X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Mouse/Rat Foxp3 eFluor 450 100 ug antibody

RRID:AB_1518812

Antibody ID

AB_1518812

Target Antigen

Mouse/Rat Foxp3 eFluor 450 100 ug mouse, rat, bovine, porcine, canine, feline, bovine, canine, cat, mouse, pig, rat

Proper Citation

(Thermo Fisher Scientific Cat# 48-5773-82, RRID:AB_1518812)

Clonality

monoclonal antibody

Comments

Applications: Flow (0.06 µg/test)

Clone ID

Clone FJK-16s

Host Organism

rat

Vendor

Thermo Fisher Scientific Go To Vendor

Cat Num

48-5773-82

T Cell Receptor-Regulated TGF-β Type I Receptor Expression Determines T Cell Quiescence and Activation.

  • Tu E
  • Immunity
  • 2018 Apr 17

Literature context:


Abstract:

It is unclear how quiescence is enforced in naive T cells, but activation by foreign antigens and self-antigens is allowed, despite the presence of inhibitory signals. We showed that active transforming growth factor β (TGF-β) signaling was present in naive T cells, and T cell receptor (TCR) engagement reduced TGF-β signaling during T cell activation by downregulating TGF-β type 1 receptor (TβRI) through activation of caspase recruitment domain-containing protein 11 (CARD11) and nuclear factor κB (NF-κB). TGF-β prevented TCR-mediated TβRI downregulation, but this was abrogated by interleukin-6 (IL-6). Mitigation of TCR-mediated TβRI downregulation through overexpression of TβRI in naive and activated T cells rendered T cells less responsive and suppressed autoimmunity. Naive T cells in autoimmune patients exhibited reduced TβRI expression and increased TCR-driven proliferation compared to healthy subjects. Thus, TCR-mediated regulation of TβRI-TGF-β signaling acts as a crucial criterion to determine T cell quiescence and activation.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Dichotomous Expression of TNF Superfamily Ligands on Antigen-Presenting Cells Controls Post-priming Anti-viral CD4+ T Cell Immunity.

  • Chang YH
  • Immunity
  • 2017 Nov 21

Literature context:


Abstract:

T cell antigen-presenting cell (APC) interactions early during chronic viral infection are crucial for determining viral set point and disease outcome, but how and when different APC subtypes contribute to these outcomes is unclear. The TNF receptor superfamily (TNFRSF) member GITR is important for CD4+ T cell accumulation and control of chronic lymphocytic choriomeningitis virus (LCMV). We found that type I interferon (IFN-I) induced TNFSF ligands GITRL, 4-1BBL, OX40L, and CD70 predominantly on monocyte-derived APCs and CD80 and CD86 predominantly on classical dendritic cells (cDCs). Mice with hypofunctional GITRL in Lyz2+ cells had decreased LCMV-specific CD4+ T cell accumulation and increased viral load. GITR signals in CD4+ T cells occurred after priming to upregulate OX40, CD25, and chemokine receptor CX3CR1. Thus IFN-I (signal 3) induced a post-priming checkpoint (signal 4) for CD4+ T cell accumulation, revealing a division of labor between cDCs and monocyte-derived APCs in regulating T cell expansion.

Funding information:
  • NIA NIH HHS - P01 AG017617(United States)

CRIg, a tissue-resident macrophage specific immune checkpoint molecule, promotes immunological tolerance in NOD mice, via a dual role in effector and regulatory T cells.

  • Yuan X
  • Elife
  • 2017 Nov 24

Literature context:


Abstract:

How tissue-resident macrophages (TRM) impact adaptive immune responses remains poorly understood. We report novel mechanisms by which TRMs regulate T cell activities at tissue sites. These mechanisms are mediated by the complement receptor of immunoglobulin family (CRIg). Using animal models for autoimmune type 1 diabetes (T1D), we found that CRIg+ TRMs formed a protective barrier surrounding pancreatic islets. Genetic ablation of CRIg exacerbated islet inflammation and local T cell activation. CRIg exhibited a dual function of attenuating early T cell activation and promoting the differentiation of Foxp3+ regulatory (Treg) cells. More importantly, CRIg stabilized the expression of Foxp3 in Treg cells, by enhancing their responsiveness to interleukin-2. The expression of CRIg in TRMs was postnatally regulated by gut microbial signals and metabolites. Thus, environmental cues instruct TRMs to express CRIg, which functions as an immune checkpoint molecule to regulate adaptive immunity and promote immune tolerance.

Funding information:
  • NIGMS NIH HHS - T32 GM07270(United States)

Commensal Microbes and Hair Follicle Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin.

  • Scharschmidt TC
  • Cell Host Microbe
  • 2017 Apr 12

Literature context:


Abstract:

Regulatory T cells (Tregs) are required to establish immune tolerance to commensal microbes. Tregs accumulate abruptly in the skin during a defined window of postnatal tissue development. However, the mechanisms mediating Treg migration to neonatal skin are unknown. Here we show that hair follicle (HF) development facilitates the accumulation of Tregs in neonatal skin and that upon skin entry these cells localize to HFs, a primary reservoir for skin commensals. Further, germ-free neonates had reduced skin Tregs indicating that commensal microbes augment Treg accumulation. We identified Ccl20 as a HF-derived, microbiota-dependent chemokine and found its receptor, Ccr6, to be preferentially expressed by Tregs in neonatal skin. The Ccl20-Ccr6 pathway mediated Treg migration in vitro and in vivo. Thus, HF morphogenesis, commensal microbe colonization, and local chemokine production work in concert to recruit Tregs into neonatal skin, thereby establishing this tissue Treg niche early in life.

Funding information:
  • NCI NIH HHS - P30 CA082103()
  • NIAMS NIH HHS - DP2 AR068130()
  • NIAMS NIH HHS - K08 AR062064()
  • NIAMS NIH HHS - K08 AR068409()
  • NIAMS NIH HHS - R21 AR066821()
  • NIDDK NIH HHS - P30 DK063720()