X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mouse Anti-Human GAPDH Monoclonal Antibody, Unconjugated, Clone 6C5

RRID:AB_1285808

Antibody ID

AB_1285808

Target Antigen

Mouse Human GAPDH Clone 6C5 dog, cat, fish, rabbit, mouse, pig, rat, mouse, canine, feline, zebrafish/fish, porcine, rabbit, rat

Proper Citation

(Fitzgerald Industries International Cat# 10R-G109a, RRID:AB_1285808)

Clonality

monoclonal antibody

Comments

manufacturer recommendations: IgG1 ELISA ; Immunocytochemistry ; Western Blot; Immunocytochemistry; Western Blot; ELISA

Host Organism

mouse

Vendor

Fitzgerald Industries International

Cat Num

10R-G109a

Publications that use this research resource

Calorie Restriction-Induced Increase in Skeletal Muscle Insulin Sensitivity Is Not Prevented by Overexpression of the p55α Subunit of Phosphoinositide 3-Kinase.

  • Martins VF
  • Front Physiol
  • 2018 Jul 13

Literature context:


Abstract:

Introduction: The Phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in skeletal muscle insulin-stimulated glucose uptake. While whole-body and tissue specific knockout (KO) of individual or combinations of the regulatory subunits of PI3K (p85α, p55α, and p50α or p85β); increase insulin sensitivity, no study has examined whether increasing the expression of the individual regulatory subunits would inhibit insulin action in vivo. Therefore, the objective of this study was to determine whether skeletal muscle-specific overexpression of the p55α regulatory subunit of PI3K impairs skeletal muscle insulin sensitivity, or prevents its enhancement by caloric restriction. Methods: We developed a novel "floxed" mouse that, through the Cre-LoxP approach, allows for tamoxifen (TMX)-inducible and skeletal muscle-specific overexpression of the p55α subunit of PI3K (referred to as, 'p55α-mOX'). Beginning at 10 weeks of age, p55α-mOX mice and their floxed littermates (referred to as wildtype [WT]) either continued with free access to food (ad libitum; AL), or were switched to a calorie restricted diet (CR; 60% of AL intake) for 20 days. We measured body composition, whole-body energy expenditure, oral glucose tolerance and ex vivo skeletal muscle insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake method. Results: p55α mRNA and protein expression was increased ∼2 fold in muscle from p55α-mOX versus WT mice. There were no differences in energy expenditure, total activity, or food intake of AL-fed mice between genotypes. Body weight, fat and lean mass, tissue weights, and fasting glucose and insulin were comparable between p55α-mOX and WT mice on AL, and were decreased equally by CR. Interestingly, overexpression of p55α did not impair oral glucose tolerance or skeletal muscle insulin signaling or sensitivity, nor did it impact the ability of CR to enhance these parameters. Conclusion: Skeletal muscle-specific overexpression of p55α does not impact skeletal muscle insulin action, suggesting that p85α and/or p50α may be more important regulators of skeletal muscle insulin signaling and sensitivity.

Funding information:
  • Medical Research Council - MC_U105359875(United Kingdom)

The HDAC6 Inhibitor Tubacin Induces Release of CD133+ Extracellular Vesicles From Cancer Cells.

  • Chao OS
  • J. Cell. Biochem.
  • 2018 Jan 2

Literature context:


Abstract:

Tumor-derived extracellular vesicles (EVs) are emerging as an important mode of intercellular communication, capable of transferring biologically active molecules that facilitate the malignant growth and metastatic process. CD133 (Prominin-1), a stem cell marker implicated in tumor initiation, differentiation and resistance to anti-cancer therapy, is reportedly associated with EVs in various types of cancer. However, little is known about the factors that regulate the release of these CD133+ EVs. Here, we report that the HDAC6 inhibitor tubacin promoted the extracellular release of CD133+ EVs from human FEMX-I metastatic melanoma and Caco-2 colorectal carcinoma cells, with a concomitant downregulation of intracellular CD133. This effect was specific for tubacin, as inhibition of HDAC6 deacetylase activity by another selective HDAC6 inhibitor, ACY-1215 or the pan-HDAC inhibitor trichostatin A (TSA), and knockdown of HDAC6 did not enhance the release of CD133+ EVs. The tubacin-induced EV release was associated with changes in cellular lipid composition, loss of clonogenic capacity and decrease in the ability to form multicellular aggregates. These findings indicate a novel potential anti-tumor mechanism for tubacin in CD133-expressing malignancies. J. Cell. Biochem. 118: 4414-4424, 2017. © 2017 Wiley Periodicals, Inc.

A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.

  • Mello SS
  • Cancer Cell
  • 2017 Oct 9

Literature context:


Abstract:

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.

Funding information:
  • NCI NIH HHS - R01 CA140875()

Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

  • Clasadonte J
  • Neuron
  • 2017 Sep 13

Literature context:


Abstract:

Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions.