X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GAPDH (D16H11) XP Rabbit mAb antibody

RRID:AB_10622025

A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer.

  • Borniger JC
  • Cell Metab.
  • 2018 Jul 3

Literature context:


Abstract:

We investigated relationships among immune, metabolic, and sleep abnormalities in mice with non-metastatic mammary cancer. Tumor-bearing mice displayed interleukin-6 (IL-6)-mediated peripheral inflammation, coincident with altered hepatic glucose processing and sleep. Tumor-bearing mice were hyperphagic, had reduced serum leptin concentrations, and enhanced sensitivity to exogenous ghrelin. We tested whether these phenotypes were driven by inflammation using neutralizing monoclonal antibodies against IL-6; despite the reduction in IL-6 signaling, metabolic and sleep abnormalities persisted. We next investigated neural populations coupling metabolism and sleep, and observed altered activity within lateral-hypothalamic hypocretin/orexin (HO) neurons. We used a dual HO-receptor antagonist to test whether increased HO signaling was causing metabolic abnormalities. This approach rescued metabolic abnormalities and enhanced sleep quality in tumor-bearing mice. Peripheral sympathetic denervation prevented tumor-induced increases in serum glucose. Our results link metabolic and sleep abnormalities via the HO system, and provide evidence that central neuromodulators contribute to tumor-induced changes in metabolism.

Funding information:
  • NCI NIH HHS - R01 CA194924()
  • NCI NIH HHS - R21 CA191846()
  • NHLBI NIH HHS - R01 HL095372(United States)

The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation.

  • Di A
  • Immunity
  • 2018 Jun 4

Literature context:


Abstract:

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.

Funding information:
  • NCI NIH HHS - R01 CA108420(United States)

The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress.

  • Kim KH
  • Cell Metab.
  • 2018 Jun 27

Literature context:


Abstract:

Cellular homeostasis is coordinated through communication between mitochondria and the nucleus, organelles that each possess their own genomes. Whereas the mitochondrial genome is regulated by factors encoded in the nucleus, the nuclear genome is currently not known to be actively controlled by factors encoded in the mitochondrial DNA. Here, we show that MOTS-c, a peptide encoded in the mitochondrial genome, translocates to the nucleus and regulates nuclear gene expression following metabolic stress in a 5'-adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. In the nucleus, MOTS-c regulated a broad range of genes in response to glucose restriction, including those with antioxidant response elements (ARE), and interacted with ARE-regulating stress-responsive transcription factors, such as nuclear factor erythroid 2-related factor 2 (NFE2L2/NRF2). Our findings indicate that the mitochondrial and nuclear genomes co-evolved to independently encode for factors to cross-regulate each other, suggesting that mitonuclear communication is genetically integrated.

Funding information:
  • NIDDK NIH HHS - DK074310(United States)

Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer.

  • McMillan EA
  • Cell
  • 2018 May 3

Literature context:


Abstract:

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.

Funding information:
  • NCI NIH HHS - P50 CA070907()
  • NCI NIH HHS - R35 CA197717()
  • NCI NIH HHS - U01 CA176284()
  • NINDS NIH HHS - R01-NS048090(United States)

Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions.

  • Wang Y
  • Elife
  • 2018 May 11

Literature context:


Abstract:

The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here, we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases.

Funding information:
  • Asia Fund for Cancer Research - AFCR17SC01()
  • Minister of Science and Technology of China - 2014CB910204()
  • Minister of Science and Technology of China - 2016YFA0501903()
  • Ministry of Science and Technology - 2014CB910204()
  • Ministry of Science and Technology - 2016YFA0501903()
  • National Natural Science Foundation of China - 31670765()
  • Natural Science Foundation of Guangdong Province - 2016A030312016()
  • NCI NIH HHS - 5R01CA083695(United States)
  • Shenzhen Basic Research Grant, Shenzhen, China - JCYJ20160229153100269()
  • Shenzhen Basic Research Grant, Shenzhen, China - JCYJ20160427185712266()
  • Shenzhen Basic Research Grant, Shenzhen, China - JCYJ20170411090807530()

Different Neuronal Activity Patterns Induce Different Gene Expression Programs.

  • Tyssowski KM
  • Neuron
  • 2018 May 2

Literature context:


Abstract:

A vast number of different neuronal activity patterns could each induce a different set of activity-regulated genes. Mapping this coupling between activity pattern and gene induction would allow inference of a neuron's activity-pattern history from its gene expression and improve our understanding of activity-pattern-dependent synaptic plasticity. In genome-scale experiments comparing brief and sustained activity patterns, we reveal that activity-duration history can be inferred from gene expression profiles. Brief activity selectively induces a small subset of the activity-regulated gene program that corresponds to the first of three temporal waves of genes induced by sustained activity. Induction of these first-wave genes is mechanistically distinct from that of the later waves because it requires MAPK/ERK signaling but does not require de novo translation. Thus, the same mechanisms that establish the multi-wave temporal structure of gene induction also enable different gene sets to be induced by different activity durations.

Funding information:
  • Cancer Research UK - C20691/A11834(United Kingdom)

AR Signaling in Prostate Cancer Regulates a Feed-forward Mechanism of Androgen Synthesis by Way of HSD3B1 Upregulation.

  • Hettel D
  • Endocrinology
  • 2018 May 29

Literature context:


Abstract:

3βHSD1 enzymatic activity is essential for synthesis of potent androgens from adrenal precursor steroids in prostate cancer. A germline variant in HSD3B1, the gene that encodes 3βHSD1, encodes for a stable enzyme, regulates adrenal androgen dependence, and is a predictive biomarker of poor clinical outcomes after gonadal testosterone deprivation therapy. However, little is known about HSD3B1 transcriptional regulation. Generally, it is thought that intratumoral androgen synthesis is up-regulated after gonadal testosterone deprivation, enabling development of castration-resistant prostate cancer (CRPC). Given its critical role in extragonadal androgen synthesis, we sought to directly interrogate the transcriptional regulation of HSD3B1 in multiple metastatic prostate cancer cell models. Surprisingly, we found that VCaP, CWR22Rv1, LNCaP, and LAPC4 models demonstrate induction of HSD3B1 upon androgen stimulation for approximately 72 hours followed by attenuation around 120 hours. 3βHSD1 protein levels mirrored transcriptional changes in models harboring variant (LNCaP) and wild type (LAPC4) HSD3B1, and in these models androgen induction of HSD3B1 is abrogated via enzalutamide treatment. Androgen treatment increased flux from [3H]-dehydroepiandrosterone to androstenedione and other downstream metabolites. HSD3B1 expression was reduced 72 hours post-castration in the VCaP xenograft mouse model, suggesting AR regulation of HSD3B1 also occurs in vivo. Overall, these data suggest that HSD3B1 is unexpectedly positively regulated by androgens. These data may have implications for the development of treatment strategies tailored to HSD3B1 genotype status.

Funding information:
  • NCI NIH HHS - T32 CA009207(United States)

FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions.

  • Qamar S
  • Cell
  • 2018 Apr 19

Literature context:


Abstract:

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.

Funding information:
  • Intramural NIH HHS - (United States)

Impact of Early Consumption of High-Fat Diet on the Mesolimbic Dopaminergic System.

  • Naneix F
  • eNeuro
  • 2018 Mar 28

Literature context:


Abstract:

Increasing evidence suggest that consumption of high-fat diet (HFD) can impact the maturation of brain circuits, such as during adolescence, which could account for behavioral alterations associated with obesity. In the present study, we used behavioral sensitization to amphetamine to investigate the effect of periadolescent HFD exposure (pHFD) in rats on the functionality of the dopamine (DA) system, a central actor in food reward processing. pHFD does not affect responding to an acute injection, however, a single exposure to amphetamine is sufficient to induce locomotor sensitization in pHFD rats. This is paralleled by rapid neurobiological adaptations within the DA system. In pHFD-exposed animals, a single amphetamine exposure induces an increase in bursting activity of DA cells in the ventral tegmental area (VTA) as well as higher DA release and greater expression of (tyrosine hydroxylase, TH) in the nucleus accumbens (NAc). Post-synaptically, pHFD animals display an increase in NAc D2 receptors and c-Fos expression after amphetamine injection. These findings highlight the vulnerability of DA system to the consumption of HFD during adolescence that may support deficits in reward-related processes observed in obesity.

APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.

  • Saito-Diaz K
  • Dev. Cell
  • 2018 Mar 12

Literature context:


Abstract:

Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway.

Funding information:
  • BLRD VA - I01 BX001426()
  • NCATS NIH HHS - UL1 TR000445()
  • NCATS NIH HHS - UL1 TR002243()
  • NCI NIH HHS - P30 CA068485()
  • NCI NIH HHS - P50 CA095103()
  • NCI NIH HHS - R01 CA069457()
  • NCI NIH HHS - R01 CA105038()
  • NIDDK NIH HHS - F30 DK111107()
  • NIDDK NIH HHS - R01 DK099204()
  • NIGMS NIH HHS - R01 GM081635()
  • NIGMS NIH HHS - R01 GM103926()
  • NIGMS NIH HHS - R01 GM106720()
  • NIGMS NIH HHS - R01 GM121421()
  • NIGMS NIH HHS - R01 GM122222()
  • NIGMS NIH HHS - R35 GM122516()
  • NIGMS NIH HHS - T32 GM007347()
  • NIH HHS - OD008466(United States)
  • NIH HHS - P40 OD018537()

Reshaping of the Dendritic Cell Chromatin Landscape and Interferon Pathways during HIV Infection.

  • Johnson JS
  • Cell Host Microbe
  • 2018 Mar 14

Literature context:


Abstract:

Myeloid dendritic cells (DCs) have the innate capacity to sense pathogens and orchestrate immune responses. However, DCs do not mount efficient immune responses to HIV-1, primarily due to restriction of virus reverse transcription, which prevents accumulation of viral cDNA and limits its detection through the cGAS-STING pathway. By allowing reverse transcription to proceed, we find that DCs detect HIV-1 in distinct phases, before and after virus integration. Blocking integration suppresses, but does not abolish, activation of the transcription factor IRF3, downstream interferon (IFN) responses, and DC maturation. Consistent with two stages of detection, HIV-1 "primes" chromatin accessibility of innate immune genes before and after integration. Once primed, robust IFN responses can be unmasked by agonists of the innate adaptor protein, MyD88, through a process that requires cGAS, STING, IRF3, and nuclear factor κB. Thus, HIV-1 replication increases material available for sensing, and discrete inflammatory inputs tune cGAS signaling to drive DC maturation.

Funding information:
  • NIAID NIH HHS - R21 AI084633()
  • NINDS NIH HHS - R21 NS050463(United States)

A Metabolic Basis for Endothelial-to-Mesenchymal Transition.

  • Xiong J
  • Mol. Cell
  • 2018 Feb 15

Literature context:


Abstract:

Endothelial-to-mesenchymal transition (EndoMT) is a cellular process often initiated by the transforming growth factor β (TGF-β) family of ligands. Although required for normal heart valve development, deregulated EndoMT is linked to a wide range of pathological conditions. Here, we demonstrate that endothelial fatty acid oxidation (FAO) is a critical in vitro and in vivo regulator of EndoMT. We further show that this FAO-dependent metabolic regulation of EndoMT occurs through alterations in intracellular acetyl-CoA levels. Disruption of FAO via conditional deletion of endothelial carnitine palmitoyltransferase II (Cpt2E-KO) augments the magnitude of embryonic EndoMT, resulting in thickening of cardiac valves. Consistent with the known pathological effects of EndoMT, adult Cpt2E-KO mice demonstrate increased permeability in multiple vascular beds. Taken together, these results demonstrate that endothelial FAO is required to maintain endothelial cell fate and that therapeutic manipulation of endothelial metabolism could provide the basis for treating a growing number of EndoMT-linked pathological conditions.

Funding information:
  • Intramural NIH HHS - Z01 HL005012-11()
  • NHLBI NIH HHS - K08 HL121174()
  • NIA NIH HHS - P30 AG024827()
  • NIDDK NIH HHS - T32 DK007052()
  • NIGMS NIH HHS - GM084445(United States)
  • NINDS NIH HHS - R01 NS072241()

Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility.

  • Zhang DL
  • Elife
  • 2018 Feb 2

Literature context:


Abstract:

Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and β-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or β-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that β-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/β-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.

Funding information:
  • NIMH NIH HHS - R37 MH049428(United States)

RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis.

  • Cortes JR
  • Cancer Cell
  • 2018 Feb 12

Literature context:


Abstract:

Angioimmunoblastic T cell lymphoma (AITL) is an aggressive tumor derived from malignant transformation of T follicular helper (Tfh) cells. AITL is characterized by loss-of-function mutations in Ten-Eleven Translocation 2 (TET2) epigenetic tumor suppressor and a highly recurrent mutation (p.Gly17Val) in the RHOA small GTPase. Yet, the specific role of RHOA G17V in AITL remains unknown. Expression of Rhoa G17V in CD4+ T cells induces Tfh cell specification; increased proliferation associated with inducible co-stimulator (ICOS) upregulation and increased phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase signaling. Moreover, RHOA G17V expression together with Tet2 loss resulted in development of AITL in mice. Importantly, Tet2-/-RHOA G17V tumor proliferation in vivo can be inhibited by ICOS/PI3K-specific blockade, supporting a driving role for ICOS signaling in Tfh cell transformation.

Funding information:
  • NCI NIH HHS - R01 CA197945()
  • NIDDK NIH HHS - R37 DK44746(United States)

Proteomic Profiling of Human Uterine Fibroids Reveals Upregulation of the Extracellular Matrix Protein Periostin.

  • Jamaluddin MFB
  • Endocrinology
  • 2018 Feb 1

Literature context:


Abstract:

The central characteristic of uterine fibroids is excessive deposition of extracellular matrix (ECM), which contributes to fibroid growth and bulk-type symptoms. Despite this, very little is known about patterns of ECM protein expression in fibroids and whether these are influenced by the most common genetic anomalies, which relate to MED12. We performed extensive genetic and proteomic analyses of clinically annotated fibroids and adjacent normal myometrium to identify the composition and expression patterns of ECM proteins in MED12 mutation-positive and mutation-negative uterine fibroids. Genetic sequencing of tissue samples revealed MED12 alterations in 39 of 65 fibroids (60%) from 14 patients. Using isobaric tagged-based quantitative mass spectrometry on three selected patients (n = 9 fibroids), we observed a common set of upregulated (>1.5-fold) and downregulated (<0.66-fold) proteins in small, medium, and large fibroid samples of annotated MED12 status. These two sets of upregulated and downregulated proteins were the same in all patients, regardless of variations in fibroid size and MED12 status. We then focused on one of the significant upregulated ECM proteins and confirmed the differential expression of periostin using western blotting and immunohistochemical analysis. Our study defined the proteome of uterine fibroids and identified that increased ECM protein expression, in particular periostin, is a hallmark of uterine fibroids regardless of MED12 mutation status. This study sets the foundation for further investigations to analyze the mechanisms regulating ECM overexpression and the functional role of upregulated ECM proteins in leiomyogenesis.

Funding information:
  • NIGMS NIH HHS - GM080484(United States)

Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional Deletion of Ctcf in Camk2a-Cre-Expressing Neurons.

  • McGill BE
  • J. Neurosci.
  • 2018 Jan 3

Literature context:


Abstract:

CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chromatin structure. Human mutations in CTCF cause intellectual disability and autistic features. Knocking out Ctcf in mouse embryonic neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked out Ctcf postnatally in glutamatergic forebrain neurons under the control of Camk2a-Cre. CtcfloxP/loxP;Camk2a-Cre+ (Ctcf CKO) mice of both sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by 4 months of age. Ctcf CKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of mRNA from Ctcf CKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Separate microarray analysis of mRNA isolated specifically from Ctcf CKO mouse hippocampal neurons by ribosomal affinity purification identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia in Ctcf CKO hippocampus. Finally, we found that microglia in Ctcf CKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immunostaining for CD68, a marker of microglial activation. Our findings confirm that Ctcf KO in postnatal neurons causes a neurobehavioral phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial dysfunction.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with postnatal CTCF depletion are less well studied. We find that mice lacking Ctcf in Camk2a-expressing neurons (Ctcf CKO mice) have spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine density. We demonstrate that Ctcf CKO mice overexpress inflammation-related genes in the brain and have microglia with abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and dysfunctional neuron-microglia interactions are factors in the pathology of CTCF deficiency.

Funding information:
  • NICHD NIH HHS - U54 HD087011()
  • NIGMS NIH HHS - GM007240(United States)

Iron promotes α-synuclein aggregation and transmission by inhibiting TFEB-mediated autophagosome-lysosome fusion.

  • Xiao Y
  • J. Neurochem.
  • 2018 Jan 25

Literature context:


Abstract:

Recent studies have strongly shown that cell-to-cell transmission of neuropathogenic proteins is a common mechanism for the development of neurodegenerative diseases. However, the underlying cause is complex and little is known. Although distinct processes are involved in the pathogenesis of various diseases, they all share the common feature of iron accumulation, an attribute that is particularly prominent in synucleinopathies. However, whether iron is a cofactor in facilitating the spread of α-synuclein remains unclear. Here, we constructed a cell-to-cell transmission model of α-synuclein using SN4741 cell line based on adenovirus vectors. Cells were treated with FeCl2, and α-synuclein aggregation and transmission were then evaluated. In addition, the possible mechanisms were investigated through gene knockdown or over-expression. Our results demonstrated that iron promoted α-synuclein aggregation and transmission by inhibiting autophagosome-lysosome fusion. Furthermore, iron decreased the expression of nuclear transcription factor EB (TFEB), a master transcriptional regulator of autophagosome-lysosome fusion, and inhibited its nuclear translocation through activating AKT/mTORC1 signaling. After silencing TFEB, ratios of α-synuclein aggregation and transmission were not significantly altered by the presence of iron; on the other hand, when TFEB was over-expressed, the transmission of α-synuclein induced by iron was obviously reversed; suggesting the mechanism by which iron promotes α-synuclein transmission may be mediated by TFEB. Taken together, our data reveal a previously unknown relationship between iron and α-synuclein, and identify TFEB as not only a potential target for preventing α-synuclein transmission, but also a critical factor for iron-induced α-synuclein aggregation and transmission. Indeed, this newly discovered role of iron and TFEB in synucleinopathies may provide novel targets for developing therapeutic strategies to prevent α-synuclein transmission in Parkinson's disease.

Funding information:
  • NINDS NIH HHS - R01 NS078283(United States)

Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase.

  • O'Banion CP
  • Cell Chem Biol
  • 2018 Jan 18

Literature context:


Abstract:

Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.

Funding information:
  • NCI NIH HHS - U01 CA207160()
  • NHLBI NIH HHS - P01 HL024136-250014(United States)
  • NINDS NIH HHS - R21 NS093617()

CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response.

  • Chatterjee S
  • Cell Metab.
  • 2018 Jan 9

Literature context:


Abstract:

Heightened effector function and prolonged persistence, the key attributes of Th1 and Th17 cells, respectively, are key features of potent anti-tumor T cells. Here, we established ex vivo culture conditions to generate hybrid Th1/17 cells, which persisted long-term in vivo while maintaining their effector function. Using transcriptomics and metabolic profiling approaches, we showed that the enhanced anti-tumor property of Th1/17 cells was dependent on the increased NAD+-dependent activity of the histone deacetylase Sirt1. Pharmacological or genetic inhibition of Sirt1 activity impaired the anti-tumor potential of Th1/17 cells. Importantly, T cells with reduced surface expression of the NADase CD38 exhibited intrinsically higher NAD+, enhanced oxidative phosphorylation, higher glutaminolysis, and altered mitochondrial dynamics that vastly improved tumor control. Lastly, blocking CD38 expression improved tumor control even when using Th0 anti-tumor T cells. Thus, strategies targeting the CD38-NAD+ axis could increase the efficacy of anti-tumor adoptive T cell therapy.

Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding.

  • Liao P
  • Mol. Cell
  • 2017 Dec 21

Literature context:


Abstract:

TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.

Funding information:
  • NHLBI NIH HHS - R00HL-091133(United States)

A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3α and GSK3β in Regulating Embryonic Stem Cell Fate.

  • Chen X
  • Dev. Cell
  • 2017 Dec 4

Literature context:


Abstract:

Glycogen synthase kinase 3 (GSK3) plays a central role in diverse cellular processes. GSK3 has two mammalian isozymes, GSK3α and GSK3β, whose functions remain ill-defined because of a lack of inhibitors that can distinguish between the two highly homologous isozymes. Here, we show that GSK3α and GSK3β can be selectively inhibited in mouse embryonic stem cells (ESCs) using a chemical-genetic approach. Selective inhibition of GSK3β is sufficient to maintain mouse ESC self-renewal, whereas GSK3α inhibition promotes mouse ESC differentiation toward neural lineages. Genome-wide transcriptional analysis reveals that GSK3α and GSK3β have distinct sets of downstream targets. Furthermore, selective inhibition of individual GSK3 isozymes yields distinct phenotypes from gene deletion, highlighting the power of the chemical-genetic approach in dissecting kinase catalytic functions from the protein's scaffolding functions. Our study opens new avenues for defining GSK3 isozyme-specific functions in various cellular processes.

Funding information:
  • NICHD NIH HHS - T32 HD060549()
  • NINDS NIH HHS - R01 NS048276(United States)

Bladder-cancer-associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation.

  • Halstead AM
  • Elife
  • 2017 Nov 16

Literature context:


Abstract:

RXRA regulates transcription as part of a heterodimer with 14 other nuclear receptors, including the peroxisome proliferator-activated receptors (PPARs). Analysis from TCGA raised the possibility that hyperactive PPAR signaling, either due to PPAR gamma gene amplification or RXRA hot-spot mutation (S427F/Y) drives 20-25% of human bladder cancers. Here, we characterize mutant RXRA, demonstrating it induces enhancer/promoter activity in the context of RXRA/PPAR heterodimers in human bladder cancer cells. Structure-function studies indicate that the RXRA substitution allosterically regulates the PPAR AF2 domain via an aromatic interaction with the terminal tyrosine found in PPARs. In mouse urothelial organoids, PPAR agonism is sufficient to drive growth-factor-independent growth in the context of concurrent tumor suppressor loss. Similarly, mutant RXRA stimulates growth-factor-independent growth of Trp53/Kdm6a null bladder organoids. Mutant RXRA-driven growth of urothelium is reversible by PPAR inhibition, supporting PPARs as targetable drivers of bladder cancer.

MEF2C Interacts With c-FOS in PTH-Stimulated Mmp13 Gene Expression in Osteoblastic Cells.

  • Nakatani T
  • Endocrinology
  • 2017 Nov 1

Literature context:


Abstract:

Parathyroid hormone (PTH) regulates the transcription of many genes in the osteoblast. One of these genes is Mmp13, which is involved in bone remodeling and early stages of endochondral bone formation. Previously, we reported that PTH induces Mmp13 transcription by regulating the dissociation of histone deacetylase 4 (HDAC4) from runt-related transcription factor 2 (Runx2), and the association of the HATs, p300, and p300/CREB binding protein (CBP)-associated factor. It is known that, in addition to Runx2, HDAC4 binds to the transcription factor, myocyte-specific enhancer factor 2c (MEF2C), and represses its activity. In this work, we investigated whether MEF2C participates in PTH-stimulated Mmp13 gene expression in osteoblastic cells and how it does so. Knockdown of Mef2c in UMR 106-01 cells repressed Mmp13 messenger RNA expression and promoter activity with or without PTH treatment. Chromatin immunoprecipitation (ChIP) assays showed that MEF2C associated with the Mmp13 promoter; this increased after 4 hours of PTH treatment. ChIP-reChIP results indicate that endogenous MEF2C associates with HDAC4 on the Mmp13 promoter; after PTH treatment, this association decreased. From gel shift, ChIP, and promoter-reporter assays, MEF2C was found to associate with the activator protein-1 (AP-1) site without directly binding to DNA and had its stimulatory effect through interaction with c-FOS. In conclusion, MEF2C is necessary for Mmp13 gene expression at the transcriptional level and participates in PTH-stimulated Mmp13 gene expression by increased binding to c-FOS at the AP-1 site in the Mmp13 promoter. The observation of MEF2C interacting with a member of the AP-1 transcription factor family provides knowledge of the functions of HDAC4, c-FOS, and MEF2C.

Funding information:
  • NEI NIH HHS - R01 EY026024(United States)

Mitochondrial Priming by CD28.

  • Klein Geltink RI
  • Cell
  • 2017 Oct 5

Literature context:


Abstract:

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.

Funding information:
  • NCI NIH HHS - R01 CA181125()
  • NIAID NIH HHS - R01 AI091965()
  • NIAID NIH HHS - R01 AI110481()

Mitochondrial Fission Promotes the Continued Clearance of Apoptotic Cells by Macrophages.

  • Wang Y
  • Cell
  • 2017 Oct 5

Literature context:


Abstract:

Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs. We show here that uptake of multiple ACs by macrophages requires dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, which is triggered by AC uptake. When mitochondrial fission is disabled, AC-induced increase in cytosolic calcium is blunted owing to mitochondrial calcium sequestration, and calcium-dependent phagosome formation around secondarily encountered ACs is impaired. These defects can be corrected by silencing the mitochondrial calcium uniporter (MCU). Mice lacking myeloid Drp1 showed defective efferocytosis and its pathologic consequences in the thymus after dexamethasone treatment and in advanced atherosclerotic lesions in fat-fed Ldlr-/- mice. Thus, mitochondrial fission in response to AC uptake is a critical process that enables macrophages to clear multiple ACs and to avoid the pathologic consequences of defective efferocytosis in vivo.

Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity.

  • Ying W
  • Cell
  • 2017 Oct 5

Literature context:


Abstract:

MiRNAs are regulatory molecules that can be packaged into exosomes and secreted from cells. Here, we show that adipose tissue macrophages (ATMs) in obese mice secrete miRNA-containing exosomes (Exos), which cause glucose intolerance and insulin resistance when administered to lean mice. Conversely, ATM Exos obtained from lean mice improve glucose tolerance and insulin sensitivity when administered to obese recipients. miR-155 is one of the miRNAs overexpressed in obese ATM Exos, and earlier studies have shown that PPARγ is a miR-155 target. Our results show that miR-155KO animals are insulin sensitive and glucose tolerant compared to controls. Furthermore, transplantation of WT bone marrow into miR-155KO mice mitigated this phenotype. Taken together, these studies show that ATMs secrete exosomes containing miRNA cargo. These miRNAs can be transferred to insulin target cell types through mechanisms of paracrine or endocrine regulation with robust effects on cellular insulin action, in vivo insulin sensitivity, and overall glucose homeostasis.

The control of oligodendrocyte bioenergetics by interferon-gamma (IFN-γ) and Src homology region 2 domain-containing phosphatase-1 (SHP-1).

  • Minchenberg SB
  • J. Neuroimmunol.
  • 2017 Oct 28

Literature context:


Abstract:

Glycolysis and mitochondrial respiration are essential for oligodendrocyte metabolism in both the developing and adult CNS. Based on recent reports on the effects of the proinflammatory cytokine IFN-γ on metabolism and on oligodendrocytes, we addressed whether IFN-γ may affect oligodendrocyte bioenergetics in ways relevant to CNS disease. Oligodendrocytes of mice treated with IFN-γ showed significant reductions in aerobic glycolysis and mitochondrial respiration. As expected, IFN-γ treatment led to the induction of STAT1 in oligodendrocytes indicating active signaling into these cells. To determine the direct effects of IFN-γ on oligodendrocyte metabolism, cultured oligodendrocytes were treated with IFN-γ in vitro, which resulted in suppression of glycolysis similar to oligodendrocytes of animals treated with IFN-γ in vivo. Mice lacking SHP-1, a key regulator of IFN-γ and STAT1 signaling in CNS glia, had high constitutive levels of STAT1 and decreased aerobic glycolysis and mitochondrial respiration rates relative to wild type mouse oligodendrocytes. Together, these data show that IFN-γ and SHP-1 control oligodendrocyte bioenergetics in ways that may relate to the role of this cytokine in CNS disease.

Widespread Post-transcriptional Attenuation of Genomic Copy-Number Variation in Cancer.

  • Gonçalves E
  • Cell Syst
  • 2017 Oct 25

Literature context:


Abstract:

Copy-number variations (CNVs) are ubiquitous in cancer and often act as driver events, but the effects of CNVs on the proteome of tumors are poorly understood. Here, we analyze recently published genomics, transcriptomics, and proteomics datasets made available by CPTAC and TCGA consortia on 282 breast, ovarian, and colorectal tumor samples to investigate the impact of CNVs in the proteomes of these cells. We found that CNVs are buffered by post-transcriptional regulation in 23%-33% of proteins that are significantly enriched in protein complex members. Our analyses show that complex subunits are highly co-regulated, and some act as rate-limiting steps of complex assembly, as their depletion induces decreased abundance of other complex members. We identified 48 such rate-limiting interactions and experimentally confirmed our predictions on the interactions of AP3B1 with AP3M1 and GTF2E2 with GTF2E1. This study highlights the importance of post-transcriptional mechanisms in cancer that allow cells to cope with their altered genomes.

A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development.

  • Boege Y
  • Cancer Cell
  • 2017 Sep 11

Literature context:


Abstract:

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.

Funding information:
  • NIDDK NIH HHS - R01 DK107220()

Obesity-Induced Infertility in Male Mice Is Associated With Disruption of Crisp4 Expression and Sperm Fertilization Capacity.

  • Borges BC
  • Endocrinology
  • 2017 Sep 1

Literature context:


Abstract:

Approximately 15% of human couples of reproductive age have impaired fertility, and the male component accounts for about half of these cases. The etiology is usually unknown, but high correlation with the increase in obesity rates is documented. In this study, we show that diet-induced and genetically obese mice display copulatory behavior comparable to controls, but the number of females impregnated by obese males is remarkably low. Screening for changes in gene expression in the male reproductive tract showed decreased Crisp4 expression in testis and epididymis of obese mice. Lack of CRISP4 in the luminal membrane of epididymal cells indicated inadequate secretion. Consistent with CRISP4 action in acrosome reaction, sperm from mice fed a high-fat diet (HFD) had decreased fertilization capacity. CRISP4 treatment of sperm from HFD mice prior to in vitro fertilization improved fertilization rate. In leptin-deficient obese and infertile mice, leptin's effect to restore CRISP4 expression and function required gonadal hormones. Our findings indicate that the obesity-induced decline in sperm motility and fertilization capacity results in part from the disruption of epididymal CRISP4 expression and secretion.

Erbb4 Deletion from Medium Spiny Neurons of the Nucleus Accumbens Core Induces Schizophrenia-Like Behaviors via Elevated GABAA Receptor α1 Subunit Expression.

  • Geng HY
  • J. Neurosci.
  • 2017 Aug 2

Literature context:


Abstract:

Medium spiny neurons (MSNs), the major GABAergic projection neurons in the striatum, are implicated in many neuropsychiatric diseases such as schizophrenia, but the underlying mechanisms remain unclear. We found that a deficiency in Erbb4, a schizophrenia risk gene, in MSNs of the nucleus accumbens (NAc) core, but not the dorsomedial striatum, markedly induced schizophrenia-like behaviors such as hyperactivity, abnormal marble-burying behavior, damaged social novelty recognition, and impaired sensorimotor gating function in male mice. Using immunohistochemistry, Western blot, RNA interference, electrophysiology, and behavior test studies, we found that these phenomena were mediated by increased GABAA receptor α1 subunit (GABAAR α1) expression, which enhanced inhibitory synaptic transmission on MSNs. These results suggest that Erbb4 in MSNs of the NAc core may contribute to the pathogenesis of schizophrenia by regulating GABAergic transmission and raise the possibility that GABAAR α1 may therefore serve as a new therapeutic target for schizophrenia.SIGNIFICANCE STATEMENT Although ErbB4 is highly expressed in striatal medium spiny neurons (MSNs), its role in this type of neuron has not been reported previously. The present study demonstrates that Erbb4 deletion in nucleus accumbens (NAc) core MSNs can induce schizophrenia-like behaviors via elevated GABAA receptor α1 subunit (GABAAR α1) expression. To our knowledge, this is the first evidence that ErbB4 signaling in the MSNs is involved in the pathology of schizophrenia. Furthermore, restoration of GABAAR α1 in the NAc core, but not the dorsal medium striatum, alleviated the abnormal behaviors. Here, we highlight the role of the NAc core in the pathogenesis of schizophrenia and suggest that GABAAR α1 may be a potential pharmacological target for its treatment.

Funding information:
  • NINDS NIH HHS - R01 NS062822(United States)

Defining a Cancer Dependency Map.

  • Tsherniak A
  • Cell
  • 2017 Jul 27

Literature context:


Abstract:

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.

IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.

  • Liu Z
  • Neuron
  • 2017 Jul 5

Literature context:


Abstract:

During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information.

Funding information:
  • NIMH NIH HHS - P50 MH086403()

Thermoregulatory and Cardiovascular Consequences of a Transient Thyrotoxicosis and Recovery in Male Mice.

  • Hoefig CS
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

Thyroid hormones play a major role in body homeostasis, regulating energy expenditure and cardiovascular function. Given that obese people or athletes might consider rapid weight loss as beneficial, voluntary intoxication with T4 preparations is a growing cause for thyrotoxicosis. However, the long-lasting effects of transient thyrotoxicosis are poorly understood. Here we examined metabolic, thermoregulatory, and cardiovascular function upon induction and recovery from a 2-week thyrotoxicosis in male C57BL/6J mice. Our results showed that T4 treatment caused tachycardia, decreased hepatic glycogen stores, and higher body temperature as expected; however, we did not observe an increase in brown fat thermogenesis or decreased tail heat loss, suggesting that these tissues do not contribute to the hyperthermia induced by thyroid hormone. Most interestingly, when the T4 treatment was ended, a pronounced bradycardia was observed in the animals, which was likely caused by a rapid decline of T3 even below baseline levels. On the molecular level, this was accompanied by an overexpression of cardiac phospholamban and Serca2a mRNA, supporting the hypothesis that the heart depends more on T3 than T4. Our findings therefore demonstrate that a transient thyrotoxicosis can have pathological effects that even persist beyond the recovery of serum T4 levels, and in particular the observed bradycardia could be of clinical relevance when treating hyperthyroid patients.

Funding information:
  • NIA NIH HHS - R21 AG024372(United States)

Hippo Signaling Suppresses Cell Ploidy and Tumorigenesis through Skp2.

  • Zhang S
  • Cancer Cell
  • 2017 May 8

Literature context:


Abstract:

Polyploidy can lead to aneuploidy and tumorigenesis. Here, we report that the Hippo pathway effector Yap promotes the diploid-polyploid conversion and polyploid cell growth through the Akt-Skp2 axis. Yap strongly induces the acetyltransferase p300-mediated acetylation of the E3 ligase Skp2 via Akt signaling. Acetylated Skp2 is exclusively localized to the cytosol, which causes hyper-accumulation of the cyclin-dependent kinase inhibitor p27, leading to mitotic arrest and subsequently cell polyploidy. In addition, the pro-apoptotic factors FoxO1/3 are overly degraded by acetylated Skp2, resulting in polyploid cell division, genomic instability, and oncogenesis. Importantly, the depletion or inactivation of Akt or Skp2 abrogated Hippo signal deficiency-induced liver tumorigenesis, indicating their epistatic interaction. Thus, we conclude that Hippo-Yap signaling suppresses cell polyploidy and oncogenesis through Skp2.

Farnesoid X Receptor Regulation of the NLRP3 Inflammasome Underlies Cholestasis-Associated Sepsis.

  • Hao H
  • Cell Metab.
  • 2017 Apr 4

Literature context:


Abstract:

Cholestasis is a common complication of sepsis, and the increased plasma levels of bile acids are predictive of sepsis-associated mortality. However, the exact mechanism by which cholestasis aggravates sepsis development remains elusive. Here, we show that bile acids are danger-associated molecular patterns (DAMPs) that can activate both signal 1 and 2 of the NLRP3 inflammasome in inflammatory macrophages. Mechanistically, bile acids induce a prolonged calcium influx and activate the NLRP3 inflammasome synergistically with ATP. Experimental cholestasis sensitizes, while cholestyramine, a bile acid sequestrant, protects mice from LPS-induced sepsis. FXR negatively regulates the NLRP3 inflammasome via physical interaction with NLRP3 and caspase 1. Fxr-null mice are more sensitive, while FXR-overexpressing mice are more resistant, to endoxemia shock. These findings suggest that bile acids and FXR play pivotal roles in sepsis via controlling the NLRP3 inflammasome, and that targeting FXR may represent a therapeutic strategy for cholestasis-associated sepsis.

Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks.

  • Schoenherr C
  • Elife
  • 2017 Mar 31

Literature context:


Abstract:

Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat' controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs.

Funding information:
  • European Research Council - 294440()

PI(3,4,5)P3 Engagement Restricts Akt Activity to Cellular Membranes.

  • Ebner M
  • Mol. Cell
  • 2017 Feb 2

Literature context:


Abstract:

Protein kinase B/Akt regulates cellular metabolism, survival, and proliferation in response to hormones and growth factors. Hyperactivation of Akt is frequently observed in cancer, while Akt inactivation is associated with severe diabetes. Here, we investigated the molecular and cellular mechanisms that maintain Akt activity proportional to the activating stimulus. We show that binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3) or PI(3,4)P2 to the PH domain allosterically activates Akt by promoting high-affinity substrate binding. Conversely, dissociation from PIP3 was rate limiting for Akt dephosphorylation, dependent on the presence of the PH domain. In cells, active Akt associated primarily with cellular membranes. In contrast, a transforming mutation that uncouples kinase activation from PIP3 resulted in the accumulation of hyperphosphorylated, active Akt in the cytosol. Our results suggest that intramolecular allosteric and cellular mechanisms cooperate to restrict Akt activity to cellular membranes, thereby enhancing the fidelity of Akt signaling and the specificity of downstream substrate phosphorylation.

IRGB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes.

  • Man SM
  • Cell
  • 2016 Oct 6

Literature context:


Abstract:

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1β and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.

Voluntary Exercise Improves Estrous Cyclicity in Prenatally Androgenized Female Mice Despite Programming Decreased Voluntary Exercise: Implications for Polycystic Ovary Syndrome (PCOS).

  • Homa LD
  • Endocrinology
  • 2015 Dec 21

Literature context:


Abstract:

Prenatal androgen (PNA) exposure in mice produces a phenotype resembling lean polycystic ovary syndrome. We studied effects of voluntary exercise on metabolic and reproductive parameters in PNA vs vehicle (VEH)-treated mice. Mice (8 wk of age) were housed individually and estrous cycles monitored. At 10 weeks of age, mice were divided into groups (PNA, PNA-run, VEH, VEH-run, n = 8-9/group); those in the running groups received wheels allowing voluntary running. Unexpectedly, PNA mice ran less distance than VEH mice; ovariectomy eliminated this difference. In ovary-intact mice, there was no difference in glucose tolerance, lower limb muscle fiber types, weight, or body composition among groups after 16 weeks of running, although some mitochondrial proteins were mildly up-regulated by exercise in PNA mice. Before running, estrous cycles in PNA mice were disrupted with most days in diestrus. There was no change in cycles during weeks 1-6 of running (10-15 wk of age). In contrast, from weeks 11 to 16 of running, cycles in PNA mice improved with more days in proestrus and estrus and fewer in diestrus. PNA programs reduced voluntary exercise, perhaps mediated in part by ovarian secretions. Exercise without weight loss improved estrous cycles, which if translated could be important for fertility in and counseling of lean women with polycystic ovary syndrome.

Funding information:
  • NEI NIH HHS - R01 EY020578(United States)

Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke.

  • Wang P
  • J. Neurosci. Res.
  • 2015 Nov 19

Literature context:


Abstract:

Micro-RNAs (miRs) have emerged as key gene regulators in many diseases, including stroke. We recently reported that miR-30a protects N2A cells against ischemic injury, in part through enhancing beclin 1-mediated autophagy. The present study explores further the involvement of miR-30a in ischemia-induced apoptosis and its possible mechanisms in primary cortical neurons and stroked mouse brain. We demonstrate that miR-30a level is significantly decreased in cortical neurons after 1-hr oxygen-glucose deprivation (OGD)/24-hr reoxygenation. Overexpression of miR-30a aggravated the OGD-induced neuronal cell death, whereas inhibition of miR-30a attenuated necrosis and apoptosis as determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-di-phenyl-2H-tetrazolium bromide, lactate dehydrogenase, TUNEL, and cleaved caspase-3. The amount of HSPA5 protein, which is predicted to be a putative target of miR-30a by TargetScan, could be reduced by pre-miR-30a, whereas it was increased by anti-miR-30a. Furthermore, the luciferase reporter assay confirmed that miR-30a directly binds to the predicted 3'-UTR target sites of the hspa5 gene. The cell injury regulated by miR-30a in OGD-treated cells could be aggravated by HSPA5 siRNA. We also observed an interaction of HSPA5 and caspase-12 by coimmunoprecipitation and speculate that HSPA5 might be involved in endoplasmic reticulum stress-induced apoptosis. In vivo, reduced miR-30a increased the HSPA5 level and attenuated ischemic brain infarction in focal ischemia-stroked mice. Downregulation of miR-30a could prevent neural ischemic injury through upregulating HSPA5 protein expression, and decreased ER stress-induced apoptosis might be one of the mechanisms underlying HSPA5-mediated neuroprotection.

Funding information:
  • NIDCD NIH HHS - R01 DC014728(United States)

Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice.

  • Matsuda K
  • Endocrinology
  • 2015 Mar 21

Literature context:


Abstract:

Adiponectin (Adipo), a multimeric adipocyte-secreted protein abundant in the circulation, is implicated in cardiovascular protective functions. Recent work documented that Adipo locally associates with responsive tissues through interactions with T-cadherin (Tcad), an atypical, glycosylphosphatidylinositol (GPI)-anchored cadherin cell surface glycoprotein. Mice deficient for Tcad lack tissue-associated Adipo, accumulate Adipo in the circulation, and mimic the Adipo knockout (KO) cardiovascular phenotype. In reverse, Tcad protein is visibly reduced from cardiac tissue in Adipo-KO mice, suggesting interdependent regulation of the 2 proteins. Here, we evaluate the effect of Adipo on Tcad protein expression. Adipo and Tcad proteins were colocalized in aorta, heart, and skeletal muscle. Adipo positively regulated levels of Tcad protein in vivo and in endothelial cell (EC) cultures. In Tcad-KO mice, binding of endogenous and exogenously administered Adipo to cardiovascular tissues was dramatically reduced. Consistently, knockdown of Tcad in cultured murine vascular ECs significantly diminished Adipo binding. In search for a possible mechanism, we found that enzymatic cleavage of Tcad with phosphatidylinositol-specific phospholipase C increases plasma Adipo while decreasing tissue-bound levels. Similarly, pretreatment of cultured ECs with serum containing Adipo attenuated phosphatidylinositol-specific phospholipase C-mediated Tcad cleavage. In vivo administration of adenovirus producing Adipo suppressed plasma levels of GPI phospholipase D, the endogenous cleavage enzyme for GPI-anchored proteins. In conclusion, our data show that both circulating and tissue-bound Adipo levels are dependent on Tcad and, in reverse, regulate tissue Tcad levels through a positive feedback loop that operates by suppressing phospholipase-mediated Tcad release from the cell surface.

Funding information:
  • NINDS NIH HHS - R01 NS062736(United States)

Myostatin stimulates, not inihibits, C2C12 myoblast proliferation.

  • Rodgers BD
  • Endocrinology
  • 2014 Mar 25

Literature context:


Abstract:

The immortal C2C12 cell line originates from dystrophic mouse thigh muscle and has been used to study the endocrine control of muscle cell growth, development, and function, including those actions regulated by myostatin. Previous studies suggest that high concentrations of recombinant myostatin generated in bacteria inhibit C2C12 proliferation and differentiation. Recombinant myostatin generated in eukaryotic systems similarly inhibits the proliferation of primary myosatellite cells, but consequently initiates, rather than inhibits, their differentiation and is bioactive at far lower concentrations. Our studies indicate that 2 different sources of recombinant myostatin made in eukaryotes stimulate, not inhibit, C2C12 proliferation. This effect occurred at different cell densities and serum concentrations and in the presence of IGF-I, a potent myoblast mitogen. This stimulatory effect was comparable to that obtained with TGFβ1, a related factor that also inhibits primary myosatellite cell proliferation. Attenuating the myostatin/activin (ie, Acvr2b) and TGFβ1 receptor signaling pathways with the Alk4/5 and Alk5 inhibitors, SB431542 and SB505142, respectively, similarly attenuated proliferation induced by serum, myostatin or TGFβ1 and in a dose-dependent manner. In serum-free medium, both myostatin and TGFβ1 stimulated Smad2 phosphorylation, but not that of Smad3, and a Smad3 inhibitor (SIS3) only inhibited proliferation in cells cultured in high serum. Thus, myostatin and TGFβ1 stimulate C2C12 proliferation primarily via Smad2. These results together question the physiological relevance of the C2C12 model and previous studies using recombinant myostatin generated in bacteria. They also support the alternative use of primary myosatellite cells and recombinant myostatin generated in eukaryotes.

Funding information:
  • Canadian Institutes of Health Research - MT-15563(Canada)

Cardiac expression of human type 2 iodothyronine deiodinase increases glucose metabolism and protects against doxorubicin-induced cardiac dysfunction in male mice.

  • Hong EG
  • Endocrinology
  • 2013 Oct 23

Literature context:


Abstract:

Altered glucose metabolism in the heart is an important characteristic of cardiovascular and metabolic disease. Because thyroid hormones have major effects on peripheral metabolism, we examined the metabolic effects of heart-selective increase in T3 using transgenic mice expressing human type 2 iodothyronine deiodinase (D2) under the control of the α-myosin heavy chain promoter (MHC-D2). Hyperinsulinemic-euglycemic clamps showed normal whole-body glucose disposal but increased hepatic insulin action in MHC-D2 mice as compared to wild-type (WT) littermates. Insulin-stimulated glucose uptake in heart was not altered, but basal myocardial glucose metabolism was increased by more than two-fold in MHC-D2 mice. Myocardial lipid levels were also elevated in MHC-D2 mice, suggesting an overall up-regulation of cardiac metabolism in these mice. The effects of doxorubicin (DOX) treatment on cardiac function and structure were examined using M-mode echocardiography. DOX treatment caused a significant reduction in ventricular fractional shortening and resulted in more than 50% death in WT mice. In contrast, MHC-D2 mice showed increased survival rate after DOX treatment, and this was associated with a six-fold increase in myocardial glucose metabolism and improved cardiac function. Myocardial activity and expression of AMPK, GLUT1, and Akt were also elevated in MHC-D2 and WT mice following DOX treatment. Thus, our findings indicate an important role of thyroid hormone in cardiac metabolism and further suggest a protective role of glucose utilization in DOX-mediated cardiac dysfunction.

Funding information:
  • NHLBI NIH HHS - R01 HL117986(United States)