X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

S100 antibody

RRID:AB_10013383

Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes.

  • Lin JR
  • Elife
  • 2018 Jul 11

Literature context:


Abstract:

The architecture of normal and diseased tissues strongly influences the development and progression of disease as well as responsiveness and resistance to therapy. We describe a tissue-based cyclic immunofluorescence (t-CyCIF) method for highly multiplexed immuno-fluorescence imaging of formalin-fixed, paraffin-embedded (FFPE) specimens mounted on glass slides, the most widely used specimens for histopathological diagnosis of cancer and other diseases. t-CyCIF generates up to 60-plex images using an iterative process (a cycle) in which conventional low-plex fluorescence images are repeatedly collected from the same sample and then assembled into a high dimensional representation. t-CyCIF requires no specialized instruments or reagents and is compatible with super-resolution imaging; we demonstrate its application to quantifying signal transduction cascades, tumor antigens and immune markers in diverse tissues and tumors. The simplicity and adaptability of t-CyCIF makes it an effective method for pre-clinical and clinical research and a natural complement to single-cell genomics.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/G006474/2(United Kingdom)
  • Dana-Farber/Harvard Cancer Center - Claudia Adams Barr Program()
  • Dana-Farber/Harvard Cancer Center - GI SPORE Developmental Research Project Award()
  • National Institutes of Health - K08CA222663()
  • National Institutes of Health - P50GM107618()
  • National Institutes of Health - R41-CA224503()
  • National Institutes of Health - U54HL127365()

Sustained activation of ERK1/2 MAPK in Schwann cells causes corneal neurofibroma.

  • Bargagna-Mohan P
  • J. Neurosci. Res.
  • 2018 Apr 17

Literature context:


Abstract:

Recent studies have shown that constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Schwann cells (SCs) increases myelin thickness in transgenic mice. In this secondary analysis, we report that these transgenic mice develop a postnatal corneal neurofibroma with the loss of corneal transparency by age six months. We show that expansion of non-myelinating SCs, under the control of activated ERK1/2, also drive myofibroblast differentiation that derives from both SC precursors and resident corneal keratocytes. Further, these mice also harbor activated mast cells in the central cornea, which contributes to pathological corneal neovascularization and fibrosis. This breach of corneal avascularity and immune status is associated with the growth of the tumor pannus, resulting in a corneal stroma that is nearly four times its normal size. In corneas with advanced disease, some axons became ectopically myelinated, and the disruption of Remak bundles is evident. To determine whether myofibroblast differentiation was linked to vimentin, we examined the levels and phosphorylation status of this fibrotic biomarker. Concomitant with the early upregulation of vimentin, a serine 38-phosphorylated isoform of vimentin (pSer38vim) increased in SCs, which was attributed primarily to the soluble fraction of protein-not the cytoskeletal portion. However, the overexpressed pSer38vim became predominantly cytoskeletal with the growth of the corneal tumor. Our findings demonstrate an unrecognized function of ERK1/2 in the maintenance of corneal homeostasis, wherein its over-activation in SCs promotes corneal neurofibromas. This study is also the first report of a genetically engineered mouse that spontaneously develops a corneal tumor.

Funding information:
  • NEI NIH HHS - R01 EY016782()
  • NINDS NIH HHS - R01 NS038878()
  • NINDS NIH HHS - R21 NS081948()

The Origins and Vulnerabilities of Two Transmissible Cancers in Tasmanian Devils.

  • Stammnitz MR
  • Cancer Cell
  • 2018 Apr 9

Literature context:


Abstract:

Transmissible cancers are clonal lineages that spread through populations via contagious cancer cells. Although rare in nature, two facial tumor clones affect Tasmanian devils. Here we perform comparative genetic and functional characterization of these lineages. The two cancers have similar patterns of mutation and show no evidence of exposure to exogenous mutagens or viruses. Genes encoding PDGF receptors have copy number gains and are present on extrachromosomal double minutes. Drug screening indicates causative roles for receptor tyrosine kinases and sensitivity to inhibitors of DNA repair. Y chromosome loss from a male clone infecting a female host suggests immunoediting. These results imply that Tasmanian devils may have inherent susceptibility to transmissible cancers and present a suite of therapeutic compounds for use in conservation.

Funding information:
  • Canadian Institutes of Health Research - 84294(Canada)

Purification and Characterization of Schwann Cells from Adult Human Skin and Nerve.

  • Stratton JA
  • eNeuro
  • 2018 Mar 20

Literature context:


Abstract:

Despite its modest capacity for regeneration, peripheral nervous system injury often results in significant long-term disability. Supplementing peripheral nervous system injury with autologous Schwann cells (SCs) may serve to rejuvenate the postinjury environment to enhance regeneration and ultimately improve functional outcomes. However, human nerve-derived SC (hN-SC) collection procedures require invasive surgical resection. Here, we describe the characterization of SCs from adult human skin (hSk-SCs) of four male donors ranging between 27 and 46 years old. Within five weeks of isolating and culturing adherent mixed skin cells, we were able to obtain 3-5 million purified SCs. We found that hSk-SCs appeared transcriptionally indistinguishable from hN-SCs with both populations exhibiting expression of SC genes including: SOX10, SOX9, AP2A1, CDH19, EGR1, ETV5, PAX3, SOX2, CX32, DHH, NECL4, NFATC4, POU3F1, S100B, and YY1. Phenotypic analysis of hSk-SCs and hN-SCs cultures revealed highly enriched populations of SCs indicated by the high percentage of NES+ve, SOX10+ve, s100+ve and p75+ve cells, as well as the expression of a battery of other SC-associated proteins (PAX3, CDH19, ETV5, SOX2, POU3F1, S100B, EGR2, and YY1). We further show that both hSk-SCs and hN-SCs are capable of promoting axonal growth to similar degrees and that a subset of both associate with regenerating axons and form myelin following transplantation into the injured mouse sciatic nerve. Interestingly, although the majority of both hSk-SCs and hN-SCs maintained SOX10 immunoreactivity following transplant, only a subset of each activated the promyelinating factor, POU3F1, and were able to myelinate. Taken together, we demonstrate that adult hSk-SCs are genetically and phenotypically indistinguishable to hN-SCs.

Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury.

  • Dias DO
  • Cell
  • 2018 Mar 22

Literature context:


Abstract:

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.

Funding information:
  • Intramural NIH HHS - Z01 DE000698-10(United States)

Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma.

  • Merk DJ
  • Dev. Cell
  • 2018 Mar 26

Literature context:


Abstract:

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.

Funding information:
  • NIGMS NIH HHS - GM068388(United States)

Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis.

  • Giannakopoulou A
  • J. Neurosci. Res.
  • 2018 Mar 12

Literature context:


Abstract:

Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long-term effects of T cell-mediated central nervous system inflammation on hippocampal neurogenesis. 5-Bromodeoxyuridine (BrdU)-labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.

β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer.

  • Renz BW
  • Cancer Cell
  • 2018 Jan 8

Literature context:


Abstract:

Catecholamines stimulate epithelial proliferation, but the role of sympathetic nerve signaling in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Catecholamines promoted ADRB2-dependent PDAC development, nerve growth factor (NGF) secretion, and pancreatic nerve density. Pancreatic Ngf overexpression accelerated tumor development in LSL-Kras+/G12D;Pdx1-Cre (KC) mice. ADRB2 blockade together with gemcitabine reduced NGF expression and nerve density, and increased survival of LSL-Kras+/G12D;LSL-Trp53+/R172H;Pdx1-Cre (KPC) mice. Therapy with a Trk inhibitor together with gemcitabine also increased survival of KPC mice. Analysis of PDAC patient cohorts revealed a correlation between brain-derived neurotrophic factor (BDNF) expression, nerve density, and increased survival of patients on nonselective β-blockers. These findings suggest that catecholamines drive a feedforward loop, whereby upregulation of neurotrophins increases sympathetic innervation and local norepinephrine accumulation.

Funding information:
  • NCI NIH HHS - P30 CA013696()
  • NCI NIH HHS - R35 CA210088()
  • NCRR NIH HHS - S10 RR025686()
  • NIDDK NIH HHS - DK053904(United States)

Abnormal Microglia and Enhanced Inflammation-Related Gene Transcription in Mice with Conditional Deletion of Ctcf in Camk2a-Cre-Expressing Neurons.

  • McGill BE
  • J. Neurosci.
  • 2018 Jan 3

Literature context:


Abstract:

CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chromatin structure. Human mutations in CTCF cause intellectual disability and autistic features. Knocking out Ctcf in mouse embryonic neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked out Ctcf postnatally in glutamatergic forebrain neurons under the control of Camk2a-Cre. CtcfloxP/loxP;Camk2a-Cre+ (Ctcf CKO) mice of both sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by 4 months of age. Ctcf CKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of mRNA from Ctcf CKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Separate microarray analysis of mRNA isolated specifically from Ctcf CKO mouse hippocampal neurons by ribosomal affinity purification identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia in Ctcf CKO hippocampus. Finally, we found that microglia in Ctcf CKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immunostaining for CD68, a marker of microglial activation. Our findings confirm that Ctcf KO in postnatal neurons causes a neurobehavioral phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial dysfunction.SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with postnatal CTCF depletion are less well studied. We find that mice lacking Ctcf in Camk2a-expressing neurons (Ctcf CKO mice) have spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine density. We demonstrate that Ctcf CKO mice overexpress inflammation-related genes in the brain and have microglia with abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and dysfunctional neuron-microglia interactions are factors in the pathology of CTCF deficiency.

Funding information:
  • NICHD NIH HHS - U54 HD087011()
  • NIGMS NIH HHS - GM007240(United States)

Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes.

  • Köhler C
  • Cell Stem Cell
  • 2017 Nov 2

Literature context:


Abstract:

To identify the cells at the origin of melanoma, we combined single-cell lineage-tracing and transcriptomics approaches with time-lapse imaging. A mouse model that recapitulates key histopathological features of human melanomagenesis was created by inducing a BRafV600E-driven melanomagenic program in tail interfollicular melanocytes. Most targeted mature, melanin-producing melanocytes expanded clonally within the epidermis before losing their differentiated features through transcriptional reprogramming and eventually invading the dermis. Tumors did not form within interscales, which contain both mature and dormant amelanotic melanocytes. The hair follicle bulge, which contains melanocyte stem cells, was also refractory to melanomagenesis. These studies identify varying tumor susceptibilities within the melanocytic lineage, highlighting pigment-producing cells as the melanoma cell of origin, and indicate that regional variation in tumor predisposition is dictated by microenvironmental cues rather than intrinsic differences in cellular origin. Critically, this work provides in vivo evidence that differentiated somatic cells can be reprogrammed into cancer initiating cells.

Migration pathways of sacral neural crest during development of lower urogenital tract innervation.

  • Wiese CB
  • Dev. Biol.
  • 2017 Sep 1

Literature context:


Abstract:

The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction.

Funding information:
  • NCI NIH HHS - P30 CA068485()
  • NEI NIH HHS - P30 EY008126()
  • NICHD NIH HHS - P30 HD015052()
  • NIDDK NIH HHS - P30 DK020593()
  • NIDDK NIH HHS - P30 DK058404()
  • NIDDK NIH HHS - P60 DK020593()
  • NIDDK NIH HHS - R01 DK078158()
  • NIDDK NIH HHS - R56 DK078158()
  • NIDDK NIH HHS - RC1 DK086594()
  • NIDDK NIH HHS - U24 DK059637()

The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration.

  • Clements MP
  • Neuron
  • 2017 Sep 27

Literature context:


Abstract:

Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFβ signaling. TGFβ promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT.

Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction.

  • Hurtado E
  • Front Mol Neurosci
  • 2017 Sep 11

Literature context:


Abstract:

Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system.

  • Figlia G
  • Elife
  • 2017 Sep 7

Literature context:


Abstract:

Myelination is a biosynthetically demanding process in which mTORC1, the gatekeeper of anabolism, occupies a privileged regulatory position. We have shown previously that loss of mTORC1 function in Schwann cells (SCs) hampers myelination. Here, we genetically disrupted key inhibitory components upstream of mTORC1, TSC1 or PTEN, in mouse SC development, adult homeostasis, and nerve injury. Surprisingly, the resulting mTORC1 hyperactivity led to markedly delayed onset of both developmental myelination and remyelination after injury. However, if mTORC1 was hyperactivated after myelination onset, radial hypermyelination was observed. At early developmental stages, physiologically high PI3K-Akt-mTORC1 signaling suppresses expression of Krox20 (Egr2), the master regulator of PNS myelination. This effect is mediated by S6K and contributes to control mechanisms that keep SCs in a not-fully differentiated state to ensure proper timing of myelination initiation. An ensuing decline in mTORC1 activity is crucial to allow myelination to start, while remaining mTORC1 activity drives myelin growth.

Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

  • Semerci F
  • Elife
  • 2017 Jul 12

Literature context:


Abstract:

Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

Funding information:
  • NCI NIH HHS - P30 CA125123()
  • NCRR NIH HHS - S10 RR024574()
  • NIAID NIH HHS - P30 AI036211()
  • NICHD NIH HHS - U54 HD083092()
  • NIDCD NIH HHS - R01 DC006185()
  • NIDCD NIH HHS - R01 DC014832()
  • NIH HHS - S10 OD016167()

S100B + A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes.

  • Diaz-Romero J
  • J. Cell. Physiol.
  • 2017 Jun 18

Literature context:


Abstract:

During monolayer expansion, a necessary step in autologous chondrocyte implantation, human articular chondrocytes (HAC) dedifferentiate and lose their capacity to produce stable hyaline cartilage. Determining HAC potency and learning how to trigger their redifferentiation would improve cell-based cartilage regeneration therapies. We previously identified S100B and S100A1 proteins as markers of HAC redifferentiation potential. Here, we aimed to: (i) demonstrate a correlation between S100B + A1-positive HAC in monolayer culture and their neochondrogenesis capacity in pellet culture; (ii) develop an S100B + A1 cell-based ELISA, and (iii) prove that S100B + A1 induction in HAC increases their chondrogenic capacity. Expression patterns of S100A1 and S100B were investigated in HAC during dedifferentiation (monolayer) or redifferentiation (pellet or high-osmolarity/BMP4 treatment in monolayer) using qRT-PCR, immunocytochemistry, or immunohistochemistry. A cell-based ELISA (CELISA) was developed as a 96-well microplate multiplex assay to measure S100B + A1 (chondrogenesis), alkaline phosphatase (hypertrophy), and DNA amount (normalization), and applied to HAC, bone marrow-derived mesenchymal stem cells and the chondrocytic cell line ATDC5. The direct correlation between the percentage of S100B + A1-positive HAC in monolayer and their neochondrogenesis in pellets validates S100B + A1 as a marker of chondrogenic potency. The S100B + A1-CELISA accurately determines HAC differentiation status, allows identification of chondrogenic stimuli, and permits the simultaneous monitoring of the undesirable hypertrophic phenotype. This novel assay offers a high-throughput, comprehensive and versatile approach for measuring cell chondrogenic potency and for identifying redifferentiation factors/conditions. HAC improved neochondrogenesis in pellets-induced with high-osmolarity and BMP4 treatment in monolayer-suggests that cell instruction prior to implantation may improve cartilage repair. J. Cell. Physiol. 232: 1559-1570, 2017. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NIDCR NIH HHS - R21DE025352(United States)

Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development.

  • Hao MM
  • Front Cell Neurosci
  • 2017 Mar 10

Literature context:


Abstract:

S100B is expressed in various types of glial cells and is involved in regulating many aspects of their function. However, little is known about its role during nervous system development. In this study, we investigated the effect of inhibiting the onset of S100B synthesis in the development of the enteric nervous system, a network of neurons and glia located in the wall of the gut that is vital for control of gastrointestinal function. Intact gut explants were taken from embryonic day (E)13.5 mice, the day before the first immunohistochemical detection of S100B, and cultured in the presence of arundic acid, an inhibitor of S100B synthesis, for 48 h. The effects on Sox10-immunoreactive enteric neural crest progenitors and Hu-immunoreactive enteric neurons were then analyzed. Culture in arundic acid reduced the proportion of Sox10+ cells and decreased cell proliferation. There was no change in the density of Hu+ enteric neurons, however, a small population of cells exhibited atypical co-expression of both Sox10 and Hu, which was not observed in control cultures. Addition of exogenous S100B to the cultures did not change Sox10+ cell numbers. Overall, our data suggest that cell-intrinsic intracellular S100B is important for maintaining Sox10 and proliferation of the developing enteric glial lineage.

Genetic Tracing of Cav3.2 T-Type Calcium Channel Expression in the Peripheral Nervous System.

  • Bernal Sierra YA
  • Front Mol Neurosci
  • 2017 Mar 31

Literature context:


Abstract:

Characterizing the distinct functions of the T-type ion channel subunits Cav3.1, 3.2 or 3.3 has proven difficult due to their highly conserved amino-acid sequences and the lack of pharmacological blockers specific for each subunit. To precisely determine the expression pattern of the Cav3.2 channel in the nervous system we generated two knock-in mouse strains that express EGFP or Cre recombinase under the control of the Cav3.2 gene promoter. We show that in the brains of these animals, the Cav3.2 channel is predominantly expressed in the dentate gyrus of the hippocampus. In the peripheral nervous system, the activation of the promoter starts at E9.5 in neural crest cells that will give rise to dorsal root ganglia (DRG) neurons, but not sympathetic neurons. As development progresses the number of DRG cells expressing the Cav3.2 channel reaches around 7% of the DRG at E16.5, and remains constant until E18.5. Characterization of sensory neuron subpopulations at E18.5 showed that EGFP+ cells are a heterogeneous population consisting mainly of TrkB+ and TrkC+ cells, while only a small percentage of DRG cells were TrkA+. Genetic tracing of the sensory nerve end-organ innervation of the skin showed that the activity of the Cav3.2 channel promoter in sensory progenitors marks many mechanoreceptor and nociceptor endings, but spares slowly adapting mechanoreceptors with endings associated with Merkel cells. Our genetic analysis reveals for the first time that progenitors that express the Cav3.2 T-type calcium channel, defines a sensory specific lineage that populates a large proportion of the DRG. Using our Cav3.2-Cre mice together with AAV viruses containing a conditional fluorescent reporter (tdTomato) we could also show that Cre expression is largely restricted to two functionally distinct sensory neuron types in the adult ganglia. Cav3.2 positive neurons innervating the skin were found to only form lanceolate endings on hair follicles and are probably identical to D-hair receptors. A second population of nociceptive sensory neurons expressing the Cav3.2 gene was found to be positive for the calcitonin-gene related peptide but these neurons are deep tissue nociceptors that do not innervate the skin.

Funding information:
  • European Research Council - 294678()

Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons.

  • Ripamonti S
  • Elife
  • 2017 Feb 23

Literature context:


Abstract:

Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.

Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain.

  • Ogino T
  • J. Comp. Neurol.
  • 2016 Oct 15

Literature context:


Abstract:

In mammals, ventricular walls of the developing brain maintain a neurogenic niche, in which radial glial cells act as neural stem cells (NSCs) and generate new neurons in the embryo. In the adult brain, the neurogenic niche is maintained in the ventricular-subventricular zone (V-SVZ) of the lateral wall of lateral ventricles and the hippocampal dentate gyrus. In the neonatal V-SVZ, radial glial cells transform into astrocytic postnatal NSCs and multiciliated ependymal cells. On the other hand, in zebrafish, radial glial cells continue to cover the surface of the adult telencephalic ventricle and maintain a higher neurogenic potential in the adult brain. However, the cell composition of the neurogenic niche of the aged zebrafish brain has not been investigated. Here we show that multiciliated ependymal cells emerge in the neurogenic niche of the aged zebrafish telencephalon. These multiciliated cells appear predominantly in the dorsal part of the ventral telencephalic ventricular zone, which also contains clusters of migrating new neurons. Scanning electron microscopy and live imaging analyses indicated that these multiple cilia beat coordinately and generate constant fluid flow within the ventral telencephalic ventricle. Analysis of the cell composition by transmission electron microscopy revealed that the neurogenic niche in the aged zebrafish contains different types of cells, with ultrastructures similar to those of ependymal cells, transit-amplifying cells, and migrating new neurons in postnatal mice. These data suggest that the transformation capacity of radial glial cells is conserved but that its timing is different between fish and mice. J. Comp. Neurol. 524:2982-2992, 2016. © 2016 Wiley Periodicals, Inc.

An ShRNA Screen Identifies MEIS1 as a Driver of Malignant Peripheral Nerve Sheath Tumors.

  • Patel AV
  • EBioMedicine
  • 2016 Jul 1

Literature context:


Abstract:

Malignant peripheral nerve sheath tumors (MPNST) are rare soft tissue sarcomas that are a major source of mortality in neurofibromatosis type 1 (NF1) patients. To identify MPNST driver genes, we performed a lentiviral short hairpin (sh) RNA screen, targeting all 130 genes up-regulated in neurofibroma and MPNSTs versus normal human nerve Schwann cells. NF1 mutant cells show activation of RAS/MAPK signaling, so a counter-screen in RAS mutant carcinoma cells was performed to exclude common RAS-pathway driven genes. We identified 7 genes specific for survival of MPSNT cells, including MEIS1. MEIS1 was frequently amplified or hypomethylated in human MPSNTs, correlating with elevated MEIS1 gene expression. In MPNST cells and in a genetically engineered mouse model, MEIS1 expression in developing nerve glial cells was necessary for MPNST growth. Mechanistically, MEIS1 drives MPNST cell growth via the transcription factor ID1, thereby suppressing expression of the cell cycle inhibitor p27(Kip) and maintaining cell survival.

Localization of genes encoding metallothionein-like protein (mt2 and smtb) in the brain of zebrafish.

  • Teoh SL
  • J. Chem. Neuroanat.
  • 2015 Dec 17

Literature context:


Abstract:

Metallothionein (MT) is a small cysteine-rich heavy metal-binding protein involved in metal homeostasis, detoxification and free radical-scavenging. MT is ubiquitously expressed in several tissues, but its role in the central nervous system is not well understood. In this study, we identified two MT homologous genes (mt2 and smtb) in the zebrafish. Digoxigenin-in situ hybridization showed the expression of mt2 and smtb genes in the ventricular layers in the telencephalon, diencephalon, mesencephalon and rhombencephalon, most of which are cell proliferating regions in the brain of zebrafish. Cellular characteristics of MT genes expressing cells were examined by double-labelling with markers for neurons (HuC/D) and astrocytes (glial fibrillary acidic protein, GFAP and S100 protein) and cell proliferation marker (PCNA). mt2 and smtb mRNAs are expressed in neurons and not in astrocytes, and they were co-localized with PCNA. These results suggest that mt2 and smtb may play an important role in neurogenesis and neuroprotection.

Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.

  • Diotel N
  • Gene Expr. Patterns
  • 2015 Nov 26

Literature context:


Abstract:

Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.

Funding information:
  • NIDDK NIH HHS - R37 DK050107(United States)
  • NINDS NIH HHS - R03 NS071442(United States)

Wild-type neural progenitors divide and differentiate normally in an amyloid-rich environment.

  • Yetman MJ
  • J. Neurosci.
  • 2013 Oct 30

Literature context:


Abstract:

Adult neurogenesis is modulated by a balance of extrinsic signals and intrinsic responses that maintain production of new granule cells in the hippocampus. Disorders that disrupt the proliferative niche can impair this process, and alterations in adult neurogenesis have been described in human autopsy tissue and transgenic mouse models of Alzheimer's disease. Because exogenous application of aggregated Aβ peptide is neurotoxic in vitro and extracellular Aβ deposits are the main pathological feature recapitulated by mouse models, cell-extrinsic effects of Aβ accumulation were thought to underlie the breakdown of hippocampal neurogenesis observed in Alzheimer's models. We tested this hypothesis using a bigenic mouse in which transgenic expression of APP was restricted to mature projection neurons. These mice allowed us to examine how wild-type neural progenitor cells responded to high levels of Aβ released from neighboring granule neurons. We find that the proliferation, determination, and survival of hippocampal adult-born granule neurons are unaffected in the APP bigenic mice, despite abundant amyloid pathology and robust neuroinflammation. Our findings suggest that Aβ accumulation is insufficient to impair adult hippocampal neurogenesis, and that factors other than amyloid pathology may account for the neurogenic deficits observed in transgenic models with more widespread APP expression.

Dynamics of olfactory and hippocampal neurogenesis in adult sheep.

  • Brus M
  • J. Comp. Neurol.
  • 2013 Jan 1

Literature context:


Abstract:

Although adult neurogenesis has been conserved in higher vertebrates such as primates and humans, timing of generation, migration, and differentiation of new neurons appears to differ from that in rodents. Sheep could represent an alternative model to studying neurogenesis in primates because they possess a brain as large as a macaque monkey and have a similar life span. By using a marker of cell division, bromodeoxyuridine (BrdU), in combination with several markers, the maturation time of newborn cells in the dentate gyrus (DG) and the main olfactory bulb (MOB) was determined in sheep. In addition, to establish the origin of adult-born neurons in the MOB, an adeno-associated virus that infects neural cells in the ovine brain was injected into the subventricular zone (SVZ). A migratory stream was indicated from the SVZ up to the MOB, consisting of neuroblasts that formed chain-like structures. Results also showed a long neuronal maturation time in both the DG and the MOB, similar to that in primates. The first new neurons were observed at 1 month in the DG and at 3 months in the MOB after BrdU injections. Thus, maturation of adult-born cells in both the DG and the MOB is much longer than that in rodents and resembles that in nonhuman primates. This study points out the importance of studying the features of adult neurogenesis in models other than rodents, especially for translational research for human cellular therapy.

Funding information:
  • NIMH NIH HHS - R21 MH083614(United States)

Directed glia-assisted angiogenesis in a mature neurosensory structure: pericytes mediate an adaptive response in human dental pulp that maintains blood-barrier function.

  • Farahani RM
  • J. Comp. Neurol.
  • 2012 Dec 1

Literature context:


Abstract:

The specialized tightly controlled microcirculation of craniofacial neurosensory organs is an essential evolutionary adaptation and yet a dilemma where angiogenic remodeling occurs. Despite extreme plasticity of neurosensory structures, the capacity to reconcile barrier phenotype of the microcirculation with an angiogenic cascade is not known. Here we provide primary evidence for such a response in an elemental neurosensory structure, human dental pulp, following chronic carious insult. In response to hypoxic challenge neurosensory odontoblasts express hypoxia-inducible factor-1α and notch-1. Associated radial rearrangement of astrocyte-like telacytes that communicate through a cell-poor zone with the microvasculature is observed. Activated pericytes characterized by expression of α-smooth muscle actin are located adjacent to the telacyte attachment to the vasculature. In this location, endothelial expression of sonic hedgehog parallels expression of notch-1 by pericytes. The angiogenic response is initiated by pericyte contraction and altered endothelial polarity and proliferation leading to intussusception of endothelial cells and extensive remodeling of basement membrane with upregulation of laminin-8 and laminin-5. These responses guide intravascular loop formation that maintains both intact basement membrane and tight junctions. This initial phase is followed by formation of anastomoses that enhance the hemodynamic capacity of the intravascular loops. The formation of anastomoses is mediated by extension of cytonemes from pericytes guided by MHC-II(+)/CD-163(+) microglia aligned with the telacytes. The cytonemes seek out pericytes on adjacent intravascular loops to initiate migration of endothelial cells. These findings support a new paradigm for understanding angiogenic capacity of neurosensory structures and aberrations of this response manifest as neurovasculopathies.

Funding information:
  • NCRR NIH HHS - R24 RR024790(United States)

Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α).

  • Hsieh YL
  • J. Comp. Neurol.
  • 2012 Sep 1

Literature context:


Abstract:

Nerve inflammation plays an important role in the development and progression of neuropathic pain after chronic constrictive injury (CCI). Recent studies have indicated that hypoxia-inducible factor 1α (HIF-1α) is crucial in inflammation. Low-level laser therapy has been used in treating musculoskeletal pain, but rare data directly support its use for neuropathic pain. We investigated the effects of low-level laser on the accumulation of HIF-1α, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in controlling neuropathic pain, as well as on the activation of vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) in promoting functional recovery in a rat CCI model. CCI was induced by placing four loose ligatures around the sciatic nerve of rats. Treatments of low-level laser (660 nm, 9 J/cm(2)) or sham irradiation (0 J/cm(2)) were performed at the CCI sites for 7 consecutive days. The effects of laser in animals with CCI were determined by measuring the mechanical paw withdrawal threshold, as well as the sciatic, tibial, and peroneal function indices. Histopathological and immunoassay analyses were also performed. Low-level laser therapy significantly improved paw withdrawal threshold and the sciatic, tibial, and peroneal functional indices after CCI. The therapy also significantly reduced the overexpressions of HIF-1α, TNF-α, and IL-1β, and increased the amounts of VEGF, NGF, and S100 proteins. In conclusion, a low-level laser could modulate HIF-1α activity. Moreover, it may also be used as a novel and clinically applicable therapeutic approach for the improvement of tissue hypoxia/ischemia and inflammation in nerve entrapment neuropathy, as well as for the promotion of nerve regeneration. These findings might lead to a sufficient morphological and functional recovery of the peripheral nerve.

Funding information:
  • NCI NIH HHS - P30 CA060553(United States)
  • Wellcome Trust - 090197/Z/09/Z(United Kingdom)

Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio).

  • Braubach OR
  • J. Comp. Neurol.
  • 2012 Aug 1

Literature context:


Abstract:

Odor molecules are transduced by thousands of olfactory sensory neurons (OSNs) located in the nasal cavity. Each OSN expresses a single functional odorant receptor protein and projects an axon from the sensory epithelia to an olfactory bulb glomerulus, which is selectively innervated by only one or a few OSN types. We used whole-mount immunocytochemistry to study the neurochemistry and anatomical organization of glomeruli in the zebrafish olfactory system. By employing combinations of antibodies against G-protein α subunits, calcium-binding proteins, and general neuronal markers, we selectively labeled various OSN types, their axonal projections to glomeruli, and the detailed anatomical distributions of individual glomeruli in different regions of the olfactory bulb. In this way we identified ≈140 glomeruli in each olfactory bulb of mature zebrafish. A small subset (27) of these glomeruli was unambiguously identifiable in nearly all animals examined. These units were large and, located mainly in the medial olfactory bulbs. Most glomeruli, however, were comparatively small, anatomically indistinguishable, and located in coarsely circumscribed regions; almost all of these latter glomeruli were innervated by OSNs that were labeled with anti-G(α s/olf) and/or anti-calretinin antibodies. Collectively, our results provide a uniquely detailed description of a vertebrate olfactory system and highlight anatomically distinct parallel neural pathways that mediate early aspects of olfactory processing in the zebrafish.

Funding information:
  • NICHD NIH HHS - HD 32050(United States)

The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain.

  • Lindsey BW
  • J. Comp. Neurol.
  • 2012 Jul 1

Literature context:


Abstract:

A central goal of adult neurogenesis research is to characterize the cellular constituents of a neurogenic niche and to understand how these cells regulate the production of new neurons. Because the generation of adult-born neurons may be tightly coupled to their functional requirement, the organization and output of neurogenic niches may vary across different regions of the brain or between species. We have undertaken a comparative study of six (D, Vd, Vv, Dm, Dl, Ppa) periventricular zones (PVZs) harboring proliferative cells present in the adult forebrain of the zebrafish (Danio rerio), a species known to possess widespread neurogenesis throughout life. Using electron microscopy, we have documented for the first time the detailed cytoarchitecture of these zones, and propose a model of the cellular composition of pallial and subpallial PVZs, as well as a classification scheme for identifying morphologically distinct cell types. Immunolabeling of resin-embedded tissue confirmed the phenotype of three constitutively proliferating (bromodeoxyuridine [BrdU]+) cell populations, including a radial glial-like (type IIa) cell immunopositive for both S100β and glutamine synthetase (GS). Our data revealed rostrocaudal differences in the density of distinct proliferative populations, and cumulative labeling studies suggested that the cell cycle kinetics of these populations are not uniform between PVZs. Although the peak numbers of differentiated neurons were generated after ~2 weeks among most PVZs, niche-specific decline in the number of newborn neurons in some regions occurred after 4 weeks. Our data suggest that the cytoarchitecture of neurogenic niches and the tempo of neuronal production are regionally distinct in the adult zebrafish forebrain.

Funding information:
  • NIMH NIH HHS - T32 MH096678(United States)

Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny.

  • Romero-Alemán MM
  • J. Comp. Neurol.
  • 2012 Jul 1

Literature context:


Abstract:

We studied the histogenesis of the lizard visual system (E30 to adulthood) by using a selection of immunohistochemical markers that had proved relevant for other vertebrates. By E30, the Pax6(+) pseudostratified retinal epithelium shows few newborn retinal ganglion cells (RGCs) in the centrodorsal region expressing neuron- and synaptic-specific markers such as betaIII-tubulin (Tuj1), synaptic vesicle protein-2 (SV2), and vesicular glutamate transporter-1 (VGLUT1). Concurrently, pioneer RGC axons run among the Pax2(+) astroglia in the optic nerve and reach the superficial optic tectum. Between E30 and E35, the optic chiasm and optic tract remain acellular, but the latter contains radial processes with subpial endfeet expressing vimentin (Vim). From E35, neuron- and synaptic-specific stainings spread in the retina and optic tectum, whereas retinal Pax6, and Tuj1/SV2 in RGC axons decrease. Müller glia and abundant optic nerve glia express a variety of glia-specific markers until adulthood. Subpopulations of optic nerve glia are also VGLUT1(+) and cluster differentiation-44 (CD44)-positive but cytokeratin-negative, unlike the case in other regeneration-competent species. Specifically, coexpression of CD44/Vim and glutamine synthetase (GS)/VGLUT1 reflects glial specialization, insofar as most CD44(+) glia are GS(-). In the adult optic tract and tectum, radial glia and free astroglia coexist. The latter show different immunocharacterization (Pax2(-)/CD44(-) /Vim(-)) compared with that in the optic nerve. We conclude that upregulation of Tuj1 and SV2 is required for axonal outgrowth and search for appropriate targets, whereas Pax2(+) optic nerve astroglia and Vim(+) radial glia may aid in early axonal guidance. Spontaneous axonal regrowth seems to succeed despite the heterogeneous mammalian-like glial environment in the lizard optic nerve.

Funding information:
  • NIGMS NIH HHS - R01-GM084947(United States)
  • NIMH NIH HHS - R15 MH099590(United States)

The astrocytic lineage marker calmodulin-regulated spectrin-associated protein 1 (Camsap1): phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain.

  • Yoshioka N
  • J. Comp. Neurol.
  • 2012 Apr 15

Literature context:


Abstract:

Calmodulin-regulated spectrin-associated protein 1 (Camsap1) has been recognized as a new marker for astrocytic lineage cells and is expressed on mature astrocytes in the adult brain (Yamamoto et al. [2009] J. Neurosci. Res. 87:503–513). In the present study, we found that newly born Camsap1-expressing cells exhibited regional heterogeneity in an early phase after stab injury of the mouse brain. In the surrounding area of the lesion site, Camsap1 was expressed on quiescent astrocytes. At 3 days after injury, Camsap1 immunoreactivity was upregulated on glial fibrillary acidic protein-immunoreactive (GFAP-ir) astrocytes. Some of these astrocytes incorporated bromodeoxyuridine (BrdU) together with re-expression of the embryonic cytoskeleton protein nestin. In the neighboring region of the lesion cavity, Camsap1 was expressed on GFAP-negative cells. At 3 days after injury, GFAP-ir astrocytes were absent around the lesion cavity. At this stage, NG2-ir cells immunopositive for Camsap1 and immunonegative for GFAP were distributed in border of the lesion cavity. By 10 days, Camsap1 immunoreactivity was exclusively detected on GFAP-ir reactive astrocytes devoid of NG2 immunoreactivity. BrdU pulse-chase labeling assay suggested the differentiation of Camsap1+/NG2+ cells into Camsap1+/GFAP+ astrocytes. In the subependymal zone of the lateral ventricle, Camsap1-ir cells increased after injury. Camsap1 immunoreactivity was distributed on ependymal and subependymal cells bearing various astrocyte markers, and BrdU incorporation was enhanced on such Camsap1-ir cells after injury. These results suggest that newly born reactive astrocytes are derived from heterogeneous Camsap1-expressing cells in the injured brain.

Funding information:
  • NIDDK NIH HHS - R01 DK084352(United States)

Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish.

  • Kishimoto N
  • J. Comp. Neurol.
  • 2011 Dec 1

Literature context:


Abstract:

In the brain of adult mammals, neuronal precursors are generated in the subventricular zone in the lateral wall of the lateral ventricles and migrate into the olfactory bulbs (OBs) through a well-studied route called the rostral migratory stream (RMS). Recent studies have revealed that a comparable neural stem cell niche is widely conserved at the ventricular wall of adult vertebrates. However, little is known about the migration route of neuronal precursors in nonmammalian adult brains. Here, we show that, in the adult zebrafish, a cluster of neuronal precursors generated in the telencephalic ventricular zone migrates into the OB via a route equivalent to the mammalian RMS. Unlike the mammalian RMS, these neuronal precursors are not surrounded by glial tubes, although radial glial cells with a single cilium lined the telencephalic ventricular wall, much as in embryonic and neonatal mammals. To observe the migrating neuronal precursors in living brain tissue, we established a brain hemisphere culture using a zebrafish line carrying a GFP transgene driven by the neurogenin1 (ngn1) promoter. In these fish, GFP was observed in the neuronal precursors migrating in the RMS, some of which were aligned with blood vessels. Numerous ngn1:gfp-positive cells were observed migrating tangentially in the RMS-like route medial to the OB. Taken together, our results suggest that the RMS in the adult zebrafish telencephalon is a functional migratory pathway. This is the first evidence for the tangential migration of neuronal precursors in a nonmammalian adult telencephalon.

Funding information:
  • Intramural NIH HHS - (United States)

Blueprint of an ancestral neurosensory organ revealed in glial networks in human dental pulp.

  • Farahani RM
  • J. Comp. Neurol.
  • 2011 Nov 1

Literature context:


Abstract:

Sensory function of human dental pulp has long been known. A composite role has been suggested for odontoblasts as sensory cells in addition to the synthesis of dentinal matrix. However, the neural basis for such a composite sensory activity remains enigmatic. Here, we aimed to probe the question by pursuing an evolutionary logic; if dental pulp is a vestigial sensory organ co-opted to a function of synthesis of mineralized matrix, essential elements of neurosensory organs may persist in dental pulp. Through structural analysis by confocal laser scanning microscopy, three distinct cell populations adjacent to odontoblasts, glial fibrillary acidic protein (GFAP)(+) seracytes, S100(+) telacytes, and HLA-II(+) alacytes were identified in peripheral human dental pulp. Subsequent molecular fingerprinting by quantitative reverse transcriptase-polymerase chain reaction established these cells as analogous to radial glia (GFAP(+) cells), astrocytes (S100(+) cells), and microglia (HLA-II(+) cells) of central nervous system organs. In the cell-rich zone of the pulp, S100(+) cells formed a network, ensheathed unmyelinated axons, and extended end-feet around the capillaries. The microcirculation adjacent to the glial cells in the cell-rich zone possessed ultrastructural features and a gene expression profile typical of the blood-brain barrier system. These novel findings support a new paradigm for understanding sensory functionality of dental pulp by the demonstration of a sophisticated neural structure in the human dental pulp that is analogous to other central sensory organs. Further, the structure that is revealed informs the concept of the evolutionary origin of the dental pulp, suggesting that a neurosensory organ was the precursor structure of teeth.

Funding information:
  • NCRR NIH HHS - R01RR025030(United States)

Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio).

  • Gayoso JÁ
  • J. Comp. Neurol.
  • 2011 Feb 1

Literature context:


Abstract:

Immunohistochemical methods were used to characterize the expression of two calcium-binding proteins, calretinin (CR) and S100, in the olfactory rosette of the adult zebrafish. These proteins are expressed in different sets of sensory neurons, and together represent a large proportion of these cells. Double immunofluorescence for CR and Gα(olf) protein, and CR immunoelectron microscopy, indicated that most CR-immunoreactive (ir) cells were ciliary neurons. Differential S100- and CR-ir projections to glomerular fields of the olfactory bulb were also observed, although these projections overlap in some glomeruli. Application of the carbocyanine dye DiI to either S100-ir or CR-ir glomerular regions led to labeling of cells mostly similar to S100-ir and CR-ir neurons, respectively. Instead, these bulbar regions project to similar telencephalic targets. On the other hand, antibodies against keyhole limpet hemocyanin (KLH)-stained numerous sensory cells in the olfactory rosette, including cells that were CR- and S100-negative. This antiserum also stained most primary bulbar projections and revealed extrabulbar olfactory primary projections coursing to the ventral area of the telencephalon through the medial olfactory tract. This extrabulbar projection was confirmed by tract-tracing with DiI. A loose association of this extrabulbar primary olfactory projection and the catecholaminergic populations of the ventral area was also observed with double tyrosine hydroxylase/KLH-like immunohistochemistry. Comparison between KLH-like-ir pathways and the structures revealed by FMRFamide immunohistochemistry (a marker of terminal ganglion cells and fibers) indicated that the KLH-like-ir extrabulbar projection was different from the terminal nerve system. The significance of the extrabulbar olfactory projection of zebrafish is discussed.

Funding information:
  • NCI NIH HHS - CA101936-01(United States)
  • NIDCD NIH HHS - DC005557(United States)

Expression of neuronal markers, synaptic proteins, and glutamine synthetase in the control and regenerating lizard visual system.

  • Romero-Alemán MM
  • J. Comp. Neurol.
  • 2010 Oct 1

Literature context:


Abstract:

Spontaneous regrowth of retinal ganglion cell (RGC) axons occurs after optic nerve (ON) transection in the lizard Gallotia galloti. To gain more insight into this event we performed an immunohistochemical study on selected neuron and glial markers, which proved useful for analyzing the axonal regrowth process in different regeneration models. In the control lizards, RGCs were beta-III tubulin- (Tuj1) and HuCD-positive. The vesicular glutamate transporter-1 (VGLUT1) preferentially stained RGCs and glial somata rather than synaptic layers. In contrast, SV2 and vesicular GABA/glycine transporter (VGAT) labeling was restricted to both plexiform layers. Strikingly, the strong expression of glutamine synthetase (GS) in both Müller glia processes and macroglial somata revealed a high glutamate metabolism along the visual system. Upregulation of Tuj1 and HuCD in the surviving RGCs was observed at all the timepoints studied (1, 3, 6, 9, and 12 months postlesion). The significant rise of Tuj1 in the optic nerve head and optic tract (OTr) by 1 and 6 months postlesion, respectively, suggests an increase of the beta-III tubulin transport and incorporation into newly formed axons. Persistent Tuj1(+) and SV2(+) puncta and swellings were abnormally observed in putative degenerating/dystrophic fibers. Unexpectedly, neuron-like cells of obscure significance were identified in the control and regenerating ON-OTr. We conclude that: 1) the persistent upregulation of Tuj1 and HuCD favors the long-lasting axonal regrowth process; 2) the latter succeeded despite the ectopia and dystrophy of some regrowing fibers; and 3) maintenance of the glutamate-glutamine cycle contributes to the homeostasis and plasticity of the system.

Funding information:
  • NIBIB NIH HHS - R01 EB000219-11(United States)

Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse.

  • Besalduch N
  • J. Comp. Neurol.
  • 2010 Jan 10

Literature context:


Abstract:

Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in synaptic activity by nerve stimulation couple PKC to transmitter release in the rat neuromuscular junction and increase the level of alpha, betaI, and betaII isoforms in the membrane when muscle contraction follows the stimulation. The phosphorylation activity of these classical PKCs also increases. It seems that the muscle has to contract in order to maintain or increase classical PKCs in the membrane. We use immunohistochemistry to show that PKCalpha and PKCbetaI were located in the nerve terminals, whereas PKCalpha and PKCbetaII were located in the postsynaptic and the Schwann cells. Stimulation and contraction do not change these cellular distributions, but our results show that the localization of classical PKC isoforms in the membrane is affected by synaptic activity.

Funding information:
  • NIAMS NIH HHS - R37 AR038648-21(United States)

Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development.

  • Jakovcevski I
  • J. Comp. Neurol.
  • 2009 Apr 10

Literature context:


Abstract:

Several L1-related adhesion molecules, expressed in a well-coordinated temporospatial pattern during development, are important for fine tuning of specific cerebellar circuitries. We tested the hypothesis that CHL1, the close homologue of L1, abundantly expressed in the developing and adult cerebellum, is also required for normal cerebellar histogenesis. We found that constitutive ablation of CHL1 in mice caused significant loss (20-23%) of Purkinje and granule cells in the mature 2-month-old cerebellum. The ratio of stellate/basket interneurons to Purkinje cells was abnormally high (+38%) in CHL1-deficient (CHL1-/-) mice compared with wild-type (CHL1+/+) littermates, but the gamma-aminobutyric acid (GABA)ergic synaptic inputs to Purkinje cell bodies and dendrites were normal, as were numbers of Golgi interneurons, microglia, astrocytes, and Bergmann glia. Purkinje cell loss occurred before the first postnatal week and was associated with enhanced apoptosis, presumably as a consequence of CHL1 deficiency in afferent axons. In contrast, generation of granule cells, as indicated by in vivo analyses of cell proliferation and death, was unaffected in 1-week-old CHL1-/- mice, but numbers of migrating granule cells in the molecular layer were increased. This increase was likely related to retarded cell migration because CHL1-/- granule cells migrated more slowly than CHL1+/+ cells in vitro, and Bergmann glial processes guiding migration in vivo expressed CHL1 in wild-type mice. Granule cell deficiency in adult CHL1-/- mice appeared to result from decreased precursor cell proliferation after the first postnatal week. Our results indicate that CHL1 promotes Purkinje and granule cell survival and granule cell migration during cerebellar development.

Funding information:
  • NICHD NIH HHS - P30 HD15052(United States)

Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody.

  • Hoff S
  • J. Comp. Neurol.
  • 2008 Aug 1

Literature context:


Abstract:

Quantitative changes of enteric glia (EGC) have been implicated in gastrointestinal disorders. To facilitate future studies of EGC in human pathology, we aimed to characterize thoroughly glial markers in the human enteric nervous system (ENS) and to compare EGC in man and guinea pig. Whole-mount preparations of the enteric nerve plexuses from human and guinea pig ileum and colon were labeled with antibodies against S100b, glial fibrillary acidic protein (GFAP), and p75NGFR and the transcription factors Sox8/9/10 and neuronally counterstained. Abundant immunoreactivity (IR) for S100b, GFAP, p75NGFR, and Sox8/9/10 was detected in EGC of all studied regions. Although the cytoplasmatic staining pattern of most markers did not permit glial quantification, the nuclear localization of Sox8/9/10-IR allowed to identify and count all EGC individually. In both man and guinea pig, myenteric ganglia were larger and contained more EGC and neurons than submucous ganglia. Furthermore, there were more EGC in the human than in the guinea pig myenteric plexus (MP), glial density was consistently higher in the human ENS, and the glia index (glia:neuron ratio) ranged from 1.3 to 1.9 and from 5.9 to 7.0 in the human submucous plexus (SMP) and MP, respectively, whereas, in guinea pig, the glia index was 0.8-1.0 in the SMP and 1.7 in the MP. The glia index was the most robust quantitative descriptor within one species. This is a comprehensive set of quantitative EGC measures in man and guinea pig that provides a basis for pathological assessment of glial proliferation and/or degeneration in the diseased gut.

Funding information:
  • NIMH NIH HHS - MH078993(United States)

Nestin expression defines both glial and neuronal progenitors in postnatal sympathetic ganglia.

  • Shi H
  • J. Comp. Neurol.
  • 2008 Jun 20

Literature context:


Abstract:

Sympathetic ganglia are primarily composed of noradrenergic neurons and satellite glial cells. Although both cell types originate from neural crest cells, the identities of the progenitor populations at intermediate stages of the differentiation process remain to be established. Here we report on the identification in vivo of glial and neuronal progenitor cells in postnatal sympathetic ganglia, by using mouse superior cervical ganglia as a model system. There are significant levels of cellular proliferation in mouse superior cervical ganglia during the first 18 days after birth. A majority of the proliferating cells express both nestin and brain lipid-binding protein (BLBP). Bromodeoxyuridine (BrdU) fate-tracing experiments demonstrate that these nestin and BLBP double-positive cells represent a population of glial progenitors for sympathetic satellite cells. The glial differentiation process is characterized by a marked downregulation of nestin and upregulation of S100, with no significant changes in the levels of BLBP expression. We also identify a small number of proliferating cells that express nestin and tyrosine hydroxylase, a key enzyme of catecholamine biosynthesis that defines sympathetic noradrenergic neurons. Together, these results establish nestin as a common marker for sympathetic neuronal and glial progenitor cells and delineate the cellular basis for the generation and maturation of sympathetic satellite cells.

Paralysis elicited by spinal cord injury evokes selective disassembly of neuromuscular synapses with and without terminal sprouting in ankle flexors of the adult rat.

  • Burns AS
  • J. Comp. Neurol.
  • 2007 Jan 1

Literature context:


Abstract:

Neuromuscular junctions (NMJs) innervated by motor neurons below spinal cord injury (SCI) have been reported to remain intact despite the interruption of supraspinal pathways and the resultant loss of activity. Here we report notably heterogeneous NMJ responses to SCI that include overt synapse disassembly. Complete transection of the thoracic spinal cord of adult rats evoked massive sprouting of nerve terminals in a subset of NMJs in ankle flexors, extensor digitorum longus, and tibialis anterior. Many of these synapses were extensively disassembled 2 weeks after spinal transection but by 2 months had reestablished synaptic organization despite continuous sprouting of their nerve terminals. In contrast, uniform and persistent loss of acetylcholine receptors (AChRs) was evident in another subset of NMJs in the same flexors, which apparently lacked terminal sprouting and largely maintained terminal arbors. Other synapses in the flexors, and almost all the synapses in the ankle extensors, medial gastrocnemius, and soleus, remained intact, with little pre- or postsynaptic alteration. Additional deafferentation of the transected animals did not alter the incidence or regional distribution of either type of the unstable synapses, whereas cycling exercise diminished their incidence. The muscle- and synapse-specific responses of NMJs therefore reflected differential sensitivity of the NMJs to inactivity rather than to differences in residual activity. These observations demonstrate the existence of multiple subpopulations of NMJs that differ distinctly in pre- and postsynaptic vulnerability to the loss of activity and highlight the anatomical instability of NMJs caudal to SCI, which may influence motor deficit and recovery after SCI.

Funding information:
  • Canadian Institutes of Health Research - 1R01GM084875(Canada)