X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ankyrin-G (staining) scaffold protein antibody

RRID:AB_10673030

Antibody ID

AB_10673030

Target Antigen

Ankyrin-G (staining) scaffold protein null

Proper Citation

(UC Davis/NIH NeuroMab Facility Cat# 75-146, RRID:AB_10673030)

Clonality

monoclonal antibody

Comments

Originating manufacturer of this product. Applications: ICC, IHC. Validation status: IF or IB (Pass), IB in brain (Fail), IHC in brain (Pass), KO (ND).

Clone ID

N106/36

Host Organism

mouse

Glial βII Spectrin Contributes to Paranode Formation and Maintenance.

  • Susuki K
  • J. Neurosci.
  • 2018 Jul 4

Literature context:


Abstract:

Action potential conduction along myelinated axons depends on high densities of voltage-gated Na+ channels at the nodes of Ranvier. Flanking each node, paranodal junctions (paranodes) are formed between axons and Schwann cells in the peripheral nervous system (PNS) or oligodendrocytes in the CNS. Paranodal junctions contribute to both node assembly and maintenance. Despite their importance, the molecular mechanisms responsible for paranode assembly and maintenance remain poorly understood. βII spectrin is expressed in diverse cells and is an essential part of the submembranous cytoskeleton. Here, we show that Schwann cell βII spectrin is highly enriched at paranodes. To elucidate the roles of glial βII spectrin, we generated mutant mice lacking βII spectrin in myelinating glial cells by crossing mice with a floxed allele of Sptbn1 with Cnp-Cre mice, and analyzed both male and female mice. Juvenile (4 weeks) and middle-aged (60 weeks) mutant mice showed reduced grip strength and sciatic nerve conduction slowing, whereas no phenotype was observed between 8 and 24 weeks of age. Consistent with these findings, immunofluorescence microscopy revealed disorganized paranodes in the PNS and CNS of both postnatal day 13 and middle-aged mutant mice, but not in young adult mutant mice. Electron microscopy confirmed partial loss of transverse bands at the paranodal axoglial junction in the middle-aged mutant mice in both the PNS and CNS. These findings demonstrate that a spectrin-based cytoskeleton in myelinating glia contributes to formation and maintenance of paranodal junctions.SIGNIFICANCE STATEMENT Myelinating glia form paranodal axoglial junctions that flank both sides of the nodes of Ranvier. These junctions contribute to node formation and maintenance and are essential for proper nervous system function. We found that a submembranous spectrin cytoskeleton is highly enriched at paranodes in Schwann cells. Ablation of βII spectrin in myelinating glial cells disrupted the paranodal cell adhesion complex in both peripheral and CNSs, resulting in muscle weakness and sciatic nerve conduction slowing in juvenile and middle-aged mice. Our data show that a spectrin-based submembranous cytoskeleton in myelinating glia plays important roles in paranode formation and maintenance.

Funding information:
  • NCI NIH HHS - R01-CA34085(United States)

Type 2 Diabetes Leads to Axon Initial Segment Shortening in db/db Mice.

  • Yermakov LM
  • Front Cell Neurosci
  • 2018 Jun 26

Literature context:


Abstract:

Cognitive and mood impairments are common central nervous system complications of type 2 diabetes, although the neuronal mechanism(s) remains elusive. Previous studies focused mainly on neuronal inputs such as altered synaptic plasticity. Axon initial segment (AIS) is a specialized functional domain within neurons that regulates neuronal outputs. Structural changes of AIS have been implicated as a key pathophysiological event in various psychiatric and neurological disorders. Here we evaluated the structural integrity of the AIS in brains of db/db mice, an established animal model of type 2 diabetes associated with cognitive and mood impairments. We assessed the AIS before (5 weeks of age) and after (10 weeks) the development of type 2 diabetes, and after daily exercise treatment of diabetic condition. We found that the development of type 2 diabetes is associated with significant AIS shortening in both medial prefrontal cortex and hippocampus, as evident by immunostaining of the AIS structural protein βIV spectrin. AIS shortening occurs in the absence of altered neuronal and AIS protein levels. We found no change in nodes of Ranvier, another neuronal functional domain sharing a molecular organization similar to the AIS. This is the first study to identify AIS alteration in type 2 diabetes condition. Since AIS shortening is known to lower neuronal excitability, our results may provide a new avenue for understanding and treating cognitive and mood impairments in type 2 diabetes.

Funding information:
  • NIDDK NIH HHS - K01 DK076743(United States)

Immunohistochemical Procedures for Characterizing the Retinal Expression Patterns of Cre Driver Mouse Lines.

  • Lu Q
  • Methods Mol. Biol.
  • 2018 Apr 26

Literature context:


Abstract:

The retina is a thin neural tissue sitting on the backside of the eye, composed of light-sensing cells, interneurons, and output ganglion neurons. The latter send electrical signals to higher visual centers in the brain. Transgenic mouse lines are becoming one of the most valuable mammalian animal models for the study of visual signal processing within the retina. Especially, the generation of Cre recombinase transgenic mouse lines provides a powerful tool for genetic manipulation. A key step for the utilization of transgenic lines is the characterization of their transgene expression patterns in the retina. Here we describe a standard protocol for characterizing the expression pattern of the Cre recombinase or fluorescent proteins in the retina with an immunohistochemical approach.

Methylglyoxal Disrupts Paranodal Axoglial Junctions via Calpain Activation.

  • Griggs RB
  • ASN Neuro
  • 2018 Apr 21

Literature context:


Abstract:

Nodes of Ranvier and associated paranodal and juxtaparanodal domains along myelinated axons are essential for normal function of the peripheral and central nervous systems. Disruption of these domains as well as increases in the reactive carbonyl species methylglyoxal are implicated as a pathophysiology common to a wide variety of neurological diseases. Here, using an ex vivo nerve exposure model, we show that increasing methylglyoxal produces paranodal disruption, evidenced by disorganized immunostaining of axoglial cell-adhesion proteins, in both sciatic and optic nerves from wild-type mice. Consistent with previous studies showing that increase of methylglyoxal can alter intracellular calcium homeostasis, we found upregulated activity of the calcium-activated protease calpain in sciatic nerves after methylglyoxal exposure. Methylglyoxal exposure altered clusters of proteins that are known as calpain substrates: ezrin in Schwann cell microvilli at the perinodal area and zonula occludens 1 in Schwann cell autotypic junctions at paranodes. Finally, treatment with the calpain inhibitor calpeptin ameliorated methylglyoxal-evoked ezrin loss and paranodal disruption in both sciatic and optic nerves. Our findings strongly suggest that elevated methylglyoxal levels and subsequent calpain activation contribute to the disruption of specialized axoglial domains along myelinated nerve fibers in neurological diseases.

Funding information:
  • NIAID NIH HHS - R21AI105607(United States)

Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron.

  • Galliano E
  • Elife
  • 2018 Apr 20

Literature context:


Abstract:

Most neurogenesis in the mammalian brain is completed embryonically, but in certain areas the production of neurons continues throughout postnatal life. The functional properties of mature postnatally generated neurons often match those of their embryonically produced counterparts. However, we show here that in the olfactory bulb (OB), embryonic and postnatal neurogenesis produce functionally distinct subpopulations of dopaminergic (DA) neurons. We define two subclasses of OB DA neuron by the presence or absence of a key subcellular specialisation: the axon initial segment (AIS). Large AIS-positive axon-bearing DA neurons are exclusively produced during early embryonic stages, leaving small anaxonic AIS-negative cells as the only DA subtype generated via adult neurogenesis. These populations are functionally distinct: large DA cells are more excitable, yet display weaker and - for certain long-latency or inhibitory events - more broadly tuned responses to odorant stimuli. Embryonic and postnatal neurogenesis can therefore generate distinct neuronal subclasses, placing important constraints on the functional roles of adult-born neurons in sensory processing.

Funding information:
  • European Research Council - 725729 FUNCOPLAN()
  • Medical Research Council - MR/M501645/1()
  • National Institutes of Health - DC013329()
  • NHGRI NIH HHS - R01 HG003562(United States)
  • Wellcome - 103044()
  • Wellcome - 88301()

Multiscale Analysis of Neurite Orientation and Spatial Organization in Neuronal Images.

  • Singh P
  • Neuroinformatics
  • 2018 Feb 12

Literature context:


Abstract:

The spatial organization of neurites, the thin processes (i.e., dendrites and axons) that stem from a neuron's soma, conveys structural information required for proper brain function. The alignment, direction and overall geometry of neurites in the brain are subject to continuous remodeling in response to healthy and noxious stimuli. In the developing brain, during neurogenesis or in neuroregeneration, these structural changes are indicators of the ability of neurons to establish axon-to-dendrite connections that can ultimately develop into functional synapses. Enabling a proper quantification of this structural remodeling would facilitate the identification of new phenotypic criteria to classify developmental stages and further our understanding of brain function. However, adequate algorithms to accurately and reliably quantify neurite orientation and alignment are still lacking. To fill this gap, we introduce a novel algorithm that relies on multiscale directional filters designed to measure local neurites orientation over multiple scales. This innovative approach allows us to discriminate the physical orientation of neurites from finer scale phenomena associated with local irregularities and noise. Building on this multiscale framework, we also introduce a notion of alignment score that we apply to quantify the degree of spatial organization of neurites in tissue and cultured neurons. Numerical codes were implemented in Python and released open source and freely available to the scientific community.

Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3.

  • Riquelme D
  • Front Cell Neurosci
  • 2018 Feb 15

Literature context:


Abstract:

TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood.

Funding information:
  • European Research Council - 281967(International)

Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment.

  • Berger SL
  • Neuron
  • 2018 Feb 7

Literature context:


Abstract:

The axon initial segment (AIS) is the site of action potential generation and a locus of activity-dependent homeostatic plasticity. A multimeric complex of sodium channels, linked via a cytoskeletal scaffold of ankyrin G and beta IV spectrin to submembranous actin rings, mediates these functions. The mechanisms that specify the AIS complex to the proximal axon and underlie its plasticity remain poorly understood. Here we show phosphorylated myosin light chain (pMLC), an activator of contractile myosin II, is highly enriched in the assembling and mature AIS, where it associates with actin rings. MLC phosphorylation and myosin II contractile activity are required for AIS assembly, and they regulate the distribution of AIS components along the axon. pMLC is rapidly lost during depolarization, destabilizing actin and thereby providing a mechanism for activity-dependent structural plasticity of the AIS. Together, these results identify pMLC/myosin II activity as a common link between AIS assembly and plasticity.

Funding information:
  • NIMH NIH HHS - R37 MH063105(United States)

mTOR-dependent alterations of Kv1.1 subunit expression in the neuronal subset-specific Pten knockout mouse model of cortical dysplasia with epilepsy.

  • Nguyen LH
  • Sci Rep
  • 2018 Feb 23

Literature context:


Abstract:

Cortical dysplasia (CD) is a common cause for intractable epilepsy. Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway has been implicated in CD; however, the mechanisms by which mTOR hyperactivation contribute to the epilepsy phenotype remain elusive. Here, we investigated whether constitutive mTOR hyperactivation in the hippocampus is associated with altered voltage-gated ion channel expression in the neuronal subset-specific Pten knockout (NS-Pten KO) mouse model of CD with epilepsy. We found that the protein levels of Kv1.1, but not Kv1.2, Kv1.4, or Kvβ2, potassium channel subunits were increased, along with altered Kv1.1 distribution, within the hippocampus of NS-Pten KO mice. The aberrant Kv1.1 protein levels were present in young adult (≥postnatal week 6) but not juvenile (≤postnatal week 4) NS-Pten KO mice. No changes in hippocampal Kv1.1 mRNA levels were found between NS-Pten KO and WT mice. Interestingly, mTOR inhibition with rapamycin treatment at early and late stages of the pathology normalized Kv1.1 protein levels in NS-Pten KO mice to WT levels. Together, these studies demonstrate altered Kv1.1 protein expression in association with mTOR hyperactivation in NS-Pten KO mice and suggest a role for mTOR signaling in the modulation of voltage-gated ion channel expression in this model.

Funding information:
  • NIAID NIH HHS - R01AI067979(United States)
  • NICHD NIH HHS - U54 HD083092()
  • NINDS NIH HHS - R01 NS081053()

Enhanced Transmission at the Calyx of Held Synapse in a Mouse Model for Angelman Syndrome.

  • Wang T
  • Front Cell Neurosci
  • 2018 Jan 23

Literature context:


Abstract:

The neurodevelopmental disorder Angelman syndrome (AS) is characterized by intellectual disability, motor dysfunction, distinct behavioral aspects, and epilepsy. AS is caused by a loss of the maternally expressed UBE3A gene, and many of the symptoms are recapitulated in a Ube3a mouse model of this syndrome. At the cellular level, changes in the axon initial segment (AIS) have been reported, and changes in vesicle cycling have indicated the presence of presynaptic deficits. Here we studied the role of UBE3A in the auditory system by recording synaptic transmission at the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) through in vivo whole cell and juxtacellular recordings. We show that MNTB principal neurons in Ube3a mice exhibit a hyperpolarized resting membrane potential, an increased action potential (AP) amplitude and a decreased AP half width. Moreover, both the pre- and postsynaptic AP in the calyx of Held synapse of Ube3a mice showed significantly faster recovery from spike depression. An increase in AIS length was observed in the principal MNTB neurons of Ube3a mice, providing a possible substrate for these gain-of-function changes. Apart from the effect on APs, we also observed that EPSPs showed decreased short-term synaptic depression (STD) during long sound stimulations in AS mice, and faster recovery from STD following these tones, which is suggestive of a presynaptic gain-of-function. Our findings thus provide in vivo evidence that UBE3A plays a critical role in controlling synaptic transmission and excitability at excitatory synapses.

Funding information:
  • NIGMS NIH HHS - GM069593(United States)

KCa2 channel localization and regulation in the axon initial segment.

  • Abiraman K
  • FASEB J.
  • 2017 Nov 29

Literature context:


Abstract:

Small conductance calcium-activated potassium (KCa2) channels are expressed throughout the CNS and play a critical role in synaptic and neuronal excitability. KCa2 channels have a somatodendritic distribution with their highest expression in distal dendrites. It is unclear whether KCa2 channels are specifically present on the axon initial segment (AIS), the site at which action potentials are initiated in neurons. Through a powerful combination of toxin pharmacology, single-molecule atomic force microscopy, and dual-color fluorescence microscopy, we report here that KCa2 channels-predominantly the KCa2.3 subtype-are indeed present on the AIS. We also report that cAMP-PKA controls the axonal KCa2 channel surface expression. Surprisingly, and in contrast to KCa2 channels that were observed in the soma and dendrites, the inhibition of cAMP-PKA increased the surface expression of KCa2 channels without promoting nanoclustering. Lastly, we found that axonal KCa2 channels seem to undergo endocytosis in a dynamin-independent manner, unlike KCa2 channels in the soma and dendrites. Together, these novel results demonstrate that the distribution and membrane recycling of KCa2 channels differs among various neuronal subcompartments.-Abiraman, K., Tzingounis, A. V., Lykotrafitis, G. KCa2 channel localization and regulation in the axon initial segment.

Funding information:
  • NCI NIH HHS - P50CA-58183(United States)
  • NIMH NIH HHS - R21 MH110887()

LGI1 tunes intrinsic excitability by regulating the density of axonal Kv1 channels.

  • Seagar M
  • Proc. Natl. Acad. Sci. U.S.A.
  • 2017 Jul 18

Literature context:


Abstract:

Autosomal dominant epilepsy with auditory features results from mutations in leucine-rich glioma-inactivated 1 (LGI1), a soluble glycoprotein secreted by neurons. Animal models of LGI1 depletion display spontaneous seizures, however, the function of LGI1 and the mechanisms by which deficiency leads to epilepsy are unknown. We investigated the effects of pure recombinant LGI1 and genetic depletion on intrinsic excitability, in the absence of synaptic input, in hippocampal CA3 neurons, a classical focus for epileptogenesis. Our data indicate that LGI1 is expressed at the axonal initial segment and regulates action potential firing by setting the density of the axonal Kv1.1 channels that underlie dendrotoxin-sensitive D-type potassium current. LGI1 deficiency incurs a >50% down-regulation of the expression of Kv1.1 and Kv1.2 via a posttranscriptional mechanism, resulting in a reduction in the capacity of axonal D-type current to limit glutamate release, thus contributing to epileptogenesis.

Bassoon Controls Presynaptic Autophagy through Atg5.

  • Okerlund ND
  • Neuron
  • 2017 Feb 22

Literature context:


Abstract:

Mechanisms regulating the surveillance and clearance of synaptic proteins are not well understood. Intriguingly, the loss of the presynaptic active zone proteins Piccolo and Bassoon triggers the loss of synaptic vesicles (SVs) and compromises synaptic integrity. Here we report that the destruction of SVs in boutons lacking Piccolo and Bassoon was associated with the induction of presynaptic autophagy, a process that depended on poly-ubiquitination, but not the E3 ubiquitin ligase Siah1. Surprisingly, gain or loss of function (LOF) of Bassoon alone suppressed or enhanced presynaptic autophagy, respectively, implying a fundamental role for Bassoon in the local regulation of presynaptic autophagy. Mechanistically, Bassoon was found to interact with Atg5, an E3-like ligase essential for autophagy, and to inhibit the induction of autophagy in heterologous cells. Importantly, Atg5 LOF as well as targeting an Atg5-binding peptide derived from Bassoon inhibited presynaptic autophagy in boutons lacking Piccolo and Bassoon, providing insights into the molecular mechanisms regulating presynaptic autophagy.

Funding information:
  • BLRD VA - I21 BX003357()

The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier.

  • Amor V
  • Elife
  • 2017 Jan 30

Literature context:


Abstract:

A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.

Funding information:
  • Medical Research Council - MR/L011379/1()
  • NINDS NIH HHS - R01 NS044916()
  • NINDS NIH HHS - R01 NS050220()
  • NINDS NIH HHS - R01 NS069688()
  • NINDS NIH HHS - R37 NS044916()

Developing high-quality mouse monoclonal antibodies for neuroscience research - approaches, perspectives and opportunities.

  • Gong B
  • N Biotechnol
  • 2016 Sep 25

Literature context:


Abstract:

High-quality antibodies (Abs) are critical to neuroscience research, as they remain the primary affinity proteomics reagent used to label and capture endogenously expressed protein targets in the nervous system. As in other fields, neuroscientists are frequently confronted with inaccurate and irreproducible Ab-based results and/or reporting. The UC Davis/NIH NeuroMab Facility was created with the mission of addressing the unmet need for high-quality Abs in neuroscience research by applying a unique approach to generate and validate mouse monoclonal antibodies (mAbs) optimized for use against mammalian brain (i.e., NeuroMabs). Here we describe our methodology of multi-step mAb screening focused on identifying mAbs exhibiting efficacy and specificity in labeling mammalian brain samples. We provide examples from NeuroMab screens, and from the subsequent specialized validation of those selected as NeuroMabs. We highlight the particular challenges and considerations of determining specificity for brain immunolabeling. We also describe why our emphasis on extensive validation of large numbers of candidates by immunoblotting and immunohistochemistry against brain samples is essential for identifying those that exhibit efficacy and specificity in those applications to become NeuroMabs. We describe the special attention given to candidates with less common non-IgG1 IgG subclasses that can facilitate simultaneous multiplex labeling with subclass-specific secondary antibodies. We detail our recent use of recombinant cloning of NeuroMabs as a method to archive all NeuroMabs, to unambiguously define NeuroMabs at the DNA sequence level, and to re-engineer IgG1 NeuroMabs to less common IgG subclasses to facilitate their use in multiplex labeling. Finally, we provide suggestions to facilitate Ab development and use, as to design, execution and interpretation of Ab-based neuroscience experiments. Reproducibility in neuroscience research will improve with enhanced Ab validation, unambiguous identification of Abs used in published experiments, and end user proficiency in Ab-based assays.

Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

  • Kerti-Szigeti K
  • Elife
  • 2016 Aug 18

Literature context:


Abstract:

Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content.

Funding information:
  • NIA NIH HHS - R37 AG008796(United States)

Temporal organization of GABAergic interneurons in the intermediate CA1 hippocampus during network oscillations.

  • Forro T
  • Cereb. Cortex
  • 2015 May 16

Literature context:


Abstract:

Travelling theta oscillations and sharp wave-associated ripples (SWRs) provide temporal structures to neural activity in the CA1 hippocampus. The contribution of rhythm-generating GABAergic interneurons to network timing across the septotemporal CA1 axis remains unknown. We recorded the spike-timing of identified parvalbumin (PV)-expressing basket, axo-axonic, oriens-lacunosum moleculare (O-LM) interneurons, and pyramidal cells in the intermediate CA1 (iCA1) of anesthetized rats in relation to simultaneously detected network oscillations in iCA1 and dorsal CA1 (dCA1). Distinct interneuron types were coupled differentially to SWR, and the majority of iCA1 SWR events occurred simultaneously with dCA1 SWR events. In contrast, iCA1 theta oscillations were shifted in time relative to dCA1 theta oscillations. During theta cycles, the highest firing of iCA1 axo-axonic cells was followed by PV-expressing basket cells and subsequently by O-LM together with pyramidal cells, similar to the firing sequence of dCA1 cell types reported previously. However, we observed that this temporal organization of cell types is shifted in time between dCA1 and iCA1, together with the respective shift in theta oscillations. We show that GABAergic activity can be synchronized during SWR but is shifted in time from dCA1 to iCA1 during theta oscillations, highlighting the flexible inhibitory control of excitatory activity across a brain structure.

Funding information:
  • NHGRI NIH HHS - 2-P50-HG002790-06(United States)

Sodium channel β1 subunit localizes to axon initial segments of excitatory and inhibitory neurons and shows regional heterogeneity in mouse brain.

  • Wimmer VC
  • J. Comp. Neurol.
  • 2015 Apr 1

Literature context:


Abstract:

The β1 subunit of voltage-gated sodium channels, Nav β1, plays multiple roles in neurons spanning electrophysiological modulation of sodium channel α subunits to cell adhesion and neurite outgrowth. This study used immunohistochemistry to investigate Nav β1 subneuronal and regional expression. Nav β1 was enriched at axon initial segments (AIS) and nodes of Ranvier. Nav β1 expression at the AIS was detected throughout the brain, predominantly in the hippocampus, cortex, and cerebellum. Despite expression of Nav β1 in both excitatory and inhibitory AIS, it displayed a marked and fine-grained heterogeneity of expression. Such heterogeneity could have important implications for the tuning of single neuronal and regional excitability, especially in view of the fact that Nav β1 coexpressed with Nav 1.1, Nav 1.2, and Nav 1.6 subunits. The disruption of Nav β1 AIS expression by a human epilepsy-causing C121W genetic mutation in Nav β1 was also investigated using a mouse model. AIS expression of Nav β1 was reduced by approximately 50% in mice heterozygous for the C121W mutation and was abolished in homozygotes, suggesting that loss of Nav α subunit modulation by Nav β1 contributes to the mechanism of epileptogenesis in these animals as well as in patients.

Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells.

  • Kirizs T
  • Eur. J. Neurosci.
  • 2015 Jan 16

Literature context:


Abstract:

Potassium channels comprise the most diverse family of ion channels and play critical roles in a large variety of physiological and pathological processes. In addition to their molecular diversity, variations in their distributions and densities on the axo-somato-dendritic surface of neurons are key parameters in determining their functional impact. Despite extensive electrophysiological and anatomical investigations, the exact location and densities of most K(+) channels in small subcellular compartments are still unknown. Here we aimed at providing a quantitative surface map of two delayed-rectifier (Kv1.1 and Kv2.1) and one G-protein-gated inwardly rectifying (Kir3.2) K(+) channel subunits on hippocampal CA1 pyramidal cells (PCs). Freeze-fracture replica immunogold labelling was employed to determine the relative densities of these K(+) channel subunits in 18 axo-somato-dendritic compartments. Significant densities of the Kv1.1 subunit were detected on axon initial segments (AISs) and axon terminals, with an approximately eight-fold lower density in the latter compartment. The Kv2.1 subunit was found in somatic, proximal dendritic and AIS plasma membranes at approximately the same densities. This subunit has a non-uniform plasma membrane distribution; Kv2.1 clusters are frequently adjacent to, but never overlap with, GABAergic synapses. A quasi-linear increase in the Kir3.2 subunit density along the dendrites of PCs was detected, showing no significant difference between apical dendritic shafts, oblique dendrites or dendritic spines at the same distance from the soma. Our results demonstrate that each subunit has a unique cell-surface distribution pattern, and predict their differential involvement in synaptic integration and output generation at distinct subcellular compartments.

Funding information:
  • NICHD NIH HHS - NIH P30 HD003352(United States)

JNK1 controls dendritic field size in L2/3 and L5 of the motor cortex, constrains soma size, and influences fine motor coordination.

  • Komulainen E
  • Front Cell Neurosci
  • 2014 Oct 13

Literature context:


Abstract:

Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia, and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1), the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622, and T1625 (Uniprot P15146) corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622, and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative Sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

Funding information:
  • NEI NIH HHS - R01 EY010542(United States)

A unique ion channel clustering domain on the axon initial segment of mammalian neurons.

  • King AN
  • J. Comp. Neurol.
  • 2014 Aug 1

Literature context:


Abstract:

The axon initial segment (AIS) plays a key role in initiation of action potentials and neuronal output. The plasma membrane of the AIS contains high densities of voltage-gated ion channels required for these electrical events, and much recent work has focused on defining the mechanisms for generating and maintaining this unique neuronal plasma membrane domain. The Kv2.1 voltage-gated potassium channel is abundantly present in large clusters on the soma and proximal dendrites of mammalian brain neurons. Kv2.1 is also a component of the ion channel repertoire at the AIS. Here we show that Kv2.1 clusters on the AIS of brain neurons across diverse mammalian species including humans define a noncanonical ion channel clustering domain deficient in Ankyrin-G. The sites of Kv2.1 clustering on the AIS are sites where cisternal organelles, specialized intracellular calcium release membranes, come into close apposition with the plasma membrane, and are also sites of clustering of γ-aminobutyric acid (GABA)ergic synapses. Using an antibody specific for a single Kv2.1 phosphorylation site, we find that the phosphorylation state differs between Kv2.1 clusters on the proximal and distal portions of the AIS. Together, these studies show that the sites of Kv2.1 clustering on the AIS represent specialized domains containing components of diverse neuronal signaling pathways that may contribute to local regulation of Kv2.1 function and AIS membrane excitability.

Funding information:
  • NIGMS NIH HHS - R01 GM115545(United States)

Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments.

  • Jones SL
  • J. Cell Biol.
  • 2014 Apr 14

Literature context:


Abstract:

The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon-dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar-globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling.

Funding information:
  • NHLBI NIH HHS - R01 HL122494(United States)

Long-term maintenance of Na+ channels at nodes of Ranvier depends on glial contact mediated by gliomedin and NrCAM.

  • Amor V
  • J. Neurosci.
  • 2014 Apr 9

Literature context:


Abstract:

Clustering of Na(+) channels at the nodes of Ranvier is coordinated by myelinating glia. In the peripheral nervous system, axoglial contact at the nodes is mediated by the binding of gliomedin and glial NrCAM to axonal neurofascin 186 (NF186). This interaction is crucial for the initial clustering of Na(+) channels at heminodes. As a result, it is not clear whether continued axon-glial contact at nodes of Ranvier is required to maintain these channels at the nodal axolemma. Here, we report that, in contrast to mice that lack either gliomedin or NrCAM, absence of both molecules (and hence the glial clustering signal) resulted in a gradual loss of Na(+) channels and other axonal components from the nodes, the formation of binary nodes, and dysregulation of nodal gap length. Therefore, these mice exhibit neurological abnormalities and slower nerve conduction. Disintegration of the nodes occurred in an orderly manner, starting with the disappearance of neurofascin 186, followed by the loss of Na(+) channels and ankyrin G, and then βIV spectrin, a sequence that reflects the assembly of nodes during development. Finally, the absence of gliomedin and NrCAM led to the invasion of the outermost layer of the Schwann cell membrane beyond the nodal area and the formation of paranodal-like junctions at the nodal gap. Our results reveal that axon-glial contact mediated by gliomedin, NrCAM, and NF186 not only plays a role in Na(+) channel clustering during development, but also contributes to the long-term maintenance of Na(+) channels at nodes of Ranvier.

Funding information:
  • NIGMS NIH HHS - T32 GM007276(United States)

Actin and myosin-dependent localization of mRNA to dendrites.

  • Balasanyan V
  • PLoS ONE
  • 2014 Mar 18

Literature context:


Abstract:

The localization of mRNAs within axons and dendrites allows neurons to manipulate protein levels in a time and location dependent manner and is essential for processes such as synaptic plasticity and axon guidance. However, an essential step in the process of mRNA localization, the decision to traffic to dendrites and/or axons, remains poorly understood. Here we show that Myosin Va and actin filaments are necessary for the dendritic localization of the mRNA binding protein Staufen 1 and of mRNA encoding the microtubule binding protein Map2. Blocking the function or expression of Myosin Va or depolymerizing actin filaments leads to localization of Staufen 1 and of Map2 mRNA in both axons and dendrites. Furthermore, interaction with Myosin Va plays an instructive role in the dendritic localization of Hermes 1, an RNA binding protein. Wild-type Hermes 1 localizes to both axons and dendrites, whereas Hermes 1 fused with a Myosin Va binding peptide, localizes specifically to dendrites. Thus, our results suggest that targeting of mRNAs to the dendrites is mediated by a mechanism that is dependent on actin and Myosin Va.

Funding information:
  • NHLBI NIH HHS - HL60714(United States)
  • NIDA NIH HHS - 1R01DA023576(United States)

Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na+ channels into axons.

  • Barry J
  • Dev. Cell
  • 2014 Jan 27

Literature context:


Abstract:

Action potentials (APs) propagating along axons require the activation of voltage-gated Na(+) (Nav) channels. How Nav channels are transported into axons is unknown. We show that KIF5/kinesin-1 directly binds to ankyrin-G (AnkG) to transport Nav channels into axons. KIF5 and Nav1.2 channels bind to multiple sites in the AnkG N-terminal domain that contains 24 ankyrin repeats. Disrupting AnkG-KIF5 binding with small interfering RNA or dominant-negative constructs markedly reduced Nav channel levels at the axon initial segment (AIS) and along entire axons, thereby decreasing AP firing. Live-cell imaging showed that fluorescently tagged AnkG or Nav1.2 cotransported with KIF5 along axons. Deleting AnkG in vivo or virus-mediated expression of a dominant-negative KIF5 construct specifically decreased the axonal level of Nav, but not Kv1.2, channels in mouse cerebellum. These results indicate that AnkG functions as an adaptor to link Nav channels to KIF5 during axonal transport before anchoring them to the AIS and nodes of Ranvier.

Funding information:
  • NHGRI NIH HHS - R01 HG004701-01(United States)

The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation.

  • Li Q
  • Elife
  • 2014 Jan 22

Literature context:


Abstract:

We show that the splicing regulator PTBP2 controls a genetic program essential for neuronal maturation. Depletion of PTBP2 in developing mouse cortex leads to degeneration of these tissues over the first three postnatal weeks, a time when the normal cortex expands and develops mature circuits. Cultured Ptbp2(-/-) neurons exhibit the same initial viability as wild type, with proper neurite outgrowth and marker expression. However, these mutant cells subsequently fail to mature and die after a week in culture. Transcriptome-wide analyses identify many exons that share a pattern of mis-regulation in the mutant brains, where isoforms normally found in adults are precociously expressed in the developing embryo. These transcripts encode proteins affecting neurite growth, pre- and post-synaptic assembly, and synaptic transmission. Our results define a new genetic regulatory program, where PTBP2 acts to temporarily repress expression of adult protein isoforms until the final maturation of the neuron. DOI: http://dx.doi.org/10.7554/eLife.01201.001.

Funding information:
  • NINDS NIH HHS - NS079926(United States)

M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination.

  • Miron VE
  • Nat. Neurosci.
  • 2013 Nov 4

Literature context:


Abstract:

The lack of therapies for progressive multiple sclerosis highlights the need to understand the regenerative process of remyelination that can follow CNS demyelination. This involves an innate immune response consisting of microglia and macrophages, which can be polarized to distinct functional phenotypes: pro-inflammatory (M1) and anti-inflammatory or immunoregulatory (M2). We found that a switch from an M1- to an M2-dominant response occurred in microglia and peripherally derived macrophages as remyelination started. Oligodendrocyte differentiation was enhanced in vitro with M2 cell conditioned media and impaired in vivo following intra-lesional M2 cell depletion. M2 cell densities were increased in lesions of aged mice in which remyelination was enhanced by parabiotic coupling to a younger mouse and in multiple sclerosis lesions that normally show remyelination. Blocking M2 cell-derived activin-A inhibited oligodendrocyte differentiation during remyelination in cerebellar slice cultures. Thus, our results indicate that M2 cell polarization is essential for efficient remyelination and identify activin-A as a therapeutic target for CNS regeneration.

NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina.

  • Puthussery T
  • J. Neurosci.
  • 2013 Oct 9

Literature context:


Abstract:

In the primate visual system, the ganglion cells of the magnocellular pathway underlie motion and flicker detection and are relatively transient, while the more sustained ganglion cells of the parvocellular pathway have comparatively lower temporal resolution, but encode higher spatial frequencies. Although it is presumed that functional differences in bipolar cells contribute to the tuning of the two pathways, the properties of the relevant bipolar cells have not yet been examined in detail. Here, by making patch-clamp recordings in acute slices of macaque retina, we show that the bipolar cells within the magnocellular pathway, but not the parvocellular pathway, exhibit voltage-gated sodium (NaV), T-type calcium (CaV), and hyperpolarization-activated, cyclic nucleotide-gated (HCN) currents, and can generate action potentials. Using immunohistochemistry in macaque and human retinae, we show that NaV1.1 is concentrated in an axon initial segment (AIS)-like region of magnocellular pathway bipolar cells, a specialization not seen in transient bipolar cells of other vertebrates. In contrast, CaV3.1 channels were localized to the somatodendritic compartment and proximal axon, but were excluded from the AIS, while HCN1 channels were concentrated in the axon terminal boutons. Simulations using a compartmental model reproduced physiological results and indicate that magnocellular pathway bipolar cells initiate spikes in the AIS. Finally, we demonstrate that NaV channels in bipolar cells augment excitatory input to parasol ganglion cells of the magnocellular pathway. Overall, the results demonstrate that selective expression of voltage-gated channels contributes to the establishment of parallel processing in the major visual pathways of the primate retina.

Funding information:
  • NLM NIH HHS - LM04971(United States)

FGF14 localization and organization of the axon initial segment.

  • Xiao M
  • Mol. Cell. Neurosci.
  • 2013 Sep 4

Literature context:


Abstract:

The axon initial segment (AIS) is highly enriched in the structural proteins ankyrin G and βIV-spectrin, the pore-forming (α) subunits of voltage-gated sodium (Nav) channels, and functional Nav channels, and is critical for the initiation of action potentials. We previously reported that FGF14, a member of the intracellular FGF (iFGF) sub-family, is expressed in cerebellar Purkinje neurons and that the targeted inactivation of Fgf14 in mice (Fgf14(-/-)) results in markedly reduced Purkinje neuron excitability. Here, we demonstrate that FGF14 immunoreactivity is high in the AIS of Purkinje neurons and is distributed in a decreasing, proximal to distal, gradient. This pattern is evident early in the postnatal development of Purkinje neurons and is also observed in many other types of central neurons. In (Scn8a(med)) mice, which are deficient in expression of the Nav1.6 α subunit, FGF14 immunoreactivity is markedly increased and expanded in the Purkinje neuron AIS, in parallel with increased expression of the Nav1.1 (Scn1a) α subunit and expanded expression of βIV-spectrin. Although Nav1.1, FGF14, and βIV-spectrin are affected, ankyrin G immunoreactivity at the AIS of Scn8a(med) and wild type (WT) Purkinje neurons was not significantly different. In Fgf14(-/-) Purkinje neurons, βIV-spectrin and ankyrin G immunoreactivity at the AIS were also similar to WT Purkinje neurons, although both the Nav1.1 and Nav1.6 α subunits are modestly, but significantly (p<0.005), reduced within sub-domains of the AIS, changes that may contribute to the reduced excitability of Fgf14(-/-) Purkinje neurons.

Genetic reduction of the α1 subunit of Na/K-ATPase corrects multiple hippocampal phenotypes in Angelman syndrome.

  • Kaphzan H
  • Cell Rep
  • 2013 Aug 15

Literature context:


Abstract:

Angelman syndrome (AS) is associated with symptoms that include autism, intellectual disability, motor abnormalities, and epilepsy. We recently showed that AS model mice have increased expression of the alpha1 subunit of Na/K-ATPase (α1-NaKA) in the hippocampus, which was correlated with increased expression of axon initial segment (AIS) proteins. Our developmental analysis revealed that the increase in α1-NaKA expression preceded that of the AIS proteins. Therefore, we hypothesized that α1-NaKA overexpression drives AIS abnormalities and that by reducing its expression these and other phenotypes could be corrected in AS model mice. Herein, we report that the genetic normalization of α1-NaKA levels in AS model mice corrects multiple hippocampal phenotypes, including alterations in the AIS, aberrant intrinsic membrane properties, impaired synaptic plasticity, and memory deficits. These findings strongly suggest that increased expression of α1-NaKA plays an important role in a broad range of abnormalities in the hippocampus of AS model mice.

Funding information:
  • NCI NIH HHS - CA089713(United States)

Developmental expression of Kv potassium channels at the axon initial segment of cultured hippocampal neurons.

  • Sánchez-Ponce D
  • PLoS ONE
  • 2012 Nov 2

Literature context:


Abstract:

Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation.

Funding information:
  • Medical Research Council - G0600329(United Kingdom)

Colocalization of α-actinin and synaptopodin in the pyramidal cell axon initial segment.

  • Sánchez-Ponce D
  • Cereb. Cortex
  • 2012 Jul 21

Literature context:


Abstract:

The cisternal organelle that resides in the axon initial segment (AIS) of neocortical and hippocampal pyramidal cells is thought to be involved in regulating the Ca(2+) available to maintain AIS scaffolding proteins, thereby preserving normal AIS structure and function. Through immunocytochemistry and correlative light and electron microscopy, we show here that the actin-binding protein α-actinin is present in the typical cistenal organelle of rodent pyramidal neurons as well as in a large structure in the AIS of a subpopulation of layer V pyramidal cells that we have called the "giant saccular organelle." Indeed, this localization of α-actinin in the AIS is dependent on the integrity of the actin cytoskeleton. Moreover, in the cisternal organelle of cultured hippocampal neurons, α-actinin colocalizes extensively with synaptopodin, a protein that interacts with both actin and α-actinin, and they appear concomitantly during the development of these neurons. Together, these results indicate that α-actinin and the actin cytoskeleton are important components of the cisternal organelle that are probably required to stabilize the AIS.

Funding information:
  • NIDDK NIH HHS - R01 DK084171(United States)
  • NINDS NIH HHS - R01 NS055125-01A1(United States)

Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

  • Chen X
  • PLoS ONE
  • 2012 Jul 31

Literature context:


Abstract:

We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG), but not undifferentiated neuronal progenitor cells (NPCs) from ventral subventricular zone (SVZ), results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2). NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control). By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+), whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+). At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative). Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78%) expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.

Funding information:
  • NEI NIH HHS - R01 EY025555(United States)

Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: a paradigm of early onset photoreceptor degeneration.

  • Damiani D
  • J. Comp. Neurol.
  • 2012 May 1

Literature context:


Abstract:

Retinitis pigmentosa (RP) is a family of inherited diseases causing progressive photoreceptor death. Retinal ganglion cells (RGCs) form the biological substrate for various therapeutic approaches designed to restore vision in RP individuals. Assessment of survival and preservation of RGCs in animal paradigms mimicking the human disease is of key importance for appropriate implementation of vision repair strategies. Here we studied the survival of RGCs in the rd1 mutant mouse, a known model of early onset, autosomic recessive RP, at various stages of photoreceptor degeneration. Furthermore, we analyzed the morphology of various types of RGCs using the newly generated transgenic mouse rd1/Thy1-GFP, in which the rd1 mutation is associated with green fluorescent protein (GFP) expression in a small population of different RGCs. We found excellent survival of cells at up to 1 year of age, a time at which the inner retina is known to have severely reorganized and partially degenerated. However, 50% of the cells analyzed within all RGC types exhibit an undersized dendritic tree, spanning about half of the normal area. Undersized cells are found both in adult and in very young (1-month-old) mice. This suggests that their aberrant phenotype is due to incomplete dendritic development, possibly as a consequence of altered visual input at the time of dendritic arbor refinement. These data show the importance of the timing of photoreceptor death in RGC dendritic development.

Funding information:
  • NICHD NIH HHS - U54 HD086984(United States)

IκBα is not required for axon initial segment assembly.

  • Buffington SA
  • Mol. Cell. Neurosci.
  • 2012 May 26

Literature context:


Abstract:

The inhibitor of NF-κB alpha (IκBα) protein is an important regulator of the transcription factor NF-κB. In neurons, IκBα has been shown to play a role in neurite outgrowth and cell survival. Recently, a phosphorylated form of IκBα (pIκBα Ser32/36) was reported to be highly enriched at the axon initial segment (AIS) and was proposed to function upstream of ankyrinG in AIS assembly, including ion channel recruitment. However, we report here that the AIS clustering of ankyrinG and Na(+) channels in the brains of IκBα knockout (Nfkbia(-/-)) mice is comparable to that in wild-type littermates. Furthermore, we found that multiple phospho-specific antibodies against pIκBα Ser32/36 non-specifically label AIS in Nfkbia(-/-) cortex and AIS in dissociated Nfkbia(-/-) hippocampal neurons. With the exception of ankyrinG, shRNA-mediated knockdown of known AIS proteins in cultured hippocampal neurons did not eliminate the AIS labeling with pIκBα antibodies. Instead, the pIκBα antibodies cross-react with a phosphorylated epitope of a protein associated with the microtubule-based AIS cytoskeleton that is not integrated into the AIS membrane complex organized by ankyrinG. Our results indicate that pIκBα is neither enriched at the AIS nor required for AIS assembly.

Funding information:
  • NIMH NIH HHS - P50 MH106934(United States)

A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly.

  • Galiano MR
  • Cell
  • 2012 May 25

Literature context:


Abstract:

AnkyrinG (ankG) is highly enriched in neurons at axon initial segments (AISs) where it clusters Na(+) and K(+) channels and maintains neuronal polarity. How ankG becomes concentrated at the AIS is unknown. Here, we show that as neurons break symmetry, they assemble a distal axonal submembranous cytoskeleton, comprised of ankyrinB (ankB), αII-spectrin, and βII-spectrin, that defines a boundary limiting ankG to the proximal axon. Experimentally moving this boundary altered the length of ankG staining in the proximal axon, whereas disruption of the boundary through silencing of ankB, αII-spectrin, or βII-spectrin expression blocked AIS assembly and permitted ankG to redistribute throughout the distal axon. In support of an essential role for the distal cytoskeleton in ankG clustering, we also found that αII and βII-spectrin-deficient mice had disrupted AIS. Thus, the distal axonal cytoskeleton functions as an intra-axonal boundary restricting ankG to the AIS.

Funding information:
  • NHLBI NIH HHS - R01 HL070029(United States)

Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells.

  • León-Espinosa G
  • J. Alzheimers Dis.
  • 2012 Apr 17

Literature context:


Abstract:

The output of cortical pyramidal cells reflects the balance between excitatory inputs of cortical and subcortical origin, and inhibitory inputs from distinct populations of cortical GABAergic interneurons, each of which selectively innervate different domains of neuronal pyramidal cells (i.e., dendrites, soma and axon initial segment [AIS]). In Alzheimer's disease (AD), the presence of amyloid-β (Aβ) plaques alters the synaptic input to pyramidal cells in a number of ways. However, the effects of Aβ plaques on the AIS have still not been investigated to date. This neuronal domain is involved in input integration, as well as action potential initiation and propagation, and it exhibits Ca2+- and activity-dependent structural plasticity. The AIS is innervated by GABAergic axon terminals from chandelier cells, which are thought to exert a strong influence on pyramidal cell output. In the AβPP/PS1 transgenic mouse model of AD, we have investigated the effects of Aβ plaques on the morphological and neurochemical features of the AIS, including the cisternal organelle, using immunocytochemistry and confocal microscopy, as well as studying the innervation of the AIS by chandelier cell axon terminals. There is a strong reduction in GABAergic terminals that appose AIS membrane surfaces that are in contact with Aβ plaques, indicating altered inhibitory synapsis at the AIS. Thus, despite a lack of gross structural alterations in the AIS, this decrease in GABAergic innervation may deregulate AIS activity and contribute to the hyperactivity of neurons in contact with Aβ plaques.

Funding information:
  • NHLBI NIH HHS - HL-70250(United States)
  • NIGMS NIH HHS - U01 GM107623(United States)

A-kinase anchoring protein 150 expression in a specific subset of TRPV1- and CaV 1.2-positive nociceptive rat dorsal root ganglion neurons.

  • Brandao KE
  • J. Comp. Neurol.
  • 2012 Jan 1

Literature context:


Abstract:

Modulation of phosphorylation states of ion channels is a critical step in the development of hyperalgesia during inflammation. Modulatory enhancement of channel activity may increase neuronal excitability and affect downstream targets such as gene transcription. The specificity required for such regulation of ion channels quickly occurs via targeting of protein kinases and phosphatases by the scaffolding A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 has been implicated in inflammatory pain by targeting protein kinase A (PKA) and protein kinase C (PKC) to the transient receptor potential vanilloid 1 (TRPV1) channel in peripheral sensory neurons, thus lowering threshold for activation of the channel by multiple inflammatory reagents. However, the expression pattern of AKAP150 in peripheral sensory neurons is unknown. Here we identify the peripheral neuron subtypes that express AKAP150, the subcellular distribution of AKAP150, and the potential target ion channels in rat dorsal root ganglion (DRG) slices. We found that AKAP150 is expressed predominantly in a subset of small DRG sensory neurons, where it is localized at the plasma membrane of the soma, axon initial segment, and small fibers. Most of these neurons are peripherin positive and produce C fibers, although a small portion produce Aδ fibers. Furthermore, we demonstrate that AKAP79/150 colocalizes with TRPV1 and Ca(V) 1.2 in the soma and axon initial segment. Thus AKAP150 is expressed in small, nociceptive DRG neurons, where it is targeted to membrane regions and where it may play a role in the modulation of ion channel phosphorylation states required for hyperalgesia.

Funding information:
  • NHGRI NIH HHS - HG006464(United States)

Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome.

  • Kaphzan H
  • J. Neurosci.
  • 2011 Nov 30

Literature context:


Abstract:

The axon initial segment (AIS) is the site of action potential initiation in neurons. Recent studies have demonstrated activity-dependent regulation of the AIS, including homeostatic changes in AIS length, membrane excitability, and the localization of voltage-gated Na(+) channels. The neurodevelopmental disorder Angelman syndrome (AS) is usually caused by the deletion of small portions of the maternal copy of chromosome 15, which includes the UBE3A gene. A mouse model of AS has been generated and these mice exhibit multiple neurological abnormalities similar to those observed in humans. We examined intrinsic properties of pyramidal neurons in hippocampal area CA1 from AS model mice and observed alterations in resting membrane potential, threshold potential, and action potential amplitude. The altered intrinsic properties in the AS mice were correlated with significant increases in the expression of the α1 subunit of Na/K-ATPase (α1-NaKA), the Na(+) channel NaV1.6, and the AIS anchoring protein ankyrin-G, as well as an increase in length of the AIS. These findings are the first evidence for pathology of intrinsic membrane properties and AIS-specific changes in AS, a neurodevelopmental disorder associated with autism.

Funding information:
  • NINDS NIH HHS - R01 NS083898(United States)

Action potential generation at an axon initial segment-like process in the axonless retinal AII amacrine cell.

  • Wu C
  • J. Neurosci.
  • 2011 Oct 12

Literature context:


Abstract:

In axon-bearing neurons, action potentials conventionally initiate at the axon initial segment (AIS) and are important for neuron excitability and cell-to-cell communication. However in axonless neurons, spike origin has remained unclear. Here we report in the axonless, spiking AII amacrine cell of the mouse retina a dendritic process sharing organizational and functional similarities with the AIS. This process was revealed through viral-mediated expression of channelrhodopsin-2-GFP with the AIS-targeting motif of sodium channels (Na(v)II-III). The AII processes showed clustering of voltage-gated Na+ channel 1.1 (Na(v)1.1) as well as AIS markers ankyrin-G and neurofascin. Furthermore, Na(v)II-III targeting disrupted Na(v)1.1 clustering in the AII process, which drastically decreased Na+ current and abolished the ability of the AII amacrine cell to generate spiking. Our findings indicate that, despite lacking an axon, spiking in the axonless neuron can originate at a specialized AIS-like process.

Funding information:
  • NIAMS NIH HHS - R01 AR057759(United States)

Molecular microdomains in a sensory terminal, the vestibular calyx ending.

  • Lysakowski A
  • J. Neurosci.
  • 2011 Jul 6

Literature context:


Abstract:

Many primary vestibular afferents form large cup-shaped postsynaptic terminals (calyces) that envelope the basolateral surfaces of type I hair cells. The calyceal terminals both respond to glutamate released from ribbon synapses in the type I cells and initiate spikes that propagate to the afferent's central terminals in the brainstem. The combination of synaptic and spike initiation functions in these unique sensory endings distinguishes them from the axonal nodes of central neurons and peripheral nerves, such as the sciatic nerve, which have provided most of our information about nodal specializations. We show that rat vestibular calyces express an unusual mix of voltage-gated Na and K channels and scaffolding, cell adhesion, and extracellular matrix proteins, which may hold the ion channels in place. Protein expression patterns form several microdomains within the calyx membrane: a synaptic domain facing the hair cell, the heminode abutting the first myelinated internode, and one or two intermediate domains. Differences in the expression and localization of proteins between afferent types and zones may contribute to known variations in afferent physiology.

Funding information:
  • Wellcome Trust - 085775/Z/08/Z(United Kingdom)

Peripheral nervous system progenitors can be reprogrammed to produce myelinating oligodendrocytes and repair brain lesions.

  • Binder E
  • J. Neurosci.
  • 2011 Apr 27

Literature context:


Abstract:

Neural crest stem cells (NCSCs) give rise to the neurons and glia of the peripheral nervous system (PNS). NCSC-like cells can be isolated from multiple peripheral organs and maintained in neurosphere culture. Combining in vitro culture and transplantation, we show that expanded embryonic NCSC-like cells lose PNS traits and are reprogrammed to generate CNS cell types. When transplanted into the embryonic or adult mouse CNS, they differentiate predominantly into cells of the oligodendrocyte lineage without any signs of tumor formation. NCSC-derived oligodendrocytes generate CNS myelin and contribute to the repair of the myelin deficiency in shiverer mice. These results demonstrate a reprogramming of PNS progenitors to CNS fates without genetic modification and imply that PNS cells could be a potential source for cell-based CNS therapy.

Funding information:
  • NIGMS NIH HHS - GM T32 GM009151(United States)
  • NIMH NIH HHS - MH-61869(United States)

A role for myosin VI in the localization of axonal proteins.

  • Lewis TL
  • PLoS Biol.
  • 2011 Mar 10

Literature context:


Abstract:

In neurons polarized trafficking of vesicle-bound membrane proteins gives rise to the distinct molecular composition and functional properties of axons and dendrites. Despite their central role in shaping neuronal form and function, surprisingly little is known about the molecular processes that mediate polarized targeting of neuronal proteins. Recently, the plus-end-directed motor Myosin Va was shown to play a critical role in targeting of transmembrane proteins to dendrites; however, the role of myosin motors in axonal targeting is unknown. Here we show that Myosin VI, a minus-end-directed motor, plays a vital role in the enrichment of proteins on the surface of axons. Engineering non-neuronal proteins to interact with Myosin VI causes them to become highly concentrated at the axonal surface in dissociated rat cortical neurons. Furthermore, disruption of either Myosin VI function or expression leads to aberrant dendritic localization of axonal proteins. Myosin VI mediates the enrichment of proteins on the axonal surface at least in part by stimulating dendrite-specific endocytosis, a mechanism that has been shown to underlie the localization of many axonal proteins. In addition, a version of Channelrhodopsin 2 that was engineered to bind to Myosin VI is concentrated at the surface of the axon of cortical neurons in mice in vivo, suggesting that it could be a useful tool for probing circuit structure and function. Together, our results indicate that myosins help shape the polarized distributions of both axonal and dendritic proteins.

Funding information:
  • NHGRI NIH HHS - HG 002273(United States)

Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons.

  • Hargus NJ
  • Neurobiol. Dis.
  • 2011 Feb 3

Literature context:


Abstract:

Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy involving the limbic structures of the temporal lobe. Layer II neurons of the entorhinal cortex (EC) form the major excitatory input into the hippocampus via the perforant path and consist of non-stellate and stellate neurons. These neurons are spared and hyper-excitable in TLE. The basis for the hyper-excitability is likely multifactorial and may include alterations in intrinsic properties. In a rat model of TLE, medial EC (mEC) non-stellate and stellate neurons had significantly higher action potential (AP) firing frequencies than in control. The increase remained in the presence of synaptic blockers, suggesting intrinsic mechanisms. Since sodium (Na) channels play a critical role in AP generation and conduction we sought to determine if Na channel gating parameters and expression levels were altered in TLE. Na channel currents recorded from isolated mEC TLE neurons revealed increased Na channel conductances, depolarizing shifts in inactivation parameters and larger persistent (I(NaP)) and resurgent (I(NaR)) Na currents. Immunofluorescence experiments revealed increased staining of Na(v)1.6 within the axon initial segment and Na(v)1.2 within the cell bodies of mEC TLE neurons. These studies provide support for additional intrinsic alterations within mEC layer II neurons in TLE and implicate alterations in Na channel activity and expression, in part, for establishing the profound increase in intrinsic membrane excitability of mEC layer II neurons in TLE. These intrinsic changes, together with changes in the synaptic network, could support seizure activity in TLE.

Funding information:
  • NHGRI NIH HHS - U54 HG004028(United States)

Casein kinase 2 and microtubules control axon initial segment formation.

  • Sanchez-Ponce D
  • Mol. Cell. Neurosci.
  • 2011 Jan 10

Literature context:


Abstract:

The axon initial segment (AIS) is a unique axonal subdomain responsible for the generation of the neuronal action potential and the maintenance of the axon-dendritic functional polarity. Despite its importance, the mechanisms controlling AIS development and maintenance remain largely unknown. Here we show that the AIS microtubule cytoskeleton is composed of a pool of more stable, detergent resistant, microtubules. This AIS specific characteristic is conferred by the presence of CK2, an important regulator of microtubule stability, in the AIS during its development and maturation. We show that CK2α and CK2α' subunits concentrate at the AIS from its initial development, at the same time as pIκBα and ankyrinG. CK2 pharmacological inhibition or suppression of CK2α expression with nucleofected interference RNAs modifies microtubule characteristics throughout the neuron, changes KIF5C distribution, and impairs its own concentration at the AIS, as well as that of ankyrinG, ankyrinG-GFP, pIκBα and voltage gated sodium channels. Moreover, CK2α concentration at the AIS depends on IκBα phosphorylation by IKK and ankyrinG. In conclusion, our results demonstrate a mutual dependence of CK2, ankyrinG and pIκBα for their concentration at the axon initial segment, which is related to the specific characteristics of microtubules at the AIS.

Funding information:
  • NIGMS NIH HHS - R01GM06806(United States)
  • NIMHD NIH HHS - 263-MD-409125-1(United States)