unique distribution pattern in a brain region-dependent manner. Conditional knocking out of VPS35 in microglia of male mice results in regionally increased microglial density and activity in the subgranular zone of the hippocampal dentate gyrus (DG), accompanied by elevated neural progenitor proliferation, but decreased neuronal differentiation. Additionally, newborn neurons in the mutant DG show impaired dendritic morphology and reduced dendritic spine density. When examining the behavioral phenotypes of these animals, microglial VPS3S-depleted mice display depression-like behavior and impairment in long-term recognition memory. At the cellular level, VPS35-depleted microglia have grossly enlarged vacuolar structures with increased phagocytic activity toward postsynaptic marker PSD95, which may underlie the loss of dendritic spines observed in the mutant DG. Together, these findings identify an important role of microglial VPS35 in suppressing microglial activation and promoting hippocampal neurogenesis, which are both processes involved in AD pathogenesis.SIGNIFICANCE STATEMENT The findings presented here provide the first in vivo evidence that Vacuolar sorting protein 35 (VPS35)/retromer is essential for regulating microglial function and that when microglial retromer mechanics are disrupted, the surrounding brain tissue can be affected in a neurodegenerative manner. These findings present a novel, microglial-specific role of VPS35 and raise multiple questions regarding the mechanisms underlying our observations. These findings also have myriad implications for the field of retromer research and the role of retromer dysfunction in neurodegenerative pathophysiology. Furthermore, they implicate a pivotal role of microglia in the regulation of adult hippocampal neurogenesis and the survival/integration of newborn neurons in the adult hippocampus.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance.

  • Annamneedi A
  • Brain Struct Funct
  • 2018 Jun 18

Literature context:


Abstract:

Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.

Funding information:
  • Deutsche Forschungsgemeinschaft - CRC 779-Neurobiology of Motivated Behavior project A06()
  • Deutsche Forschungsgemeinschaft - CRC 779-Neurobiology of Motivated Behavior project B05()
  • Deutsche Forschungsgemeinschaft - CRC 779-Neurobiology of Motivated Behavior project B09()
  • Leibniz-Gemeinschaft - LGS SynaptoGenetics()
  • NIGMS NIH HHS - S06 GM061223-05A1(United States)

Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome.

  • Giacomini A
  • Brain Res. Bull.
  • 2018 Jun 20

Literature context:


Abstract:

Individuals with Down syndrome (DS), a genetic condition due to triplication of Chromosome 21, are characterized by intellectual disability that worsens with age. Since impairment of neurogenesis and dendritic maturation are very likely key determinants of intellectual disability in DS, interventions targeted to these defects may translate into a behavioral benefit. While most of the neurogenesis enhancers tested so far in DS mouse models may pose some caveats due to possible side effects, substances naturally present in the human diet may be regarded as therapeutic tools with a high translational impact. Linoleic acid and oleic acid are major constituents of corn oil that positively affect neurogenesis and neuron maturation. Based on these premises, the goal of the current study was to establish whether treatment with corn oil improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn model of DS. Four-month-old Ts65Dn and euploid mice were treated with saline or corn oil for 30 days. Evaluation of behavior at the end of treatment showed that Ts65Dn mice treated with corn oil underwent a large improvement in hippocampus-dependent learning and memory. Evaluation of neurogenesis and dendritogenesis showed that in treated Ts65Dn mice the number of new granule cells of the hippocampal dentate gyrus and their dendritic pattern became similar to those of euploid mice. In addition, treated Ts65Dn mice underwent an increase in body and brain weight. This study shows for the first time that fatty acids have a positive impact on the brain of the Ts65Dn mouse model of DS. These results suggest that a diet that is rich in fatty acids may exert beneficial effects on cognitive performance in individuals with DS without causing adverse effects.

Funding information:
  • NICHD NIH HHS - R01 HD42053-10(United States)

Proliferation of hippocampal progenitors relies on p27-dependent regulation of Cdk6 kinase activity.

  • Caron N
  • Cell. Mol. Life Sci.
  • 2018 May 4

Literature context:


Abstract:

Neural stem cells give rise to granule dentate neurons throughout life in the hippocampus. Upon activation, these stem cells generate fast proliferating progenitors that complete several rounds of divisions before differentiating into neurons. Although the mechanisms regulating the activation of stem cells have been intensively studied, little attention has been given so far to the intrinsic machinery allowing the expansion of the progenitor pool. The cell cycle protein Cdk6 positively regulates the proliferation of hippocampal progenitors, but the mechanism involved remains elusive. Whereas Cdk6 functions primarily as a cell cycle kinase, it can also act as transcriptional regulator in cancer cells and hematopoietic stem cells. Using mouse genetics, we show here that the function of Cdk6 in hippocampal neurogenesis relies specifically on its kinase activity. The present study also reveals a specific regulatory mechanism for Cdk6 in hippocampal progenitors. In contrast to the classical model of the cell cycle, we observe that the Cip/Kip family member p27, rather than the Ink4 family, negatively regulates Cdk6 in the adult hippocampus. Altogether, our data uncover a unique, cell type-specific regulatory mechanism controlling the expansion of hippocampal progenitors, where Cdk6 kinase activity is modulated by p27.

Funding information:
  • Belspo - P7/07()
  • NIDDK NIH HHS - P30DK56336(United States)

Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

  • Youssef M
  • Hippocampus
  • 2018 May 9

Literature context:


Abstract:

Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved.

Funding information:
  • Intramural NIH HHS - (United States)
  • NIMH NIH HHS - F30 MH111209()
  • NIMH NIH HHS - R01 MH091844()
  • NIMH NIH HHS - R56 MH106809()

Multiscale Analysis of Neurite Orientation and Spatial Organization in Neuronal Images.

  • Singh P
  • Neuroinformatics
  • 2018 Feb 12

Literature context:


Abstract:

The spatial organization of neurites, the thin processes (i.e., dendrites and axons) that stem from a neuron's soma, conveys structural information required for proper brain function. The alignment, direction and overall geometry of neurites in the brain are subject to continuous remodeling in response to healthy and noxious stimuli. In the developing brain, during neurogenesis or in neuroregeneration, these structural changes are indicators of the ability of neurons to establish axon-to-dendrite connections that can ultimately develop into functional synapses. Enabling a proper quantification of this structural remodeling would facilitate the identification of new phenotypic criteria to classify developmental stages and further our understanding of brain function. However, adequate algorithms to accurately and reliably quantify neurite orientation and alignment are still lacking. To fill this gap, we introduce a novel algorithm that relies on multiscale directional filters designed to measure local neurites orientation over multiple scales. This innovative approach allows us to discriminate the physical orientation of neurites from finer scale phenomena associated with local irregularities and noise. Building on this multiscale framework, we also introduce a notion of alignment score that we apply to quantify the degree of spatial organization of neurites in tissue and cultured neurons. Numerical codes were implemented in Python and released open source and freely available to the scientific community.

Suppressor of Cytokine Signalling 2 (SOCS2) Regulates Numbers of Mature Newborn Adult Hippocampal Neurons and Their Dendritic Spine Maturation.

  • Basrai HS
  • Cell. Mol. Neurobiol.
  • 2018 Feb 23

Literature context:


Abstract:

Overexpression of suppressor of cytokine signalling 2 (SOCS2) has been shown to promote hippocampal neurogenesis in vivo and promote neurite outgrowth of neurons in vitro. In the adult mouse brain, SOCS2 is most highly expressed in the hippocampal CA3 region and at lower levels in the dentate gyrus, an expression pattern that suggests a role in adult neurogenesis. Herein we examine generation of neuroblasts and their maturation into more mature neurons in SOCS2 null (SOCS2KO) mice. EdU was administered for 7 days to label proliferative neural precursor cells. The number of EdU-labelled doublecortin+ neuroblasts and NeuN+ mature neurons they generated was examined at day 8 and day 35, respectively. While no effect of SOCS2 deletion was observed in neuroblast generation, it reduced the numbers of EdU-labelled mature newborn neurons at 35 days. As SOCS2 regulates neurite outgrowth and dentate granule neurons project to the CA3 region, alterations in dendritic arborisation or spine formation may have correlated with the decreased numbers of EdU-labelled newborn neurons. SOCS2KO mice were crossed with Nes-CreERT2/mTmG mice, in which membrane eGFP is inducibly expressed in neural precursor cells and their progeny, and the dendrite and dendritic spine morphology of newborn neurons were examined at 35 days. SOCS2 deletion had no effect on total dendrite length, number of dendritic segments, number of branch points or total dendritic spine density but increased the number of mature "mushroom" spines. Our results suggest that endogenous SOCS2 regulates numbers of EdU-labelled mature newborn adult hippocampal neurons, possibly by mediating their survival and that this may be via a mechanism regulating dendritic spine maturation.

Funding information:
  • NIMH NIH HHS - MH48866(United States)

Redirection of neuroblast migration from the rostral migratory stream into a lesion in the prefrontal cortex of adult rats.

  • Gundelach J
  • Exp Brain Res
  • 2018 Feb 23

Literature context:


Abstract:

Clinical treatment of structural brain damage today is largely limited to symptomatic approaches and the avoidance of secondary injury. However, neuronal precursor cells are constantly produced within specified regions of the mammalian brain throughout life. Here we evaluate the potential of the known chemoattractive properties of the glycoprotein laminin on neuroblasts to relocate the cells into damaged brain areas. Injection of a thin laminin tract, leading from the rostral migratory stream to an excitotoxic lesion within the medial prefrontal cortex of rats, enabled neuroblasts to migrate away from their physiological route towards the olfactory bulb into the lesion site. Once they reached the damaged tissue, they migrated further in a non-uniform orientation within the lesion. Furthermore, our data indicate that the process of diverted migration is still active 6 weeks after the treatment and that at least some of the neuroblasts are capable of maturing into adult neurons.

Funding information:
  • NIAID NIH HHS - AI053108(United States)

Non-Newly Generated, "Immature" Neurons in the Sheep Brain Are Not Restricted to Cerebral Cortex.

  • Piumatti M
  • J. Neurosci.
  • 2018 Jan 24

Literature context:


Abstract:

A newly proposed form of brain structural plasticity consists of non-newly generated, "immature" neurons of the adult cerebral cortex. Similar to newly generated neurons, these cells express the cytoskeletal protein Doublecortin (DCX), yet they are generated prenatally and then remain in a state of immaturity for long periods. In rodents, the immature neurons are restricted to the paleocortex, whereas in other mammals, they are also found in neocortex. Here, we analyzed the DCX-expressing cells in the whole sheep brain of both sexes to search for an indicator of structural plasticity at a cellular level in a relatively large-brained, long-living mammal. Brains from adult and newborn sheep (injected with BrdU and analyzed at different survival times) were processed for DCX, cell proliferation markers (Ki-67, BrdU), pallial/subpallial developmental origin (Tbr1, Sp8), and neuronal/glial antigens for phenotype characterization. We found immature-like neurons in the whole sheep cortex and in large populations of DCX-expressing cells within the external capsule and the surrounding gray matter (claustrum and amygdala). BrdU and Ki-67 detection at neonatal and adult ages showed that all of these DCX+ cells were generated during embryogenesis, not after birth. These results show that the adult sheep, unlike rodents, is largely endowed with non-newly generated neurons retaining immature features, suggesting that such plasticity might be particularly important in large-brained, long-living mammals.SIGNIFICANCE STATEMENT Brain plasticity is important in adaptation and brain repair. Structural changes span from synaptic plasticity to adult neurogenesis, the latter being highly reduced in large-brained, long-living mammals (e.g., humans). The cerebral cortex contains "immature" neurons, which are generated prenatally and then remain in an undifferentiated state for long periods, being detectable with markers of immaturity. We studied the distribution and developmental origin of these cells in the whole brain of sheep, relatively large-brained, long-living mammals. In addition to the expected cortical location, we also found populations of non-newly generated neurons in several subcortical regions (external capsule, claustrum, and amygdala). These results suggests that non-neurogenic, parenchymal structural plasticity might be more important in large mammals with respect to adult neurogenesis.

Funding information:
  • Howard Hughes Medical Institute - N01-AI-40096(United States)

Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats.

  • Pardo J
  • Hippocampus
  • 2018 Jan 10

Literature context:


Abstract:

There have been a few descriptive studies in aged rodents about transcriptome changes in the hippocampus, most of them in males. Here, we assessed the age changes in spatial memory performance and hippocampal morphology in female rats and compared those changes with changes in the hippocampal transcriptome. Old rats displayed significant deficits in spatial memory. In both age groups, hole exploration frequency showed a clear peak at hole 0 (escape hole), but the amplitude of the peak was significantly higher in the young than in the old animals. In the hippocampus, there was a dramatic reduction in neurogenesis, whereas reactive microglial infiltrates revealed an inflammatory hippocampal state in the senile rats. Hippocampal RNA-sequencing showed that 210 genes are differentially expressed in the senile rats, most of them being downregulated. Our RNA-Seq data showed that various genes involved in the immune response, including TYROBP, CD11b, C3, CD18, CD4, and CD74, are overexpressed in the hippocampus of aged female rats. Enrichment analysis showed that the pathways overrepresented in the senile rats matched those of an exacerbated inflammatory environment, reinforcing our morphologic findings. After correlating our results with public data of human and mouse hippocampal gene expression, we found an 11-gene signature of overexpressed genes related to inflammatory processes that was conserved across species. We conclude that age-related hippocampal deficits in female rats share commonalities between human and rodents. Interestingly, the 11-gene signature that we identified may represent a cluster of immune and regulatory genes that are deregulated in the hippocampus and possibly other brain regions during aging as well as in some neurodegenerative diseases and low-grade brain tumors. Our study further supports neuroinflammation as a promising target to treat cognitive dysfunction in old individuals and some brain tumors. © 2017 Wiley Periodicals, Inc.

Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.

  • Jinnou H
  • Cell Stem Cell
  • 2018 Jan 4

Literature context:


Abstract:

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-containing scaffold into injured neonatal brains likewise promotes migration and maturation of V-SVZ-derived neuroblasts, leading to functional improvements in impaired gait behaviors. Together these results suggest that RG fibers enable postnatal V-SVZ-derived neuroblasts to migrate toward sites of injury, thereby enhancing neuronal regeneration and functional recovery from neonatal brain injuries.

Funding information:
  • NIDDK NIH HHS - R01 DK082659(United States)

Long-Range GABAergic Inputs Regulate Neural Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis.

  • Bao H
  • Cell Stem Cell
  • 2017 Nov 2

Literature context:


Abstract:

The quiescence of adult neural stem cells (NSCs) is regulated by local parvalbumin (PV) interneurons within the dentate gyrus (DG). Little is known about how local PV interneurons communicate with distal brain regions to regulate NSCs and hippocampal neurogenesis. Here, we identify GABAergic projection neurons from the medial septum (MS) as the major afferents to dentate PV interneurons. Surprisingly, dentate PV interneurons are depolarized by GABA signaling, which is in sharp contrast to most mature neurons hyperpolarized by GABA. Functionally, these long-range GABAergic inputs are necessary and sufficient to maintain adult NSC quiescence and ablating them leads to NSC activation and subsequent depletion of the NSC pool. Taken together, these findings delineate a GABAergic network involving long-range GABAergic projection neurons and local PV interneurons that couples dynamic brain activity to the neurogenic niche in controlling NSC quiescence and hippocampal neurogenesis.

Funding information:
  • NIMH NIH HHS - R01 MH111773()
  • NIMH NIH HHS - R21 MH106939()

Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices.

  • Henschke JU
  • Brain Struct Funct
  • 2017 Nov 3

Literature context:


Abstract:

The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known. Using tracer injections into primary auditory, somatosensory, and visual cortex within the first postnatal month of life in a rodent model (Mongolian gerbil) we show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear during development. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional single-photon emission computed tomography of regional cerebral blood flow reveals altered stimulus-induced activity and higher functional connectivity specifically between primary areas in deprived animals. Together, we show that intracortical multisensory connections are formed as a consequence of sensory-driven multisensory thalamocortical activity and that spared senses functionally recruit deprived cortical areas by an altered development of sensory thalamocortical and corticocortical connections. The functional-anatomical changes after early sensory deprivation have translational implications for the therapy of developmental hearing loss, blindness, and sensory paralysis and might also underlie developmental synesthesia.

Control of Cell Shape, Neurite Outgrowth, and Migration by a Nogo-A/HSPG Interaction.

  • Kempf A
  • Dev. Cell
  • 2017 Oct 9

Literature context:


Abstract:

Heparan sulfate proteoglycans (HSPGs) critically modulate adhesion-, growth-, and migration-related processes. Here, we show that the transmembrane protein, Nogo-A, inhibits neurite outgrowth and cell spreading in neurons and Nogo-A-responsive cell lines via HSPGs. The extracellular, active 180 amino acid Nogo-A region, named Nogo-A-Δ20, binds to heparin and brain-derived heparan sulfate glycosaminoglycans (GAGs) but not to the closely related chondroitin sulfate GAGs. HSPGs are required for Nogo-A-Δ20-induced inhibition of adhesion, cell spreading, and neurite outgrowth, as well as for RhoA activation. Surprisingly, we show that Nogo-A-Δ20 can act via HSPGs independently of its receptor, Sphingosine-1-Phosphate receptor 2 (S1PR2). We thereby identify the HSPG family members syndecan-3 and syndecan-4 as functional receptors for Nogo-A-Δ20. Finally, we show in explant cultures ex vivo that Nogo-A-Δ20 promotes the migration of neuroblasts via HSPGs but not S1PR2.

Effects of Environmental Enrichment on Doublecortin and BDNF Expression along the Dorso-Ventral Axis of the Dentate Gyrus.

  • Gualtieri F
  • Front Neurosci
  • 2017 Oct 2

Literature context:


Abstract:

Adult hippocampal neurogenesis (AHN) in the dentate gyrus is known to respond to environmental enrichment, chronic stress, and many other factors. The function of AHN may vary across the septo-temporal axis of the hippocampus, as different subdivisions are responsible for different functions. The dorsal pole regulates cognitive-related behaviors, while the ventral pole mediates mood-related responses through the hypothalamic-pituitary-adrenal (HPA) axis. In this study, we investigate different methods of quantifying the effect of environmental enrichment on AHN in the dorsal and ventral parts of the dentate gyrus (dDG and vDG). To this purpose, 11-week-old female CD-1 mice were assigned for 8 days to one of two conditions: the Environmental Enrichment (E) group received (i) running wheels, (ii) larger cages, (iii) plastic tunnels, and (iv) bedding with male urine, while the Control (C) group received standard housing. Dorsal CA (Cornu Ammonis) and DG regions were larger in the E than the C animals. Distance run linearly predicted the volume of the dorsal hippocampus, as well as of the intermediate and ventral CA regions. In the dDG, the amount of Doublecortin (DCX) immunoreactivity was significantly higher in E than in C mice. Surprisingly, this pattern was the opposite in the vDG (C > E). Real-time PCR measurement of Dcx mRNA and DCX protein analysis using ELISA showed the same pattern. Brain Derived Neurotrophic Factor (BDNF) immunoreactivity and mRNA displayed no difference between E and C, suggesting that upregulation of DCX was not caused by changes in BDNF levels. BDNF levels were higher in vDG than in dDG, as measured by both methods. Bdnf expression in vDG correlated positively with the distance run by individual E mice. The similarity in the patterns of immunoreactivity, mRNA and protein for differential DCX expression and for BDNF distribution suggests that the latter two methods might be effective tools for more rapid quantification of AHN.

Prolonged sleep deprivation decreases cell proliferation and immature newborn neurons in both dorsal and ventral hippocampus of male rats.

  • Murata Y
  • Neurosci. Res.
  • 2017 Sep 4

Literature context:


Abstract:

Previous studies have indicated that sleep deprivation negatively affects hippocampal neurogenesis, which may explain the reason for the relation between sleep loss and depression. Increasing evidence indicates that the hippocampus is anatomically and functionally segregated along a dorsolateral (cognitive function)/ventromedial (control for mood and stress response) axis. Thus, the present study was conducted to elucidate regional differences in the adverse effects of sleep deprivation on hippocampal neurogenesis. Male Sprague-Dawley rats were subjected to sleep deprivation using the "platform on the water" method for 24- or 72-h. Quantification of hippocampal cell proliferation and immature newborn neurons was stereologically estimated using immunostaining with Ki-67 and doublecortin (DCX), respectively, by optical fractionator method. A consecutive three days of sleep deprivation significantly reduced the density of Ki-67- and DCX-immunopositive cells both in the dorsal and ventral hippocampal subgranular zone and the decrease in DCX-labeled cells was more pronounced in the ventral hippocampus than in dorsal region. Our results indicate that prolonged sleep deprivation decreases hippocampal cell proliferation and neurogenesis in both the dorsal and ventral dentate gyrus. Future studies will be needed to clarify the impact of sleep deprivation-induced decreases in hippocampal neurogenesis on the development of depression.

Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche.

  • Yamada T
  • J. Neurochem.
  • 2017 Aug 26

Literature context:


Abstract:

Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.

Differential neuronal and glial expression of nuclear factor I proteins in the cerebral cortex of adult mice.

  • Chen KS
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context:


Abstract:

The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown. Here, we demonstrate that the expression of each NFI protein shows a distinct laminar pattern in the adult mouse neocortex and that their cell type-specific expression differs depending on the family member. NFIA expression was more frequently observed in astrocytes and oligodendroglia, whereas NFIB expression was predominantly localized to astrocytes and neurons. NFIX expression was most commonly observed in neurons. The NFI proteins were equally distributed within microglia, and the ependymal cells lining the ventricles of the brain expressed all three proteins. In the hippocampus, the NFI proteins were expressed during all stages of neural stem cell differentiation in the dentate gyrus, with higher expression intensity in neuroblast cells as compared to quiescent stem cells and mature granule neurons. These findings suggest that the NFI proteins may play distinct roles in cell lineage specification or maintenance, and establish the basis for further investigation of their function in the adult brain and their emerging role in disease.

Persistent Expression of VCAM1 in Radial Glial Cells Is Required for the Embryonic Origin of Postnatal Neural Stem Cells.

  • Hu XL
  • Neuron
  • 2017 Jul 19

Literature context:


Abstract:

During development, neural stem cells (NSCs) undergo transitions from neuroepithelial cells to radial glial cells (RGCs), and later, a subpopulation of slowly dividing RGCs gives rise to the quiescent adult NSCs that populate the ventricular-subventricular zone (V-SVZ). Here we show that VCAM1, a transmembrane protein previously found in quiescent adult NSCs, is expressed by a subpopulation of embryonic RGCs, in a temporal and region-specific manner. Loss of VCAM1 reduced the number of active embryonic RGCs by stimulating their premature neuronal differentiation while preventing quiescence in the slowly dividing RGCs. This in turn diminished the embryonic origin of postnatal NSCs, resulting in loss of adult NSCs and defective V-SVZ regeneration. VCAM1 affects the NSC fate by signaling through its intracellular domain to regulate β-catenin signaling in a context-dependent manner. Our findings provide new insight on how stem cells in the embryo are preserved to meet the need for growth and regeneration.

Funding information:
  • NINDS NIH HHS - R37 NS019904(United States)

Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

  • Semerci F
  • Elife
  • 2017 Jul 12

Literature context:


Abstract:

Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

Funding information:
  • NCI NIH HHS - P30 CA125123()
  • NCRR NIH HHS - S10 RR024574()
  • NIAID NIH HHS - P30 AI036211()
  • NICHD NIH HHS - U54 HD083092()
  • NIDCD NIH HHS - R01 DC006185()
  • NIDCD NIH HHS - R01 DC014832()
  • NIH HHS - S10 OD016167()

Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others.

  • Norsworthy MW
  • Neuron
  • 2017 Jun 21

Literature context:


Abstract:

At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types.

Funding information:
  • NEI NIH HHS - P30 EY012196()
  • NEI NIH HHS - R01 EY021342()
  • NEI NIH HHS - R01 EY021526()
  • NEI NIH HHS - R01 EY026939()
  • NHLBI NIH HHS - T32 HL007901()
  • NICHD NIH HHS - P30 HD018655()
  • NINDS NIH HHS - P30 NS062691()

Serotonergic Projections Govern Postnatal Neuroblast Migration.

  • García-González D
  • Neuron
  • 2017 May 3

Literature context:


Abstract:

In many vertebrates, postnatally generated neurons often migrate long distances to reach their final destination, where they help shape local circuit activity. Concerted action of extrinsic stimuli is required to regulate long-distance migration. Some migratory principles are evolutionarily conserved, whereas others are species and cell type specific. Here we identified a serotonergic mechanism that governs migration of postnatally generated neurons in the mouse brain. Serotonergic axons originating from the raphe nuclei exhibit a conspicuous alignment with subventricular zone-derived neuroblasts. Optogenetic axonal activation provides functional evidence for serotonergic modulation of neuroblast migration. Furthermore, we show that the underlying mechanism involves serotonin receptor 3A (5HT3A)-mediated calcium influx. Thus, 5HT3A receptor deletion in neuroblasts impaired speed and directionality of migration and abolished calcium spikes. We speculate that serotonergic modulation of postnatally generated neuroblast migration is evolutionarily conserved as indicated by the presence of serotonergic axons in migratory paths in other vertebrates.

Enhanced Axonal Extension of Subcortical Projection Neurons Isolated from Murine Embryonic Cortex using Neuropilin-1.

  • Sano N
  • Front Cell Neurosci
  • 2017 May 16

Literature context:


Abstract:

The cerebral cortical tissue of murine embryo and pluripotent stem cell (PSC)-derived neurons can survive in the brain and extend axons to the spinal cord. For efficient cell integration to the corticospinal tract (CST) after transplantation, the induction or selection of cortical motor neurons is important. However, precise information about the appropriate cell population remains unclear. To address this issue, we isolated cells expressing Neuropilin-1 (NRP1), a major axon guidance molecule receptor during the early developmental stage, from E14.5 mouse embryonic frontal cortex by fluorescence-activated cell sorting. Aggregates of NRP1+ cells gradually expressed subcortical projection neuron markers, Ctip2 and VGluT1, and axon guidance molecule receptors, Robo1 and deleted in colorectal calcinoma (Dcc), in vitro, suggesting that they contained early-stage subcortical projection neurons. We transplanted NRP1+ cells into the frontal cortex of P2 neonatal mice. Compared with grafts derived from NRP1- or unsorted cells, those derived from NRP1+ cells extended a larger number of axons to the spinal cord along the CST. Our data suggest that sorting NRP1+ cells from the embryonic cerebral cortex enriches subcortical projection neurons to reconstruct the CST.

Adult Hippocampal Neurogenesis along the Dorsoventral Axis Contributes Differentially to Environmental Enrichment Combined with Voluntary Exercise in Alleviating Chronic Inflammatory Pain in Mice.

  • Zheng J
  • J. Neurosci.
  • 2017 Apr 12

Literature context:


Abstract:

Cognitive behavioral therapy, such as environmental enrichment combined with voluntary exercise (EE-VEx), is under active investigation as an adjunct to pharmaceutical treatment for chronic pain. However, the effectiveness and underlying mechanisms of EE-VEx remain unclear. In mice with intraplantar injection of complete Freund's adjuvant, our results revealed that EE-VEx alleviated perceptual, affective, and cognitive dimensions of chronic inflammatory pain. These effects of EE-VEx on chronic pain were contingent on the occurrence of adult neurogenesis in the dentate gyrus in a functionally dissociated manner along the dorsoventral axis: neurogenesis in the ventral dentate gyrus participated in alleviating perceptual and affective components of chronic pain by EE-VEx, whereas neurogenesis in the dorsal dentate gyrus was involved in EE-VEx's cognitive-enhancing effects. Chronic inflammatory pain was accompanied by decreased levels of brain-derived neurotrophic factor (BDNF) in the dentate gyrus, which were reversed by EE-VEx. Overexpression of BDNF in the dentate gyrus mimicked the effects of EE-VEx. Our results demonstrate distinct contribution of adult hippocampal neurogenesis along the dorsoventral axis to EE-VEx's beneficial effects on different dimensions of chronic pain.SIGNIFICANCE STATEMENT Environmental enrichment combined with voluntary exercise (EE-VEx) is under active investigation as an adjunct to pharmaceutical treatment for chronic pain, but its effectiveness and underlying mechanisms remain unclear. In a mouse model of inflammatory pain, the present study demonstrates that the beneficial effects of EE-VEx on chronic pain depend on adult neurogenesis with a dorsoventral dissociation along the hippocampal axis. Adult neurogenesis in the ventral dentate gyrus participates in alleviating perceptual and affective components of chronic pain by EE-VEx, whereas that in the dorsal pole is involved in EE-VEx's cognitive-enhancing effects in chronic pain.

Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis.

  • Dumitru I
  • Neuron
  • 2017 Apr 5

Literature context:


Abstract:

Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.

Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

  • Bifari F
  • Cell Stem Cell
  • 2017 Mar 2

Literature context:


Abstract:

Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2+ neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex.

Funding information:
  • NINDS NIH HHS - R01 NS036715(United States)

EphA4 Regulates Neuroblast and Astrocyte Organization in a Neurogenic Niche.

  • Todd KL
  • J. Neurosci.
  • 2017 Mar 22

Literature context:


Abstract:

Significant migration cues are required to guide and contain newly generated rodent subventricular zone (SVZ) neuroblasts as they transit along the lateral ventricles and then through the anterior forebrain to their ultimate site of differentiation in the olfactory bulbs (OBs). These cues enforce strict neuroblast spatial boundaries within the dense astroglial meshwork of the SVZ and rostral migratory stream (RMS), yet are permissive to large-scale neuroblast migration. Therefore, the molecular mechanisms that define these cues and control dynamic interactions between migratory neuroblasts and surrounding astrocytes are of particular interest. We found that deletion of EphA4 and specifically ablation of EphA4 kinase activity resulted in misaligned neuroblasts and disorganized astrocytes in the RMS/SVZ, linking EphA4 forward signaling to SVZ and RMS spatial organization, orientation, and regulation. In addition, within a 3 week period, there was a significant reduction in the number of neuroblasts that reached the OB and integrated into the periglomerular layer, revealing a crucial role for EphA4 in facilitating efficient neuroblast migration to the OB. Single-cell analysis revealed that EPHA4 and its EFN binding partners are expressed by subpopulations of neuroblasts and astrocytes within the SVZ/RMS/OB system resulting in a cell-specific mosaic, suggesting complex EphA4 signaling involving both homotypic and heterotypic cell-cell interactions. Together, our studies reveal a novel molecular mechanism involving EphA4 signaling that functions in stem cell niche organization and ultimately neuroblast migration in the anterior forebrain.SIGNIFICANCE STATEMENT The subventricular zone neurogenic stem cell niche generates highly migratory neuroblasts that transit the anterior forebrain along a defined pathway to the olfactory bulb. Postnatal and adult brain organization dictates strict adherence to a narrow migration corridor. Subventricular zone neuroblasts are aligned in tightly bundled chains within a meshwork of astrocytes; however, the cell-cell cues that organize this unique, cell-dense migration pathway are largely unknown. Our studies show that forward signaling through the EphA4 tyrosine kinase receptor, mediated by ephrins expressed by subpopulations of neuroblasts and astrocytes, is required for compact, directional organization of neuroblasts and astrocytes within the pathway and efficient transit of neuroblasts through the anterior forebrain to the olfactory bulb.

Tridimensional Visualization and Analysis of Early Human Development.

  • Belle M
  • Cell
  • 2017 Mar 23

Literature context:


Abstract:

Generating a precise cellular and molecular cartography of the human embryo is essential to our understanding of the mechanisms of organogenesis in normal and pathological conditions. Here, we have combined whole-mount immunostaining, 3DISCO clearing, and light-sheet imaging to start building a 3D cellular map of the human development during the first trimester of gestation. We provide high-resolution 3D images of the developing peripheral nervous, muscular, vascular, cardiopulmonary, and urogenital systems. We found that the adult-like pattern of skin innervation is established before the end of the first trimester, showing important intra- and inter-individual variations in nerve branches. We also present evidence for a differential vascularization of the male and female genital tracts concomitant with sex determination. This work paves the way for a cellular and molecular reference atlas of human cells, which will be of paramount importance to understanding human development in health and disease. PAPERCLIP.

Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats.

  • Shepherd DJ
  • Front Neurosci
  • 2016 Nov 2

Literature context:


Abstract:

Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis.

Funding information:
  • NINDS NIH HHS - NS072030(United States)

Decreased adult neurogenesis in hibernating Syrian hamster.

  • León-Espinosa G
  • Neuroscience
  • 2016 Oct 1

Literature context:


Abstract:

Generation of new neurons from adult neural stem cells occurs in the dentate gyrus (DG) of the hippocampus and the lateral walls of the lateral ventricles. In this article, we study the neurogenesis that takes place during the hibernation of the Syrian hamster (Mesocricetus auratus). Using a variety of standard neurogenesis markers and 5-bromo-2-deoxyuridine (BrdU) incorporation, we describe a preferential decrease in the proliferation of newborn neurons in the subventricular zone (SVZ) of the hibernating hamsters (torpor) rather than in the hippocampus. Furthermore, we demonstrate that the proliferative capacity is recovered after 3-4days of torpor when arousal is triggered under natural conditions (i.e., not artificially provoked). In addition, we show that tau3R, a tau isoform with three microtubule-binding domains, is a suitable marker to study neurogenesis both in the SVZ and subgranular zone (SGZ) of the Syrian hamster brain.

Seasonal neuronal plasticity in song-control and auditory forebrain areas in subtropical nonmigratory and palearctic-indian migratory male songbirds.

  • Surbhi
  • J. Comp. Neurol.
  • 2016 Oct 1

Literature context:


Abstract:

This study examines whether differences in annual life-history states (LHSs) among the inhabitants of two latitudes would have an impact on the neuronal plasticity of the song-control system in songbirds. At the times of equinoxes and solstices during the year (n = 4 per year) corresponding to different LHSs, we measured the volumetric changes and expression of doublecortin (DCX; an endogenous marker of the neuronal recruitment) in the song-control nuclei and higher order auditory forebrain regions of the subtropical resident Indian weaverbirds (Ploceus philippinus) and Palearctic-Indian migratory redheaded buntings (Emberiza bruniceps). Area X in basal ganglia, lateral magnocellular nucleus of the anterior nidopallium (LMAN), HVC (proper name), and robust nucleus of the arcopallium (RA) were enlarged during the breeding LHS. Both round and fusiform DCX-immunoreactive (DCX-ir) cells were found in area X and HVC but not in LMAN or RA, with a significant seasonal difference. Also, as shown by increase in volume and by dense, round DCX-ir cells, the neuronal incorporation was increased in HVC alone during the breeding LHS. This suggests differences in the response of song-control nuclei to photoperiod-induced changes in LHSs. Furthermore, DCX immunoreactivity indicated participation of the cortical caudomedial nidopallium and caudomedial mesopallium in the song-control system, albeit with differences between the weaverbirds and the buntings. Overall, these results show seasonal neuronal plasticity in the song-control system closely associated with annual reproductive LHS in both of the songbirds. Differences between species probably account for the differences in the photoperiod-response system between the relative refractory weaverbirds and absolute refractory redheaded buntings. J. Comp. Neurol. 524:2914-2929, 2016. © 2016 Wiley Periodicals, Inc.

Suppressor of Cytokine Signaling-2 (SOCS2) Regulates the Microglial Response and Improves Functional Outcome after Traumatic Brain Injury in Mice.

  • Basrai HS
  • PLoS ONE
  • 2016 Apr 13

Literature context:


Abstract:

Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.

Funding information:
  • NIMH NIH HHS - R01 MH096274(United States)

X Irradiation Induces Acute Cognitive Decline via Transient Synaptic Dysfunction.

  • Puspitasari A
  • Radiat. Res.
  • 2016 Apr 23

Literature context:


Abstract:

Cranial X irradiation can severely impair higher brain function, resulting in neurocognitive deficits. Radiation-induced brain injury is characterized by acute, early and late delayed changes, and morbidity is evident more than 6 months after irradiation. While the acute effects of radiation exposure on the brain are known, the underlying mechanisms remain unclear. In this study, we examined the acute effect of X radiation on synaptic function using behavioral analysis and immunohistochemistry. We found that 10 Gy whole-brain irradiation immediately after conditioning (within 30 min) impaired the formation of fear memory, whereas irradiation 24 h prior to conditioning did not. To investigate the mechanisms underlying these behavioral changes, we irradiated one hemisphere of the brain and analyzed synaptic function and adult neurogenesis immunohistochemically. We focused on drebrin, whose loss from dendritic spines is a surrogate marker of synaptopathy. The intensity of drebrin immunoreactivity started to decrease in the irradiated hemisphere 2 h after exposure. The immunostaining intensity recovered to preirradiation levels by 24 h, indicating that X radiation induced transient synaptic dysfunction. Interestingly, the number of newly generated neurons was not changed at 2 h postirradiation, whereas it was significantly decreased at 8 and 24 h postirradiation. Because irradiation 24 h prior to conditioning had no effect on fear memory, our findings suggest that radiation-induced death of newly-generated neurons does not substantially impact fear memory formation. The radiation-induced synaptic dysfunction likely caused a transient memory deficit during the critical period for fear memory formation (approximately 1-3 h after conditioning), which coincides with a change in drebrin immunostaining in the hippocampus, a structure critical for fear memory formation.

Dopaminergic lesioning impairs adult hippocampal neurogenesis by distinct modification of α-synuclein.

  • Schlachetzki JC
  • J. Neurosci. Res.
  • 2016 Jan 28

Literature context:


Abstract:

Nonmotor symptoms of cognitive and affective nature are present in premotor and motor stages of Parkinson's disease (PD). Neurogenesis, the generation of new neurons, persists throughout the mammalian life span in the hippocampal dentate gyrus. Adult hippocampal neurogenesis may be severely affected in the course of PD, accounting for some of the neuropsychiatric symptoms such as depression and cognitive impairment. Two important PD-related pathogenic factors have separately been attributed to contribute to both PD and adult hippocampal neurogenesis: dopamine depletion and accumulation of α-synuclein (α-syn). In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model, altered neurogenesis has been linked merely to a reduced dopamine level. Here, we seek to determine whether a distinct endogenous α-syn expression pattern is associated, possibly contributing to the hippocampal neurogenic deficit. We observed a persistent reduction of striatal dopamine and a loss of tyrosine hydroxylase-expressing neurons in the substantia nigra pars compacta in contrast to a complete recovery of tyrosine hydroxylase-immunoreactive dopaminergic fibers within the striatum. However, dopamine levels in the hippocampus were significantly decreased. Survival of newly generated neurons was significantly reduced and paralleled by an accumulation of truncated, membrane-associated, insoluble α-syn within the hippocampus. Specifically, the presence of truncated α-syn species was accompanied by increased activity of calpain-1, a calcium-dependent protease. Our results further substantiate the broad effects of dopamine loss in PD-susceptible brain nuclei, gradually involved in the PD course. Our findings also indicate a detrimental synergistic interplay between dopamine depletion and posttranslational modification of α-syn, contributing to impaired hippocampal plasticity in PD.

Physiologically normal 5% O2 supports neuronal differentiation and resistance to inflammatory injury in neural stem cell cultures.

  • Sun X
  • J. Neurosci. Res.
  • 2015 Nov 19

Literature context:


Abstract:

Recent studies have demonstrated that neural stem cell (NSC) culture at physiologically normoxic conditions (2-5% O2) is advantageous in terms of neuronal differentiation and survival. Neuronal differentiation is accompanied by a remarkable shift to mitochondrial oxidative metabolism compared with preferentially glycolytic metabolism of proliferating cells. However, metabolic changes induced by growth in a normoxic (5%) O2 culture environment in NSCs have been minimally explored. This study demonstrates that culturing under 5% O2 conditions results in higher levels of mitochondrial oxidative metabolism, decreased glycolysis, and reduced levels of reactive oxygen species in NSC cultures. Inflammation is one of the major environmental factors limiting postinjury NSC neuronal differentiation and survival. Our results show that NSCs differentiated under 5% O2 conditions possess better resistance to in vitro inflammatory injury compared with those exposed to 20% O2. The present work demonstrates that lower, more physiologically normal O2 levels support metabolic changes induced during NSC neuronal differentiation and provide increased resistance to inflammatory injury, thus highlighting O2 tension as an important determinant of cell fate and survival in various stem cell therapies.

The Expression of Tubb2b Undergoes a Developmental Transition in Murine Cortical Neurons.

  • Breuss M
  • J. Comp. Neurol.
  • 2015 Oct 15

Literature context:


Abstract:

The development of the mammalian brain requires the generation, migration, and differentiation of neurons, cellular processes that are dependent on a dynamic microtubule cytoskeleton. Mutations in tubulin genes, which encode for the structural subunits of microtubules, cause detrimental neurological disorders known as the tubulinopathies. The disease spectra associated with different tubulin genes are overlapping but distinct, an observation believed to reflect functional specification of this multigene family. Perturbation of the β-tubulin TUBB2B is known to cause polymicrogyria, pachygyria, microcephaly, and axon guidance defects. Here we provide a detailed analysis of the expression pattern of its murine homolog Tubb2b. The generation and characterization of BAC-transgenic eGFP reporter mouse lines has revealed that it is highly expressed in progenitors and postmitotic neurons during cortical development. This contrasts with the 8-week-old cortex, in which Tubb2b expression is restricted to macroglia, and expression is almost completely absent in mature neurons. This developmental transition in neurons is mirrored in the adult hippocampus and the cerebellum but is not a universal feature of Tubb2b; its expression persists in a population of postmitotic neurons in the 8-week-old retina. We propose that the dynamic spatial and temporal expression of Tubb2b reflects specific functional requirements of the microtubule cytoskeleton.

Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates.

  • Cutuli D
  • Front Behav Neurosci
  • 2015 Mar 27

Literature context:


Abstract:

Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in enriched environments. Females reared in standard conditions were used as controls. At 2.5 months of age all females were mated and reared in standard conditions with their offspring. Maternal care behaviors and nesting activity were assessed in lactating dams. Their male pups were also behaviorally evaluated at different post-natal days (pnd). Brain BDNF, reelin and adult hippocampal neurogenesis levels were measured as biochemical correlates of neuroplasticity. EF showed more complex maternal care than controls due to their higher levels of licking, crouching and nest building activities. Moreover, their offspring showed higher discriminative (maternal odor preference T-maze, pnd 10) and spatial (Morris Water Maze, pnd 45; Open Field with objects, pnd 55) performances, with no differences in social abilities (Sociability test, pnd 35), in comparison to controls. BDNF levels were increased in EF frontal cortex at pups' weaning and in their offspring hippocampus at pnd 21 and 55. No differences in offspring reelin and adult hippocampal neurogenesis levels were found. In conclusion, our study indicates that pre-reproductive maternal enrichment positively influences female rats' maternal care and cognitive development of their offspring, demonstrating thus a transgenerational transmission of EE benefits linked to enhanced BDNF-induced neuroplasticity.

Funding information:
  • NHGRI NIH HHS - U54 HG006997(United States)

n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice.

  • Cutuli D
  • Front Aging Neurosci
  • 2014 Sep 9

Literature context:


Abstract:

As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations) found in n-3 PUFA supplemented mice also pointed toward an effective neuroprotection. On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

Funding information:
  • NIMH NIH HHS - R01 MH059950(United States)

Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats.

  • Hamson DK
  • Endocrinology
  • 2013 Sep 26

Literature context:


Abstract:

Gonadal steroids are potent regulators of adult neurogenesis. We previously reported that androgens, such as testosterone (T) and dihydrotestosterone (DHT), but not estradiol, increased the survival of new neurons in the dentate gyrus of the male rat. These results suggest androgens regulate hippocampal neurogenesis via the androgen receptor (AR). To test this supposition, we examined the role of ARs in hippocampal neurogenesis using 2 different approaches. In experiment 1, we examined neurogenesis in male rats insensitive to androgens due to a naturally occurring mutation in the gene encoding the AR (termed testicular feminization mutation) compared with wild-type males. In experiment 2, we injected the AR antagonist, flutamide, into castrated male rats and compared neurogenesis levels in the dentate gyrus of DHT and oil-treated controls. In experiment 1, chronic T increased hippocampal neurogenesis in wild-type males but not in androgen-insensitive testicular feminization mutation males. In experiment 2, DHT increased hippocampal neurogenesis via cell survival, an effect that was blocked by concurrent treatment with flutamide. DHT, however, did not affect cell proliferation. Interestingly, cells expressing doublecortin, a marker of immature neurons, did not colabel with ARs in the dentate gyrus, but ARs were robustly expressed in other regions of the hippocampus. Together these studies provide complementary evidence that androgens regulate adult neurogenesis in the hippocampus via the AR but at a site other than the dentate gyrus. Understanding where in the brain androgens act to increase the survival of new neurons in the adult brain may have implications for neurodegenerative disorders.

Funding information:
  • NEI NIH HHS - R01 EY020535(United States)

Dynamics of olfactory and hippocampal neurogenesis in adult sheep.

  • Brus M
  • J. Comp. Neurol.
  • 2013 Jan 1

Literature context:


Abstract:

Although adult neurogenesis has been conserved in higher vertebrates such as primates and humans, timing of generation, migration, and differentiation of new neurons appears to differ from that in rodents. Sheep could represent an alternative model to studying neurogenesis in primates because they possess a brain as large as a macaque monkey and have a similar life span. By using a marker of cell division, bromodeoxyuridine (BrdU), in combination with several markers, the maturation time of newborn cells in the dentate gyrus (DG) and the main olfactory bulb (MOB) was determined in sheep. In addition, to establish the origin of adult-born neurons in the MOB, an adeno-associated virus that infects neural cells in the ovine brain was injected into the subventricular zone (SVZ). A migratory stream was indicated from the SVZ up to the MOB, consisting of neuroblasts that formed chain-like structures. Results also showed a long neuronal maturation time in both the DG and the MOB, similar to that in primates. The first new neurons were observed at 1 month in the DG and at 3 months in the MOB after BrdU injections. Thus, maturation of adult-born cells in both the DG and the MOB is much longer than that in rodents and resembles that in nonhuman primates. This study points out the importance of studying the features of adult neurogenesis in models other than rodents, especially for translational research for human cellular therapy.

Funding information:
  • NIMH NIH HHS - R21 MH083614(United States)

Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus).

  • Mezey S
  • J. Comp. Neurol.
  • 2012 Jan 1

Literature context:


Abstract:

To understand better the rate of neurogenesis and the distribution of new neurons in posthatch domestic chicks, we describe and compare the expression of the neuronal nuclei protein (NeuN, a.k.a. Fox-3) and doublecortin antigens in the whole brain of chicks 2 days, 8 days, and 14 weeks posthatch. In the forebrain ventricular and paraventricular zones, the density of bromodeoxyuridine-, NeuN-, and doublecortin-labeled cells was compared between chicks 24 hours and 7 days after an injection of bromodeoxyuridine (2 and 8 days posthatch, respectively). The distribution of NeuN-labeled neurons was similar to Nissl-stained tissue, with the exception of some areas where neurons did not express NeuN: cerebellar Purkinje cells and olfactory bulb mitral cells. The ventral tegmental area of 2-day-old chicks was also faintly labeled. The distribution of doublecortin was similar at all timepoints, with doublecortin-labeled profiles located throughout all forebrain areas as well as in the cerebellar granule cell layer. However, doublecortin labeling was not detectable in any midbrain or brainstem areas. Our data indicate that a significant number of new neurons is still formed in the telencephalon of posthatch domestic chicks, whereas subtelencephalic areas (except for the cerebellum) finish their neuronal expansion before hatching. Most newly formed cells in chicks leave the paraventricular zone after hatching, but a pool of neurons stays in the vicinity of the ventricular zone and matures in situ within 7 days. Proliferating cells often migrate laterally along forebrain laminae into still-developing brain areas.

Funding information:
  • Howard Hughes Medical Institute - T32 GM07092-34(United States)
  • NCRR NIH HHS - P41RR013642(United States)

Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain.

  • Sawamoto K
  • J. Comp. Neurol.
  • 2011 Mar 1

Literature context:


Abstract:

The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astrocyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates.

Funding information:
  • NIAID NIH HHS - 1R21AI085376(United States)

Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development.

  • Bloch J
  • J. Comp. Neurol.
  • 2011 Mar 1

Literature context:


Abstract:

We have demonstrated that cortical cell autografts might be a useful therapy in two monkey models of neurological disease: motor cortex lesion and Parkinson's disease. However, the origin of the useful transplanted cells obtained from cortical biopsies is not clear. In this report we describe the expression of doublecortin (DCX) in these cells based on reverse-transcription polymerase chain reaction (RT-PCR) and immunodetection in the adult primate cortex and cell cultures. The results showed that DCX-positive cells were present in the whole primate cerebral cortex and also expressed glial and/or neuronal markers such as glial fibrillary protein (GFAP) or neuronal nuclei (NeuN). We also demonstrated that only DCX/GFAP positive cells were able to proliferate and originate progenitor cells in vitro. We hypothesize that these DCX-positive cells in vivo have a role in cortical plasticity and brain reaction to injury. Moreover, in vitro these DCX-positive cells have the potential to reacquire progenitor characteristics that confirm their potential for brain repair.

Funding information:
  • Wellcome Trust - 075491/Z/04(United Kingdom)

Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus.

  • Jinno S
  • J. Comp. Neurol.
  • 2011 Feb 15

Literature context:


Abstract:

In the rodent brain, diverse functions are topographically distributed within the hippocampus. For instance, the dorsal (septal) hippocampus is involved in spatial memory, whereas the ventral (temporal) hippocampus is related to emotion and anxiety. Accumulating evidence shows that age-dependent decline in hippocampal neurogenesis is associated with impairments of these functions. However, little is known about whether the decline in dentate granule cell production during aging follows a topographic pattern. Here we quantitatively estimated specific populations of adult-born cells in young adult and middle-aged mice by using endogenous markers and determined whether age-dependent reductions in adult neurogenesis exhibited topographic differences. The numerical densities (NDs) of putative primary progenitors, intermediate neuronal progenitors, and neuronal lineages were higher in the dorsal dentate gyrus (DG) than in the ventral DG both in young adult and in middle-aged mice, but the ratios of the NDs in the dorsal DG to the NDs in the ventral DG noticeably increased with age. The age-related reductions in the numbers of these populations were larger in the ventral DG than in the dorsal DG. By contrast, the NDs of glial lineages were higher in the ventral DG than in the dorsal DG during life, and the numbers of glial lineages showed no significant age-related changes. Our findings suggest that neurogenesis, but not gliogenesis, wanes faster in the ventral hippocampus than in the dorsal hippocampus during aging. Such age-related topographic changes in hippocampal neurogenesis might be implicated in memory and affective impairments in older people.

Funding information:
  • NIMH NIH HHS - MH068457(United States)

Composition of the migratory mass during development of the olfactory nerve.

  • Miller AM
  • J. Comp. Neurol.
  • 2010 Dec 15

Literature context:


Abstract:

The embryonic development of the olfactory nerve includes the differentiation of cells within the olfactory placode, migration of cells into the mesenchyme from the placode, and extension of axons by the olfactory sensory neurons (OSNs). The coalition of both placode-derived migratory cells and OSN axons within the mesenchyme is collectively termed the "migratory mass." Here we address the sequence and coordination of the events that give rise to the migratory mass. Using neuronal and developmental markers, we show subpopulations of neurons emerging from the placode by embryonic day (E)10, a time at which the migratory mass is largely cellular and only a few isolated OSN axons are seen, prior to the first appearance of OSN axon fascicles at E11. These neurons also precede the emergence of the gonadotropin-releasing hormone neurons and ensheathing glia which are also resident in the mesenchyme as part of the migratory mass beginning at about E11. The data reported here begin to establish a spatiotemporal framework for the migration of molecularly heterogeneous placode-derived cells in the mesenchyme. The precocious emigration of the early arriving neurons in the mesenchyme suggests they may serve as "guidepost cells" that contribute to the establishment of a scaffold for the extension and coalescence of the OSN axons.

Funding information:
  • NCI NIH HHS - 1U54CA121852-01A1(United States)

Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain.

  • Tseng YY
  • J. Comp. Neurol.
  • 2010 Aug 15

Literature context:


Abstract:

Previous studies showed that Tctex-1 immunoreactivity is selectively enriched in the germinal zones of adult brain. In this report we identify a regulatory region of the Tctex-1 gene that is capable of directing transgenic expression of green fluorescent protein (GFP) reporter that recapitulates the spatial and temporal expression pattern of endogenous Tctex-1. This construct specifically targeted expression to the nestin(+)/Pax6(+)/GLAST(+) radial glial cells and Tbr2(+) intermediate progenitors when the reporter construct was delivered to developing mouse neocortex via in utero electroporation. Characterization of mice transgenically expressing GFP under the same regulatory element showed that the GFP expression is faithful to endogenous Tctex-1 at the subgranular zone (SGZ) of dentate gyrus, ventricular/subventricular zone of lateral ventricles, and ependymal layer of 3rd ventricle of adult brains. Immunolocalization and bromodeoxyuridine incorporation studies of adult SGZ in four independent mouse lines showed that Tctex-1:GFP reporter selectively marks nestin(+)/GFAP(+)/Sox2(+) neural stem-like cells in two mouse lines (4 and 13). In two other mouse lines (17 and 18), Tctex-1:GFP is selectively expressed in Type-2 and Type-3 transient amplifying progenitors and a small subset of young neuronal progeny. The P/E-Tctex-1 reporter mouse studies independently confirmed the specific enrichment of Tctex-1 at adult SGZ stem/progenitor cells. Furthermore, these studies supported the notion that an analogous transcriptional program may be used to regulate neurogenesis in embryonic cerebral cortex and adult hippocampus. Finally, the genomic sequences and the reporter mouse lines described here provide useful experimental tools to advance adult neural stem cell research.

Funding information:
  • Intramural NIH HHS - U54 HG003273(United States)

Expression of the embryonal isoform (0N/3R) of the microtubule-associated protein tau in the adult rat central nervous system.

  • Bullmann T
  • J. Comp. Neurol.
  • 2010 Jul 1

Literature context:


Abstract:

Tau is a microtubule-associated protein expressed predominantly in neurons. The transcript of the tau gene is alternatively spliced. Resulting isoforms contain three or four microtubule-binding repeats. The shortest tau isoform contains only three repeats (3R) and is expressed at birth. Previous data on rodents suggested that this isoform is no longer expressed during adulthood. It is replaced by tau isoforms containing four repeats (4R). The adult 4R tau isoforms bind to microtubules with higher affinity than 3R tau isoforms. Therefore, this isoform switch may reflect a need for more dynamic microtubules during development. Recently, we observed in rats that the 3R tau isoform is transiently expressed in adult neurogenesis. Subsequently, we performed an immunohistochemical labeling of the 3R tau isoform on serial sections of the adult rat brain. Interestingly, the 3R tau isoform is not only expressed in neuronal precursor cells. It is also present in mature neurons of the olfactory bulb, magnocellular neurosecretory system, posterolateral hypothalamus, locus coeruleus, raphe nucleus, solitary nucleus, medial septum and diagonal band, olfactory tuberculus, and piriform/olfactory cortex. This expression pattern is similar to that observed for the polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) and the microtubule-associated proteins doublecortin and collapsin response mediating protein (CRMP-4/TUC-4/Ulip-1), which are also highly expressed during early development. The retention of a juvenile phenotype in some neurons might be associated with a functionally significant neuronal plasticity.

Funding information:
  • NEI NIH HHS - R44 EY012332-03(United States)
  • Wellcome Trust - 086084(United Kingdom)

Blood vessels form a migratory scaffold in the rostral migratory stream.

  • Whitman MC
  • J. Comp. Neurol.
  • 2009 Sep 10

Literature context:


Abstract:

In adult mice, new neurons born in the subventricular zone (SVZ), lining the lateral ventricles, migrate tangentially into the olfactory bulb along a well-delineated path, the rostral migratory stream (RMS). Neuroblasts in the RMS migrate tangentially in chains, without a recognized migratory scaffold. Here we quantitatively examine the distribution of, and relationships between, cells within the RMS, throughout its rostral-caudal extent. We show that there is a higher density of blood vessels in the RMS than in other brain regions, including areas with equal cell density, and that the orientation of blood vessels parallels the RMS throughout the caudal to rostral path. Of particular interest, migratory neuroblast chains are longitudinally aligned along blood vessels within the RMS, with over 80% of vessel length in rostral areas of the RMS apposed by neuroblasts. Electron micrographs show direct contact between endothelial cells and neuroblasts, although intervening astrocytic processes are often present. Within the RMS, astrocytes arborize extensively, extending long processes that are parallel to blood vessels and the direction of neuroblast migration. Thus, the astrocytic processes establish a longitudinal alignment within the RMS, rather than a more typical stellate shape. This complementary alignment suggests that blood vessels and astrocytes may cooperatively establish a scaffold for migrating neuroblasts, as well as provide and regulate migratory cues.

Perisomatic-targeting granule cells in the mouse olfactory bulb.

  • Naritsuka H
  • J. Comp. Neurol.
  • 2009 Aug 1

Literature context:


Abstract:

Inhibitory interneurons in the hippocampus and neocortex are differentiated into several morphological and functional subtypes that innervate distinct subcellular domains of principal neurons. In the olfactory bulb (OB), odor information is processed by local neuronal circuits that include the major inhibitory interneuron, granule cells (GCs). All GCs reported to date target their inhibitory output synapses mainly to dendrites of mitral cells (MCs) and tufted cells (TCs) in the external plexiform layer (EPL). Here we identified a novel type of GC that targets output synapses selectively to the perisomatic region of MCs. In the OB of adult transgenic mice expressing green fluorescent protein (GFP) under the control of nestin gene regulatory regions, we observed cells in the granule cell layer (GCL) that have GC-like morphology and strongly express GFP (referred to as type S cells). Type S cells expressed NeuN and GAD67, molecular markers for GCs. Intracellular labeling of type S cells revealed that their dendrites did not enter the EPL, but formed branches and spines within the GCL, internal plexiform layer, and mitral cell layer. Type S cells typically had huge spines at the ends of the apical dendrites. Some of the terminal spines attached to the perisomatic region of MCs and formed dendrosomatic reciprocal synapses with a presumed granule-to-mitral inhibitory synapse and a mitral-to-granule excitatory synapse. These findings indicate the morphological differentiation of GCs into dendritic-targeting and perisomatic-targeting subsets, and suggest the functional differentiation of the GC subsets in the processing of odor information in the OB.

Funding information:
  • NINDS NIH HHS - R01 NS054814-05(United States)

Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease.

  • Madhavan L
  • J. Comp. Neurol.
  • 2009 Jul 1

Literature context:


Abstract:

Realistically, future stem cell therapies for neurological conditions including Parkinson's disease (PD) will most probably entail combination treatment strategies, involving both the stimulation of endogenous cells and transplantation. Therefore, this study investigates these two modes of neural precursor cell (NPC) therapy in concert in order to determine their interrelationships in a rat PD model. Human placental alkaline phosphatase (hPAP)-labeled NPCs were transplanted unilaterally into host rats which were subsequently infused ipsilaterally with 6-hydroxydopamine (6-OHDA). The reaction of host NPCs to the transplantation and 6-OHDA was tracked by bromodeoxyuridine (BrdU) labeling. Two weeks after transplantation, in animals transplanted with NPCs we found evidence of elevated host subventricular zone NPC proliferation, neurogenesis, and migration to the graft site. In these animals, we also observed a significant preservation of striatal tyrosine hydroxylase (TH) expression and substantia nigra TH cell number. We have seen no evidence that neuroprotection is a product of dopamine neuron replacement by NPC-derived cells. Rather, the NPCs expressed glial cell line-derived neurotrophic factor (GDNF), sonic hedgehog (Shh), and stromal cell-derived factor 1 alpha (SDF1alpha), providing a molecular basis for the observed neuroprotection and endogenous NPC response to transplantation. In summary, our data suggests plausible synergy between exogenous and endogenous NPC actions, and that NPC implantation before the 6-OHDA insult can create a host microenvironment conducive to stimulation of endogenous NPCs and protection of mature nigral neurons.

Conditional ablation and recovery of forebrain neurogenesis in the mouse.

  • Singer BH
  • J. Comp. Neurol.
  • 2009 Jun 20

Literature context:


Abstract:

Forebrain neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Several strategies have been employed to eliminate adult neurogenesis and thereby determine whether depleting adult-born neurons disrupts specific brain functions, but some approaches do not specifically target neural progenitors. We have developed a transgenic mouse line to reversibly ablate adult neural stem cells and suppress neurogenesis. The nestin-tk mouse expresses herpes simplex virus thymidine kinase (tk) under the control of the nestin 2nd intronic enhancer, which drives expression in neural progenitors. Administration of ganciclovir (GCV) kills actively dividing cells expressing this transgene. We found that peripheral GCV administration suppressed SVZ-olfactory bulb and DG neurogenesis within 2 weeks but caused systemic toxicity. Intracerebroventricular GCV infusion for 28 days nearly completely depleted proliferating cells and immature neurons in both the SVZ and DG without systemic toxicity. Reversibility of the effects after prolonged GCV infusion was slow and partial. Neurogenesis did not recover 2 weeks after cessation of GCV administration, but showed limited recovery 6 weeks after GCV that differed between the SVZ and DG. Suppression of neurogenesis did not inhibit antidepressant responsiveness of mice in the tail suspension test. These findings indicate that SVZ and DG neural stem cells differ in their capacity for repopulation, and that adult-born neurons are not required for antidepressant responses in a common behavioral test of antidepressant efficacy. The nestin-tk mouse should be useful for studying how reversible depletion of adult neurogenesis influences neurophysiology, other behaviors, and neural progenitor dynamics.

Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream.

  • Gil-Perotin S
  • J. Comp. Neurol.
  • 2009 Jun 10

Literature context:


Abstract:

Recent publications have shown that the lateral wall of the lateral ventricles in the Macaca fascicularis brain, in particular the subventricular zone (SVZ), contains neural stem cells throughout adulthood that migrate through a migratory pathway (RMS) to the olfactory bulb (OB). To date, a detailed and systematic cytoarchitectural and ultrastructural study of the monkey SVZ and RMS has not been done. We found that the organization of the SVZ was similar to that of humans, with the ependymal layer surrounding the lateral ventricles, a hypocellular GAP layer formed by astrocytic and ependymal expansions, and the astrocyte ribbon, composed of astrocytic bodies. We found no cells corresponding to the type C proliferating precursor of the rodent brain. Instead, proliferating cells, expressed as Ki-67 immunoreactivity, were predominantly young neurons concentrated in the anterior regions, and occasional astrocytes of the ribbon. We observed displaced ependymal cells of still unknown significance. New neurons tended to organize in chain-like structures, which were surrounded by astrocytes. This pattern was highly reminiscent of that observed in rodent RMS, but not in humans. These chains spread from the frontal SVZ along a GAP-like layer, uniquely composed of astrocytic expansions, to the olfactory bulb (OB). The number of neuronal chains and the number of chain-forming cells decreased gradually upon reaching the OB. The purpose of this work is to provide a reference for future studies in the field of adult neurogenesis that may lead to an understanding of the fate and functionality of newborn neurons in primates, and ultimately in humans.

Funding information:
  • NINDS NIH HHS - R01 NS053976-01(United States)

NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone.

  • Komitova M
  • J. Comp. Neurol.
  • 2009 Feb 10

Literature context:


Abstract:

NG2 cells express the chondroitin sulfate proteoglycan NG2 and are a fourth type of glia distinct from astrocytes, oligodendrocytes, and microglia. NG2 cells generate oligodendrocytes but have also been reported to represent neuronal progenitor cells in the postnatal mouse subventricular zone (SVZ). We performed a detailed immunohistochemical analysis of NG2 cells in the mouse SVZ, rostral migratory stream (RMS), and olfactory bulb granule cell layer (OB GCL), which constitute a neurogenic niche in the postnatal forebrain. NG2 cells in the SVZ and RMS expressed the oligodendrocyte precursor cell antigen platelet-derived growth factor receptor-alpha but did not express antigens known to be expressed by neuronogenic cells in the SVZ, such as doublecortin, PSA-NCAM, beta-tubulin, Dlx2, or GFAP. More than 99.5% of the proliferating cells in the SVZ were NG2 negative. In the olfactory bulb, NG2 cells were found to generate primarily oligodendrocytes and a small number of astrocytes but not neurons. In the SVZ and RMS, NG2 cells were sparse and made up a much smaller fraction of the cells compared with the surrounding nonneurogenic parenchyma. Parenchymal NG2 cells were often located along the border of the SVZ and RMS. The abundance of NG2 cells increased in the distal parts of the RMS and especially in the OB GCL, where NG2 cell processes were seen in close proximity to many maturing interneurons. Our findings indicate that NG2 cells do not represent neuronal progenitor cells in the postnatal SVZ but are likely to be oligodendrocyte precursor cells.

Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice.

  • Puverel S
  • J. Comp. Neurol.
  • 2009 Jan 10

Literature context:


Abstract:

The adult subventricular zone (SVZ) contains progenitors cells, which continually give rise to new neurons that migrate along the rostral migratory stream (RMS) to the olfactory bulbs (OB). Prokineticin receptor 2 (ProKR2) is a G-protein-coupled receptor that plays an essential role in this migration process. However, the identity of the prokr2-expressing cells has not yet been clearly established. Here, we have characterized in detail the identity of the prokr2-expressing cells in the SVZ/RMS/OB pathway in adult mice. In the SVZ, accumulation of prokr2 transcripts was detected in almost all migrating neuroblasts or type A cells as well as in a large population of their precursors, the rapidly dividing type C cells. Moreover, we observed that, in dissociated SVZ cells from Mash1::GFP postnatal mice, ProKR2 protein is also present in type C and type A cells. We found that, along the RMS and in the OB, prokr2 expression was restricted to migrating type A cells and was absent in astrocytes. Finally, we observed a highly marked decrease of prokr2 expression in Mash1-/- mutant mice, suggesting that this transcription factor directly or indirectly regulates prokr2 expression. Although the expression of ProKR2 in migrating type A cells is in good agreement with the essential role played by this receptor during this migration process, its expression in a large population of their progenitors suggests an additional function for ProKR2, providing novel insights into the role of ProKR2/ProK2 signalling in adult neurogenesis.

Funding information:
  • NINDS NIH HHS - R01 NS045734(United States)

Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum.

  • Yang Z
  • J. Comp. Neurol.
  • 2008 Nov 1

Literature context:


Abstract:

Ischemia-induced striatal neurogenesis from progenitors in the adjacent subventricular zone (SVZ) in young and adult rodents has been reported. However, it has not been established whether the precursors that reside in the SVZ retain the capacity to produce the full range of striatal neurons that has been destroyed. By using a neonatal rat model of hypoxic/ischemic brain damage, we show here that virtually all of the newly produced striatal neurons are calretinin (CR)-immunoreactive (+), but not DARPP-32(+), calbindin-D-28K(+), parvalbumin(+), somatostatin(+), or choline acetyltransferase(+). Retroviral fate-mapping studies confirm that these newly born CR(+) neurons are indeed descendants of the SVZ. Our studies indicate that, although the postnatal SVZ has the capacity to produce a range of neurons, only a subset of this repertoire is manifested in the brain after injury.

CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain.

  • Bulloch K
  • J. Comp. Neurol.
  • 2008 Jun 10

Literature context:


Abstract:

The CD11c enhanced yellow fluorescent protein (EYFP) transgenic mouse was constructed to identify dendritic cells in the periphery (Lindquist et al. [2004] Nat. Immunol. 5:1243-1250). In this study, we used this mouse to characterize dendritic cells within the CNS. Our anatomic results showed discrete populations of EYFP(+) brain dendritic cells (EYFP(+) bDC) that colocalized with a small fraction of microglia immunoreactive for Mac-1, Iba-1, CD45, and F4/80 but not for NeuN, Dcx, NG2 proteoglycan, or GFAP. EYFP(+) bDC, isolated by fluorescent activated cell sorting (FACS), expressed mRNA for the Itgax (CD11c) gene, whereas FACS anlaysis of EYFP(+) bDC cultures revealed the presence of CD11c protein. Light microscopy studies revealed that EYFP(+) bDC were present in the embryonic CNS when the blood-brain barrier is formed and postnatally when brain cells are amenable to culturing. In adult male mice, EYFP(+) bDC distribution was prominent within regions of the CNS that 1) are subject to structural plasticity and neurogenesis, 2) receive sensory and humoral input from the external environment, and 3) lack a blood-brain barrier. Ultrastructural analysis of EYFP(+) bDC in adult neurogenic niches showed their proximity to developing neurons and a morphology characteristic of immune/microglia cells. Kainic acid-induced seizures revealed that EYFP(+) bDC responded to damage of the hippocampus and displayed morphologies similar to those described for seizure-activated EGFP(+) microglia in the hippocampus of cfms (CSF-1R) EGFP mice. Collectively, these findings suggest a new member of the dendritic cell family residing among the heterogeneous microglia population.

Funding information:
  • NIGMS NIH HHS - GM 074746(United States)

Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis.

  • Noctor SC
  • J. Comp. Neurol.
  • 2008 May 1

Literature context:


Abstract:

Neocortical precursor cells undergo symmetric and asymmetric divisions while producing large numbers of diverse cortical cell types. In Drosophila, cleavage plane orientation dictates the inheritance of fate-determinants and the symmetry of newborn daughter cells during neuroblast cell divisions. One model for predicting daughter cell fate in the mammalian neocortex is also based on cleavage plane orientation. Precursor cell divisions with a cleavage plane orientation that is perpendicular with respect to the ventricular surface (vertical) are predicted to be symmetric, while divisions with a cleavage plane orientation that is parallel to the surface (horizontal) are predicted to be asymmetric neurogenic divisions. However, analysis of cleavage plane orientation at the ventricle suggests that the number of predicted neurogenic divisions might be insufficient to produce large amounts of cortical neurons. To understand factors that correlate with the symmetry of cell divisions, we examined rat neocortical precursor cells in situ through real-time imaging, marker analysis, and electrophysiological recordings. We find that cleavage plane orientation is more closely associated with precursor cell type than with daughter cell fate, as commonly thought. Radial glia cells in the VZ primarily divide with a vertical orientation throughout cortical development and undergo symmetric or asymmetric self-renewing divisions depending on the stage of development. In contrast, most intermediate progenitor cells divide in the subventricular zone with a horizontal orientation and produce symmetric daughter cells. We propose a model for predicting daughter cell fate that considers precursor cell type, stage of development, and the planar segregation of fate determinants.

Funding information:
  • NIMH NIH HHS - R01 MH091037(United States)

Doublecortin (DCX) and doublecortin-like (DCL) are differentially expressed in the early but not late stages of murine neocortical development.

  • Boekhoorn K
  • J. Comp. Neurol.
  • 2008 Apr 1

Literature context:


Abstract:

During corticogenesis, radial glia-derived neural progenitors divide and migrate along radial fibers to their designated positions within the cortical plate. The microtubule-associated proteins doublecortin (DCX) and doublecortin-like (DCL) are critically involved in neuronal migration and division, and may function in a partially redundant pathway. Since little is known about the important early stages of corticogenesis, when neurogenesis is extensive, we addressed a possible differential role by examining spatiotemporal expression patterns of DCX, DCL, and the radial glia marker vimentin during murine development. We found expression patterns of DCL and DCX to differ remarkably prior to embryonic day (E)13. DCL was already expressed at E9 and largely overlapped with vimentin, whereas DCX expression started modestly from E10/E11 onward. DCL was mainly found in the ventricular zone, often in mitotic cells and in pial-oriented radial fibers. In contrast, DCX was expressed in tangential fibers in the outer cortical regions. After E13, DCX and DCL expression largely overlapped but DCL expression had disappeared from the ventricular zone. Also, DCL levels were attenuated, whereas DCX remained high beyond E17. In conclusion, DCX and DCL are differentially expressed, particularly during early corticogenesis, consistent with their different functional roles. Given its involvement in mitosis, DCL appears to have a unique role in the early neuroepithelium that is different from later developmental stages when DCX is coexpressed.

Funding information:
  • NIDDK NIH HHS - DK 064973(United States)
  • NIMH NIH HHS - R21-MH099812(United States)

Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle.

  • Olariu A
  • J. Comp. Neurol.
  • 2007 Apr 1

Literature context:


Abstract:

It is well established that neurogenesis in the dentate gyrus slows with aging, but it is unclear whether this change is due to slowing of the cell cycle, as occurs during development, or to loss of precursor cells. In the current study, we find that the cell cycle time of granule cell precursors in middle-aged male rats is not significantly different from that in young adults. The size of the precursor pool, however, was 3-4 times smaller in the middle-aged rats, as determined using both cumulative bromodeoxyuridine (BrdU) labeling as well as labeling with the endogenous marker of cell proliferation, proliferating cell nuclear antigen (PCNA). Loss of precursor cells was much greater in the granule cell layer than in the hilus, suggesting that dividing cells in the hilus belong to a distinct population, most likely glial progenitors, that are less affected by aging than neuronal precursors. BrdU-labeled precursor cells and young neurons, labeled with doublecortin, appeared to be lost equally from rostral and caudal, as well as suprapyramidal and infrapyramidal, subregions of the granule cell layer. However, doublecortin staining did show large parts of the caudal granule cell layer with few if any young neurons at both ages. Taken together, these findings indicate that precursor cells are not distributed evenly within the dentate gyrus in adulthood but that precursors are lost from throughout the dentate gyrus in old age with no concomitant change in the cell cycle time.

Funding information:
  • NICHD NIH HHS - U54 HD083091(United States)

Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat.

  • Pecchi E
  • J. Comp. Neurol.
  • 2007 Mar 20

Literature context:


Abstract:

The dorsal vagal complex (DVC), an integrative center of autonomic functions located dorsally in the caudal brainstem, comprises the nucleus tractus solitarius (NTS), the area postrema (AP), and the dorsal motor nucleus of the vagus nerve (DMNX). Recently, this area of the brainstem was shown to retain, during adulthood, the expression of developmental markers, which is consistent with several forms of morphological and functional plasticity. These data led us to attempt to determine the structural organization and phenotypical characteristics of the astroglial compartment in the adult DVC. We report a strikingly high density of glial fibrillary acidic protein (GFAP) immunoreactive cells in the NTS and the DMNX compared to other brainstem structures. Furthermore, we observed a subpopulation of atypical GFAP+ cells in the NTS. These cells expressed vimentin and nestin and displayed unbranched processes that radiate rostrocaudally from cuboid cell bodies located in the 4th ventricle wall. Interestingly, these radiating cells were found in close association with neural progenitors whose proliferation was stimulated by intracerebroventricular injection of epidermal growth factor/basic fibroblast growth factor or lesion of the vagus nerve. Newly born neurons in the NTS identified by doublecortin (DCX) immunolabeling were also preferentially found in the vicinity of the radiating cells. Altogether, these results indicate that the adult NTS retains, during adulthood, astroglial cells that display morphological and phenotypical features seen during development. The overlap in the distribution of proliferative neural progenitors, newborn neurons, and radiating GFAP-positive cells suggest a possible role of the glial compartment of the NTS in functional plasticity in this structure.

Funding information:
  • NINDS NIH HHS - R03 NS071442(United States)

Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta.

  • Suzuki S
  • J. Comp. Neurol.
  • 2007 Feb 20

Literature context:


Abstract:

Neurogenesis persists throughout life under normal and degenerative conditions. The adult subventricular zone (SVZ) generates neural stem cells capable of differentiating to neuroblasts and migrating to the site of injury in response to brain insults. In the present study, we investigated whether estradiol increases neurogenesis in the SVZ in an animal model of stroke to potentially promote the ability of the brain to undergo repair. Ovariectomized C57BL/6J mice were implanted with capsules containing either vehicle or 17beta-estradiol, and 1 week later they underwent experimental ischemia. We utilized double-label immunocytochemistry to identify the phenotype of newborn cells (5-bromo-2'-deoxyuridine-labeled) with various cellular markers; doublecortin and PSA-NCAM as the early neuronal marker, NeuN to identify mature neurons, and glial fibrillary acidic protein to identify astrocytes. We report that low physiological levels of estradiol treatment, which exert no effect in the uninjured state, significantly increase the number of newborn neurons in the SVZ following stroke injury. This effect of estradiol is limited to the dorsal region of the SVZ and is absent from the ventral SVZ. The proliferative actions of estradiol are confined to neuronal precursors and do not influence gliosis. Furthermore, we show that both estrogen receptors alpha and beta play pivotal functional roles, insofar as knocking out either of these receptors blocks the ability of estradiol to increase neurogenesis. These findings clearly demonstrate that estradiol stimulates neurogenesis in the adult SVZ, thus potentially facilitating the brain to remodel and repair after injury.

Funding information:
  • NIA NIH HHS - R01 AG022381(United States)

Cellular composition and cytoarchitecture of the rabbit subventricular zone and its extensions in the forebrain.

  • Ponti G
  • J. Comp. Neurol.
  • 2006 Oct 1

Literature context:


Abstract:

Persistent neurogenic sites, harboring neurogenic progenitor cells, which give rise to neuronal precursors throughout life, occur in different mammals, including humans. The telencephalic subventricular zone (SVZ) is the most active adult neurogenic site. Despite remarkable knowledge of its anatomical and cellular composition in rodents, detailed arrangement of SVZ in other mammals is poorly understood, yet comparative studies suggest that differences might exist. Here, by analyzing the cellular composition/arrangement in the SVZ of postnatal, young, and adult rabbits, we found a remarkably heterogeneous distribution of its chain and glia compartments. Starting from postnatal stages, this heterogeneity leads to a distinction between a ventricular SVZ and an abventricular SVZ, whereby the former contains small chains and isolated neuroblasts and the latter is characterized by large chains and a loose astrocytic meshwork. In addition to analysis of the SVZ proper, attention has been focused on its extensions, called parenchymal chains. Anterior parenchymal chains are compact chains surrounded by axon bundles and frequently establish direct contact with blood vessels. Posterior parenchymal chains are less compact, being squeezed between gray and white matter. In the shift from neonatal to adult rabbit SVZ, chains occur very early, both in the SVZ and within the brain parenchyma. Comparison of these results with the pattern in rodents reveals different types of chains, displaying a variety of relationships with glia or other substrates in vivo, an issue that might be important in understanding differences in the adaptation of persistent germinative layers to different mammalian brain anatomies.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse.

  • Baker KL
  • J. Comp. Neurol.
  • 2006 Oct 20

Literature context:


Abstract:

The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest neurogenic zone in the adult brain, the subventricular zone (SVZ), lies adjacent to the lateral wall of the lateral ventricle and is responsible for replacement of interneuron populations within the olfactory bulb. Initial gross observation of the anterior forebrain in MRL mice revealed enlarged lateral ventricles; however, little neurodegeneration was detected within the SVZ or surrounding tissues. Instead, increased proliferation within the SVZ was observed, based on incorporation of the thymidine analogue bromodeoxyuridine. Closer examination using electron microscopy revealed that a significant number of SVZ astrocytes interpolated within the ependyma and established contact with the ventricle. In addition, subependymal, protuberant nests of cells, consisting primarily of neuroblasts, were found along the anterior SVZ of MRL mice. Whole mounts of the lateral wall of the lateral ventricle stained for the neuroblast marker doublecortin revealed normal formation of chains of migratory neuroblasts along the entire wall and introduction of enhanced green fluorescent protein-tagged retrovirus into the lateral ventricles confirmed that newly generated neuroblasts were able to track into the olfactory bulb.

Funding information:
  • NCI NIH HHS - RL1 CA133834(United States)

Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex.

  • Navarro-Quiroga I
  • J. Comp. Neurol.
  • 2006 Aug 10

Literature context:


Abstract:

The rodent dentate gyrus (DG) is formed in the embryo when progenitor cells migrate from the dentate neuroepithelium to establish a germinal zone in the hilus and a secondary germinal matrix, near the fimbria, called the hippocampal subventricular zone (HSVZ). The developmental plasticity of progenitors within the HSVZ is not well understood. To delineate the migratory routes and fates of progenitors within this zone, we injected a replication-incompetent retrovirus, encoding the enhanced green fluorescent protein (EGFP), into the HSVZ of postnatal day 5 (P5) mice. Between P6 and P45, retrovirally-infected EGFP(+) of progenitors migrated into the DG, established a reservoir of progenitor cells, and differentiated into neurons and glia. By P6-7, EGFP(+) cells were observed migrating into the DG. Subsets of these EGFP(+) cells expressed Sox2 and Musashi-1, characteristic of neural stem cells. By P10, EGFP(+) cells assumed positions within the DG and expressed immature neuronal markers. By P20, many EGFP(+) cells expressed the homeobox prospero-like protein Prox1, an early and specific granule cell marker in the CNS, and extended mossy fiber projections into the CA3. A subset of non-neuronal EGFP(+) cells in the dentate gyrus acquired the morphology of astrocytes. Another subset included EGFP(+)/RIP(+) oligodendrocytes that migrated into the fimbria, corpus callosum, and cerebral cortex. Retroviral injections on P15 labeled very few cells, suggesting depletion of HSVZ progenitors by this age. These findings suggest that the early postnatal HSVZ progenitors are multipotent and migratory, and contribute to both dentate gyrus neurogenesis as well as forebrain gliogenesis.

Funding information:
  • NIDDK NIH HHS - R01 DK065806(United States)