Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Kv1.5 potassium channel antibody


Antibody ID


Target Antigen

Kv1.5 potassium channel human, mouse, rat

Proper Citation

(UC Davis/NIH NeuroMab Facility Cat# 73-011, RRID:AB_10675288)


monoclonal antibody


Originating manufacturer of this product. Applications: ICC, IHC, IP, WB. Validation status: IF or IB (Pass), IB in brain (Fail), IHC in brain (Fail), KO (ND).

Host Organism



UC Davis/NIH NeuroMab Facility Go To Vendor

Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development.

  • Dufour MA
  • J. Neurosci. Res.
  • 2014 Aug 16

Literature context:


Dopaminergic neurons of the substantia nigra pars compacta (SNc) are involved in the control of movement, sleep, reward, learning, and nervous system disorders and disease. To date, a thorough characterization of the ion channel phenotype of this important neuronal population is lacking. Using immunohistochemistry, we analyzed the somatodendritic expression of voltage-gated ion channel subunits that are involved in pacemaking activity in SNc dopaminergic neurons in 6-, 21-, and 40-day-old rats. Our results demonstrate that the same complement of somatodendritic ion channels is present in SNc dopaminergic neurons from P6 to P40. The major developmental changes were an increase in the dendritic range of the immunolabeling for the HCN, T-type calcium, Kv4.3, delayed rectifier, and SK channels. Our study sheds light on the ion channel subunits that contribute to the somatodendritic delayed rectifier (Kv1.3, Kv2.1, Kv3.2, Kv3.3), A-type (Kv4.3) and calcium-activated SK (SK1, SK2, SK3) potassium currents, IH (mainly HCN2, HCN4), and the L- (Cav1.2, Cav1.3) and T-type (mainly Cav3.1, Cav3.3) calcium currents in SNc dopaminergic neurons. Finally, no robust differences in voltage-gated ion channel immunolabeling were observed across the population of SNc dopaminergic neurons for each age examined, suggesting that differing levels of individual ion channels are unlikely to distinguish between specific subpopulations of SNc dopaminergic neurons. This is significant in light of previous studies suggesting that age- or region-associated variations in the expression profile of voltage-gated ion channels in SNc dopaminergic neurons may underlie their vulnerability to dysfunction and disease.

Funding information:
  • NIGMS NIH HHS - GM37432(United States)
  • NIMH NIH HHS - R01MH61469(United States)

Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability.

  • Speca DJ
  • Genes Brain Behav.
  • 2014 Apr 9

Literature context:


The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1(-/-) ) mice lacking this channel. Kv2.1(-/-) mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1(-/-) mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1(-/-) mice appear unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1(-/-) animals. Field recordings from hippocampal slices of Kv2.1(-/-) mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1(-/-) mice, long-term potentiation at the Schaffer collateral - CA1 synapse is decreased. Kv2.1(-/-) mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1(-/-) mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1(-/-) mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function.

Funding information:
  • NCI NIH HHS - P30 CA177558(United States)

Novel objective classification of reactive microglia following hypoglossal axotomy using hierarchical cluster analysis.

  • Yamada J
  • J. Comp. Neurol.
  • 2013 Apr 1

Literature context:


A total of 136 microglia were intracellularly labeled and their morphological features were evaluated by 3D morphometric measurement. According to hierarchical cluster analysis, microglia were objectively categorized into four groups termed types I-IV. The validity of this classification was confirmed by principal component analysis and linear discriminant analysis. Type I microglia were found in sham-operated mice and in mice sacrificed 28 days (D28) after axotomy. The appearance of type I cells was similar to so-called ramified microglia in a resting state. Type II microglia were mainly seen in D14 mice, which exhibited small cell bodies with thin and short processes. Interestingly, none of the already-known morphological types of microglia seemed to be comparable to type II cells. We thus named type II microglia "small ramified" cells. Types III and IV microglia were mainly seen in D3 and D7 mice and their appearances were similar to hypertrophied and bushy cells, respectively. Proliferating cell nuclear antigen (PCNA), a mitosis marker, was almost exclusively expressed in D3 mice. On the other hand, voltage-dependent potassium channels (Kv1.3/1.5), neurotoxicity-related molecules, were most highly expressed in D14 mice. Increased expression of Kv1.3/1.5 in D14 mice was suppressed by minocycline treatment. These findings indicate that type II and III microglia may be involved in neurotoxicity and mitosis, respectively. Type IV microglial cells are assumed to be in the process of losing mitotic activity and gaining neurotoxicity. Our data also suggest that type II microglia can be a potential therapeutic target against neurodegenerative diseases.

Funding information:
  • NHLBI NIH HHS - U01-HL-061744(United States)
  • Wellcome Trust - (United Kingdom)

A defined heteromeric KV1 channel stabilizes the intrinsic pacemaking and regulates the output of deep cerebellar nuclear neurons to thalamic targets.

  • Ovsepian SV
  • J. Physiol. (Lond.)
  • 2013 Apr 1

Literature context:


The output of the cerebellum to the motor axis of the central nervous system is orchestrated mainly by synaptic inputs and intrinsic pacemaker activity of deep cerebellar nuclear (DCN) projection neurons. Herein, we demonstrate that the soma of these cells is enriched with K(V)1 channels produced by mandatory multi-merization of K(V)1.1, 1.2 α and KV β2 subunits. Being constitutively active, the K(+) current (IK(V)1) mediated by these channels stabilizes the rate and regulates the temporal precision of self-sustained firing of these neurons. Placed strategically, IK(V)1 provides a powerful counter-balance to prolonged depolarizing inputs, attenuates the rebound excitation, and dampens the membrane potential bi-stability. Somatic location with low activation threshold render IK(V)1 instrumental in voltage-dependent de-coupling of the axon initial segment from the cell body of projection neurons, impeding invasion of back-propagating action potentials into the somato-dendritic compartment. The latter is also demonstrated to secure the dominance of clock-like somatic pacemaking in driving the regenerative firing activity of these neurons, to encode time variant inputs with high fidelity. Through the use of multi-compartmental modelling and retro-axonal labelling, the physiological significance of the described functions for processing and communication of information from the lateral DCN to thalamic relay nuclei is established.

Funding information:
  • NHLBI NIH HHS - HL66621(United States)

Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells.

  • Cidad P
  • Arterioscler. Thromb. Vasc. Biol.
  • 2010 Jun 20

Literature context:


OBJECTIVE: Vascular smooth muscle cells (VSMCs) contribute significantly to occlusive vascular diseases by virtue of their ability to switch to a noncontractile, migratory, and proliferating phenotype. Although the participation of ion channels in this phenotypic modulation (PM) has been described previously, changes in their expression are poorly defined because of their large molecular diversity. We obtained a global portrait of ion channel expression in contractile versus proliferating mouse femoral artery VSMCs, and explored the functional contribution to the PM of the most relevant changes that we observed. METHODS AND RESULTS: High-throughput real-time polymerase chain reaction of 87 ion channel genes was performed in 2 experimental paradigms: an in vivo model of endoluminal lesion and an in vitro model of cultured VSMCs obtained from explants. mRNA expression changes showed a good correlation between the 2 proliferative models, with only 2 genes, Kv1.3 and Kvbeta2, increasing their expression on proliferation. The functional characterization demonstrates that Kv1.3 currents increased in proliferating VSMC and that their selective blockade inhibits migration and proliferation. CONCLUSIONS: These findings establish the involvement of Kv1.3 channels in the PM of VSMCs, providing a new therapeutical target for the treatment of intimal hyperplasia.

Loss of cerebrovascular Shaker-type K(+) channels: a shared vasodilator defect of genetic and renal hypertensive rats.

  • Tobin AA
  • Am. J. Physiol. Heart Circ. Physiol.
  • 2009 Jul 30

Literature context:


The cerebral arteries of hypertensive rats are depolarized and highly myogenic, suggesting a loss of K(+) channels in the vascular smooth muscle cells (VSMCs). The present study evaluated whether the dilator function of the prominent Shaker-type voltage-gated K(+) (K(V)1) channels is attenuated in middle cerebral arteries from two rat models of hypertension. Block of K(V)1 channels by correolide (1 micromol/l) or psora-4 (100 nmol/l) reduced the resting diameter of pressurized (80 mmHg) cerebral arteries from normotensive rats by an average of 28 +/- 3% or 26 +/- 3%, respectively. In contrast, arteries from spontaneously hypertensive rats (SHR) and aortic-banded (Ao-B) rats with chronic hypertension showed enhanced Ca(2+)-dependent tone and failed to significantly constrict to correolide or psora-4, implying a loss of K(V)1 channel-mediated vasodilation. Patch-clamp studies in the VSMCs of SHR confirmed that the peak K(+) current density attributed to K(V)1 channels averaged only 5.47 +/- 1.03 pA/pF, compared with 9.58 +/- 0.82 pA/pF in VSMCs of control Wistar-Kyoto rats. Subsequently, Western blots revealed a 49 +/- 7% to 66 +/- 7% loss of the pore-forming alpha(1.2)- and alpha(1.5)-subunits that compose K(V)1 channels in cerebral arteries of SHR and Ao-B rats compared with control animals. In each case, the deficiency of K(V)1 channels was associated with reduced mRNA levels encoding either or both alpha-subunits. Collectively, these findings demonstrate that a deficit of alpha(1.2)- and alpha(1.5)-subunits results in a reduced contribution of K(V)1 channels to the resting diameters of cerebral arteries from two rat models of hypertension that originate from different etiologies.

Mitochondrial reactive oxygen species mediate hypoxic down-regulation of hERG channel protein.

  • Nanduri J
  • Biochem. Biophys. Res. Commun.
  • 2008 Aug 22

Literature context:


Previous studies suggest that reactive oxygen species (ROS) play an important role in physiological responses to hypoxia. In the present study, we examined the effects of hypoxia on human ether-a-go-go related gene (hERG) channel protein expression and assessed the role of ROS. Hypoxia, in a stimulus- and time-dependent manner, decreased hERG protein with marked reduction in hERG K+ conductance in human embryonic kidney cells stably expressing the hERG alpha subunit. Down-regulation of hERG by hypoxia was not due to increased proteasomal degradation or decreased transcription but due to decreased synthesis of the protein. Hypoxia increased ROS in a time-dependent manner. Antioxidants prevented hypoxia-evoked down-regulation of hERG protein and exogenous oxidants mimicked the effects of hypoxia. Hypoxia-evoked down-regulation of hERG protein and elevation in ROS were absent in p(O) cells, which are devoid of mitochondrial DNA. Inhibitors of NADPH oxidase failed to prevent the effects of hypoxia. These results demonstrate that hypoxia enhances the production of ROS in the mitochondria, resulting in down-regulation of hERG translation and decreased hERG-mediated K+ conductance.

Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice.

  • Pott C
  • Am. J. Physiol., Cell Physiol.
  • 2007 Feb 13

Literature context:


In cardiac-specific Na(+)-Ca(2+) exchanger (NCX) knockout (KO) mice, the ventricular action potential (AP) is shortened. The shortening of the AP, as well as a decrease of the L-type Ca(2+) current (I(Ca)), provides a critical mechanism for the maintenance of Ca(2+) homeostasis and contractility in the absence of NCX (Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na(+)-Ca(2+) exchanger knockout mice: reduced transsarcolemmal Ca(2+) flux. Circ Res 97: 1288-1295, 2005). To investigate the mechanism that underlies the accelerated AP repolarization, we recorded the transient outward current (I(to)) in patch-clamped myocytes isolated from wild-type (WT) and NCX KO mice. Peak I(to) was increased by 78% and decay kinetics were slowed in KO vs. WT. Consistent with increased I(to), ECGs from KO mice exhibited shortened QT intervals. Expression of the I(to)-generating K(+) channel subunit Kv4.2 and the K(+) channel interacting protein was increased in KO. We used a computer model of the murine AP (Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, and Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287: 1378-1403, 2004) to determine the relative contributions of increased I(to), reduced I(Ca), and reduced NCX current (I(NCX)) on the shape and kinetics of the AP. Reduction of I(Ca) and elimination of I(NCX) had relatively small effects on the duration of the AP in the computer model. In contrast, AP repolarization was substantially accelerated when I(to) was increased in the computer model. Thus, the increase in I(to), and not the reduction of I(Ca) or I(NCX), is likely to be the major mechanism of AP shortening in KO myocytes. The upregulation of I(to) may comprise an important regulatory mechanism to limit Ca(2+) influx via a reduction of AP duration, thus preventing Ca(2+) overload in situations of reduced myocyte Ca(2+) extrusion capacity.

Funding information:
  • NLM NIH HHS - T15 LM009451(United States)