X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Clathrin Light Chain antibody

RRID:AB_11211734

Antibody ID

AB_11211734

Target Antigen

Clathrin Light Chain h, r

Proper Citation

(Millipore Cat# AB9884, RRID:AB_11211734)

Clonality

polyclonal antibody

Comments

seller recommendations: Western Blot; WB

Host Organism

rabbit

Vendor

Millipore

Cat Num

AB9884

Publications that use this research resource

Clathrin Assembly Defines the Onset and Geometry of Cortical Patterning.

  • Yang Y
  • Dev. Cell
  • 2017 Nov 20

Literature context:


Abstract:

Assembly of the endocytic machinery is a constitutively active process that is important for the organization of the plasma membrane, signal transduction, and membrane trafficking. Existing research has focused on the stochastic nature of endocytosis. Here, we report the emergence of the collective dynamics of endocytic proteins as periodic traveling waves on the cell surface. Coordinated clathrin assembly provides the earliest spatial cue for cortical waves and sets the direction of propagation. Surprisingly, the onset of clathrin waves, but not individual endocytic events, requires feedback from downstream factors, including FBP17, Cdc42, and N-WASP. In addition to the localized endocytic assembly at the plasma membrane, intracellular clathrin and phosphatidylinositol-3,4-bisphosphate predict the excitability of the plasma membrane and modulate the geometry of traveling waves. Collectively, our data demonstrate the multiplicity of clathrin functions in cortical pattern formation and provide important insights regarding the nucleation and propagation of single-cell patterns.

Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons.

  • Cao M
  • Neuron
  • 2017 Feb 22

Literature context:


Abstract:

Synaptojanin 1 (SJ1) is a major presynaptic phosphatase that couples synaptic vesicle endocytosis to the dephosphorylation of PI(4,5)P2, a reaction needed for the shedding of endocytic factors from their membranes. While the role of SJ1's 5-phosphatase module in this process is well recognized, the contribution of its Sac phosphatase domain, whose preferred substrate is PI4P, remains unclear. Recently a homozygous mutation in its Sac domain was identified in early-onset parkinsonism patients. We show that mice carrying this mutation developed neurological manifestations similar to those of human patients. Synapses of these mice displayed endocytic defects and a striking accumulation of clathrin-coated intermediates, strongly implicating Sac domain's activity in endocytic protein dynamics. Mutant brains had elevated auxilin (PARK19) and parkin (PARK2) levels. Moreover, dystrophic axonal terminal changes were selectively observed in dopaminergic axons in the dorsal striatum. These results strengthen evidence for a link between synaptic endocytic dysfunction and Parkinson's disease.

Funding information:
  • NCATS NIH HHS - UL1 TR001863()
  • NIDA NIH HHS - P30 DA018343()
  • NIGMS NIH HHS - P41 GM103412()
  • NINDS NIH HHS - R01 NS036251()
  • NINDS NIH HHS - R01 NS036942()
  • NINDS NIH HHS - R37 NS036251()
  • NINDS NIH HHS - R37 NS036942()